JPS5887238A - Manufacture of fiber reinforced composite member - Google Patents

Manufacture of fiber reinforced composite member

Info

Publication number
JPS5887238A
JPS5887238A JP18567181A JP18567181A JPS5887238A JP S5887238 A JPS5887238 A JP S5887238A JP 18567181 A JP18567181 A JP 18567181A JP 18567181 A JP18567181 A JP 18567181A JP S5887238 A JPS5887238 A JP S5887238A
Authority
JP
Japan
Prior art keywords
fibers
molded body
matrix
composite member
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18567181A
Other languages
Japanese (ja)
Other versions
JPS6127452B2 (en
Inventor
Waichiro Nakajima
中島 和一郎
Osamu Furubayashi
古林 修
Hiroshi Sasaki
浩 佐々木
Katsuhiro Nishizaki
西崎 勝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18567181A priority Critical patent/JPS5887238A/en
Publication of JPS5887238A publication Critical patent/JPS5887238A/en
Publication of JPS6127452B2 publication Critical patent/JPS6127452B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the titled composite member with superir mechanical strength by forming plating layers on the surfaces of innumerable metallic inorg. fibers, partially sintering the layers in a molding tool, filling the resulting molded body into a matrix, and combining them. CONSTITUTION:Plating layers of pure copper or the like are formed on the surfaces of innumerable unidirectional metallic inorg. fibers, and the fibers are put in a heat resistant tubular molding tool such as a quartz glass tube at a prescribed bulk density. The tool is placed in a heating furnace kept in a reducing or inert gaseous atmosphere or a vacuum, and by heating the fibers, together with the tool, to a low temp., the plating layers are partially sintered. The resulting molded body is filled into a matrix and combined by a high pressure solidification casting method.

Description

【発明の詳細な説明】 本発明は金属性無機質繊維成形体をマ) IJラックス
中高圧凝固鋳造法により充填複合させる繊維強化複合部
材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fiber-reinforced composite member, in which metallic inorganic fiber molded bodies are filled and composited by IJ Lux medium-high pressure coagulation casting method.

ここで、高圧凝固鋳造法とは、鋳型内に注入した溶湯に
500〜2 、 g 6 o kg/dの静水的高圧力
を加え、その高圧下で上記溶湯な凝固させる特殊餉造法
であって、成形体をマトリックス中に充填複合させる際
、成形体全域にわたってマ) IJラックスなる溶湯を
十分に浸透させることが可能で、機械的強度の優れた複
合部材を得ることができる。
Here, the high-pressure solidification casting method is a special casting method in which a hydrostatic high pressure of 500 to 2,000 kg/d is applied to the molten metal poured into a mold, and the molten metal is solidified under the high pressure. When the molded body is filled and composited into the matrix, it is possible to sufficiently infiltrate the molten metal called IJ lux over the entire area of the molded body, and a composite member with excellent mechanical strength can be obtained.

本出願人は先に、銅系ろ5材により繊維相互間を部分的
に拡散接着した、高弾性金属性無機質繊維よりなるカサ
密度2.5〜5 、 Ofl/CCの成形体を、前記鋳
造法によりマトリックス中に充填複合させた繊維強化複
合材の製造方法を開発した(特願昭56−40993号
参照)。前記成形体は銅系ろう材による繊維相互間の部
分的拡散接着により良好な保形性を有し、しかもその保
形性は鋳造中も維持されるので、部材の所望箇所を適切
に繊維強化することができる。
The present applicant previously made a molded body of Ofl/CC with a bulk density of 2.5 to 5, which is made of highly elastic metallic inorganic fibers and whose fibers are partially diffusion-bonded by a copper-based filter material, to the above-mentioned casting method. We have developed a method for manufacturing a fiber-reinforced composite material in which a matrix is filled and composited using a method (see Japanese Patent Application No. 56-40993). The molded body has good shape retention due to partial diffusion bonding between the fibers using the copper brazing filler metal, and this shape retention is maintained even during casting, so desired parts of the member can be appropriately reinforced with fibers. can do.

しかしながら、前記成形体について種々検討を加えた結
果、次のような問題のあることが判明した。即ち、前記
成形体を成形する場合、銅系ろう材と共に繊維を、その
ろう材の溶解温度以上、例えば約1,200℃以上に加
熱し、その後炉冷するため、繊維自体が焼なまされて、
その強度を著しく劣化する傾向がある。第7図は二種類
、即ちJIS  SUS□33材よりなる直径0.37
龍のステンレス細線(α)とJIS  SUS  27
材よりなる直径0.37mmのステンレス細1(hlと
を15分間加熱した場合の常温破断強度の変化を示すも
ので、この図からも細線が高温に加熱されると強度が著
しく劣化することが明らかであり、この劣化傾向は他の
鉄系細線にも現われる。
However, as a result of various studies regarding the molded article, it has been found that there are the following problems. That is, when forming the compact, the fibers are heated together with the copper-based brazing material to a temperature higher than the melting temperature of the brazing material, for example, about 1,200° C. or higher, and then cooled in a furnace, so that the fibers themselves are not annealed. hand,
It tends to significantly deteriorate its strength. Figure 7 shows two types, namely JIS SUS□33 materials with a diameter of 0.37.
Dragon stainless steel wire (α) and JIS SUS 27
This figure shows the change in breaking strength at room temperature when stainless steel thin wire 1 (HL) with a diameter of 0.37 mm is heated for 15 minutes. This figure also shows that the strength deteriorates significantly when the thin wire is heated to high temperatures. This deterioration tendency also appears in other iron-based thin wires.

本発明は上記に鑑み、繊維を高温加熱することなく成形
体を成形し得るようにして前記繊維の強度劣化を防止し
、また前記成形体を用いて部材の所望箇所を適切に繊維
強化することのできる、前記複合部材の製造方法を提供
することを目的とし、無数の金属性無機質繊維の表面に
メッキ層を形成し、該メッキ層相互間を部分的に焼結す
ることにより前記金属性無機質繊維よりなる成形体を成
形し、該成形体を高圧凝固鋳造法によりマトリックス中
に充填複合させることを特徴とする。
In view of the above, the present invention is to prevent strength deterioration of the fibers by forming a molded body without heating the fibers at high temperatures, and to appropriately fiber-reinforce desired parts of a member using the molded body. The purpose of the present invention is to provide a method for manufacturing the above-mentioned composite member, in which a plated layer is formed on the surface of countless metallic inorganic fibers, and the metallic inorganic fibers are partially sintered between the plated layers. The method is characterized in that a molded body made of fibers is molded, and the molded body is filled and composited into a matrix by a high-pressure solidification casting method.

上記金属性無機質繊維としては高弾性を有するもので、
ステンレス繊維、その他の鉄系繊維等が該当する。また
メッキ層は銅系、銀糸電気または化学メッキ処理により
形成され、メッキ層の厚さは、第6図から明らかなよう
に複合部材の疲労強度の点から0.1〜4,0μの範囲
が最適である。
The above-mentioned metallic inorganic fiber has high elasticity,
This includes stainless steel fibers and other iron-based fibers. In addition, the plating layer is formed by copper-based, silver thread electroplating or chemical plating, and the thickness of the plating layer is in the range of 0.1 to 4.0 μm from the viewpoint of fatigue strength of the composite member, as is clear from Figure 6. Optimal.

メッキ層の厚さが03μ を下回ると、成形体の保形性
が悪(、また4、0μ を上回るとメッキ層とマトリッ
クス層とが著しく反応し、複合部材の疲労強度が低下す
る。
If the thickness of the plated layer is less than 0.3 μm, the shape retention of the molded product will be poor (and if it exceeds 4.0 μm, the plated layer and matrix layer will react significantly, reducing the fatigue strength of the composite member.

メツ゛キ層による繊維相互間の部分的な接合工程を、例
えば棒状成形体を得る場合について説明すると、先ず無
数の一方向金属性無機質繊維の表面に純銅を用いてメッ
キ層を形成し、その繊維を石英ガラス管等の耐熱性管状
成形型に所定のカサ密度、例えば2.5〜5 、09/
QCとなるように挿入し、次いでこの成形型を還元性若
しくは不活性ガス雰囲気または真空に保持された加熱炉
内に設置し、その後成形型と共に繊維を低温、例えば5
00〜600℃に加熱してメッキ層相互間を部分的に焼
結するものである。
To explain the partial joining process between fibers using a plating layer, for example when obtaining a rod-shaped molded product, first, a plating layer is formed using pure copper on the surface of countless unidirectional metallic inorganic fibers, and the fibers are bonded together. A heat-resistant tubular mold such as a quartz glass tube is molded with a predetermined bulk density, e.g. 2.5~5,09/
QC, then the mold is placed in a heating furnace maintained in a reducing or inert gas atmosphere or vacuum, and then the fibers together with the mold are heated at a low temperature, e.g.
The plated layers are partially sintered by heating to 00 to 600°C.

以下、本発明を、枠部を繊維強化された内燃機関用コン
ロッドの製造に適用した実施例について説明する。
Hereinafter, an embodiment will be described in which the present invention is applied to manufacturing a connecting rod for an internal combustion engine whose frame portion is reinforced with fibers.

〔実施例I〕[Example I]

第3図に示すように平均直径約30μの横断面多角形状
ステンレス繊維fの表面に銅メッキ層を形成し、その繊
維束な石英ガラス管よりなる成形型P内に挿入し、次い
でその成形型Pを還元性ガス(例えばアンモニア分解ガ
ス)雰囲気に保持された加熱炉内に設置し、その後成形
型Pと共に繊維束を約600℃、15分間加熱し1銅メ
ッキ層相互間を焼結し、そのまま炉冷して棒状成形体F
を成形した。
As shown in Fig. 3, a copper plating layer is formed on the surface of stainless steel fibers f having a polygonal cross section with an average diameter of about 30μ, and the fibers are inserted into a mold P made of a quartz glass tube, and then the mold Place P in a heating furnace maintained in a reducing gas (for example, ammonia decomposition gas) atmosphere, and then heat the fiber bundle together with mold P at about 600°C for 15 minutes to sinter the copper plating layers, Cool the rod-shaped compact F in the furnace as it is.
was molded.

上記成形体Fについて、その性状を調べたところ保形性
が良好で、カサ密度は3 、2 g/ccであった。
When the properties of the molded article F were examined, it was found to have good shape retention and a bulk density of 3.2 g/cc.

次いで上記棒状成形体Fを内燃機関のコンロッド用鋳型
の枠部キャビティ内長手方向に設置し、マトリックスM
としてアルミニウム合金(JISAC8B材)を用いて
高圧凝固鋳造法により第1゜第2図に示すように枠部R
を繊S強化したコンロッドCを鋳造した。
Next, the rod-shaped molded body F is installed in the longitudinal direction inside the frame cavity of a mold for a connecting rod of an internal combustion engine, and the matrix M
Using an aluminum alloy (JISAC8B material) as a material, the frame R is formed by high-pressure solidification casting as shown in Figures 1 and 2.
A connecting rod C reinforced with fiber S was cast.

上記コンロッドCの枠部Rを横断して、その断面の性状
を顕微鏡により調べたところ第4図の結果が得られた。
When the frame R of the connecting rod C was crossed and the properties of the cross section were examined using a microscope, the results shown in FIG. 4 were obtained.

第1図の倍率は400倍であり、各多角形状のステンレ
ス繊維とマトリックスとが密に結合され、充填複合性が
良好で、また銅とアルミニウム合金とが反応していない
ことが認められる。第5図は前記メッキ層の厚さを5μ
にした鳩舎を示し、黒色部分のように銅とアルミニウム
合金とが著しく反応していることが認められ、疲労強度
が低下してコンロッドとしては耐久性に乏しいことが判
明した。
The magnification of FIG. 1 is 400 times, and it can be seen that each polygonal stainless steel fiber and matrix are tightly bonded, the filling composite property is good, and there is no reaction between the copper and aluminum alloy. In Figure 5, the thickness of the plating layer is 5 μm.
It was found that the copper and aluminum alloy reacted significantly as shown in the black part, and the fatigue strength decreased and the durability of the connecting rod was poor.

〔実施例■〕[Example ■]

実施例■と同様の平均直径約30μの横断面多角形状ス
テンレス繊維の表面に銀メッキ層を形成し、その繊維束
を石英ガラス管よりなる成形型内に挿入し、次いでその
成形型を還元性ガス(例えばアンモニア分解ガス)雰囲
気に保持された加熱炉内に設置し、その後成形型と共に
繊維束を約560℃、15fi間加熱して銀メツキ層相
互間を焼結し、そのまま炉冷して棒状成形体を成形した
A silver plating layer was formed on the surface of polygonal cross-sectional stainless steel fibers with an average diameter of about 30 μm as in Example ①, the fiber bundle was inserted into a mold made of a quartz glass tube, and the mold was then placed in a reducible mold. The fiber bundle is placed in a heating furnace maintained in a gas (for example, ammonia decomposition gas) atmosphere, and then the fiber bundle together with the mold is heated at approximately 560°C for 15 fi to sinter the silver plating layers, and then cooled in the furnace. A rod-shaped compact was molded.

上記成形体について、その性状を調べたところ保形性が
良好で、カサ密度は3.4gAC−であった。
When the properties of the above-mentioned molded article were examined, it was found that the shape retention was good and the bulk density was 3.4 gAC-.

次いで上記棒状成形体を内燃機関のコンロッド用鋳型の
枠部キャビティ内長手方向に設置し、アルミニウム合金
(JIS、ACBE材)を用いて高圧凝固鋳造法により
枠部を繊維強化したコンロッドを鋳造した。
Next, the rod-shaped molded body was placed in the longitudinal direction inside the frame cavity of a mold for a connecting rod of an internal combustion engine, and a connecting rod with a fiber-reinforced frame was cast using an aluminum alloy (JIS, ACBE material) by high-pressure solidification casting.

上記コンロッドの枠部を横断して、その断面の性状を顕
微鏡により調べたところ前記実施例Tと同様に各多角形
状ステンレス繊維とマトリックスとが密に結合され、充
填複合性が良好で、また銀とアルミニウム合金とが反応
していないことが認められた。
When the frame of the connecting rod was crossed and the properties of the cross section were examined using a microscope, it was found that the polygonal stainless steel fibers and the matrix were tightly bonded, as in Example T, and the filling composite properties were good. It was observed that there was no reaction between the aluminum alloy and the aluminum alloy.

以上のように本発明によれば、無数の金属性無機質繊維
の表面にメッキ層を形成し、そのメッキ層相互間を部分
的に焼結することにより前記金属性無機質繊維よりなる
成形体を成形するので、比較的低温でメッキ層相互間の
焼結を行い、前記繊 維の強度劣化を防止することがで
きる。
As described above, according to the present invention, a molded body made of the metallic inorganic fibers is formed by forming a plating layer on the surface of countless metallic inorganic fibers and partially sintering between the plated layers. Therefore, sintering between the plated layers can be performed at a relatively low temperature, and deterioration in the strength of the fiber can be prevented.

また前記成形体の保形性が良好で、その保形性は高圧凝
固鋳造中においても維持されるので、部材の所望箇所を
適切に繊維強化することができ、機械的強度の優れた繊
維強化複合1部材を提供し得るものである。
In addition, the shape retention of the molded body is good, and the shape retention is maintained even during high-pressure solidification casting, so desired parts of the component can be appropriately reinforced with fibers, and fiber reinforced with excellent mechanical strength. A single composite member can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図は本発明により得ら庇た内燃機関用コンロッ
ドを示すもので、第1図は縦断正面図、第2図は第1図
■−■線断面図、第3図は金属性無機質繊維成形体の成
形工程の一部を示す斜視図、第4図は一内燃機関用コン
ロツド桿部横断面の顕微鏡写真図、第5図は比較例の第
4図と同様の顕微鏡写真図、第6図は金属性無機質繊維
のメッキ層厚さと複合部材疲労強度の関係を委すグラフ
、第7図はステンレス細線の加熱温度とその細線の常温
破断強度の関係を示すグラフである。 f・・・ステンレス繊維、F・・・成形体、M・・・マ
トリックス 特許出願人 本田技研工業株式会社 第2図 C / 第3図 第1図 ?       第6図 E 第7図
Figure 1.2 shows a connecting rod for an internal combustion engine obtained according to the present invention. Figure 1 is a vertical front view, Figure 2 is a sectional view taken along the line ■-■ in Figure 1, and Figure 3 is a metallic connecting rod. A perspective view showing a part of the molding process of an inorganic fiber molded article, FIG. 4 is a microscopic photograph of a cross section of a conrod rod for an internal combustion engine, FIG. 5 is a microscopic photograph similar to FIG. 4 of a comparative example, FIG. 6 is a graph showing the relationship between the plating layer thickness of metallic inorganic fibers and the fatigue strength of a composite member, and FIG. 7 is a graph showing the relationship between the heating temperature of a thin stainless steel wire and the room temperature breaking strength of the thin wire. f... Stainless fiber, F... Molded body, M... Matrix Patent applicant Honda Motor Co., Ltd. Figure 2 C / Figure 3 Figure 1? Figure 6E Figure 7

Claims (1)

【特許請求の範囲】[Claims] 無数の金属性無機質繊維の表面にメッキ層を形成し、該
メッキ層相互間を部分的に焼結することにより前記金属
性無機質繊維よりなる成形体を成形し、該成形体を高圧
凝固鋳造法によりマ) I)ックス中に充填複合させる
ことを特徴とする繊維強化複合部材の製造方法。
A plated layer is formed on the surface of countless metallic inorganic fibers, and a molded body made of the metallic inorganic fiber is formed by partially sintering between the plated layers, and the molded body is formed by high-pressure solidification casting. A method for producing a fiber-reinforced composite member, which comprises filling and compounding the material in a matrix.
JP18567181A 1981-11-19 1981-11-19 Manufacture of fiber reinforced composite member Granted JPS5887238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18567181A JPS5887238A (en) 1981-11-19 1981-11-19 Manufacture of fiber reinforced composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18567181A JPS5887238A (en) 1981-11-19 1981-11-19 Manufacture of fiber reinforced composite member

Publications (2)

Publication Number Publication Date
JPS5887238A true JPS5887238A (en) 1983-05-25
JPS6127452B2 JPS6127452B2 (en) 1986-06-25

Family

ID=16174830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18567181A Granted JPS5887238A (en) 1981-11-19 1981-11-19 Manufacture of fiber reinforced composite member

Country Status (1)

Country Link
JP (1) JPS5887238A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801432A3 (en) * 2005-12-20 2009-07-22 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801432A3 (en) * 2005-12-20 2009-07-22 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod and method of producing the same
US7802493B2 (en) 2005-12-20 2010-09-28 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, automotive vehicle, and production method for connecting rod

Also Published As

Publication number Publication date
JPS6127452B2 (en) 1986-06-25

Similar Documents

Publication Publication Date Title
JPH02422B2 (en)
JPH01252741A (en) Fiber-reinforced composite material
US3796587A (en) Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JPH0238392A (en) Heat-insulating molded product composed of compression molding microporous heat-insulating material coated with metal
JPS5887238A (en) Manufacture of fiber reinforced composite member
US5295528A (en) Centrifugal casting of reinforced articles
GB2220004A (en) Production of a cavity
JPS60114540A (en) Fiber-reinforced composite member and its production
JP3788667B2 (en) Cylinder block manufacturing method
US5523171A (en) Reinforced material for an automobile connecting rod
JPH0230790B2 (en)
US3770492A (en) Method of manufacture of materials from polycrystalline filaments
KR100547618B1 (en) Copper / amorphous composite material using copper-plated amorphous composite powder and its manufacturing method
JPS5841775A (en) Manufacture of ceramic-metal composite body
JPS61210137A (en) Manufacture of silicon nitride fiber frinforced metal
JPS6221456A (en) Production of hollow casting
KR100497189B1 (en) Fabrication method of metal matrix composite
JPS58136735A (en) Manufacture of carbon fiber reinforced composite aluminum material
JPS6128006B2 (en)
JPH0619083B2 (en) Combustion chamber
JP2679160B2 (en) Method for manufacturing metal-based composite material member
JPH1137192A (en) Manufacture of brake disc
JP3102582B2 (en) Manufacturing method of composite member
JPS6029433A (en) Production of fiber-reinforced metallic composite material