JPS5886919A - Interstand tension controlling method of continuous rolling mill - Google Patents

Interstand tension controlling method of continuous rolling mill

Info

Publication number
JPS5886919A
JPS5886919A JP56185492A JP18549281A JPS5886919A JP S5886919 A JPS5886919 A JP S5886919A JP 56185492 A JP56185492 A JP 56185492A JP 18549281 A JP18549281 A JP 18549281A JP S5886919 A JPS5886919 A JP S5886919A
Authority
JP
Japan
Prior art keywords
tension
deviation
looper
value
continuous rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56185492A
Other languages
Japanese (ja)
Other versions
JPH0230766B2 (en
Inventor
Sunao Tanimoto
直 谷本
Yoshitaka Hayashi
林 美孝
Morio Saito
斉藤 森生
Toshifumi Yabuuchi
薮内 捷文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP56185492A priority Critical patent/JPS5886919A/en
Publication of JPS5886919A publication Critical patent/JPS5886919A/en
Publication of JPH0230766B2 publication Critical patent/JPH0230766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/50Tension control; Compression control by looper control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To execute interstand tension control which generates no offset, even if disturbance is large and a target tension value is changed, by keeping a looper angle between continuous rolling mills constant, and executing integral state feedback control. CONSTITUTION:In a rolling device provided with a looper device 3 between a front stage stand 1 and a rear stage stand 2 of a continuous rolling mill, on a looper 3, a torque controller 13 of the looper is provided, and to both stands 1, 2, mill speed controllers 11, 12 are set, respectively. Also, a control reference value, an equipment constant, etc. in the stationary state are inputted in advance to a tensin controller 21. When rolling, the interstand tension is controlled by correcting an angle deviation of the looper 3, an angular velocity deviation, an interstand tension deviation, an interstand speed deviation, a looper angle deviation integral value, and an interstand tension deviation integral value, as state vriable vectors, and a looper torque target value and a main motor speed target value, as operation vectors, along a kinematic equation of a tension controlling system, and secondary format appreciating index minimization.

Description

【発明の詳細な説明】 仁の発明は、連続式圧延機スタンド間のルー・poシル
−り角度をほぼ一定に保ちつつ、スタンド間張力を任意
の目標値に制御する張力制御方法に関するものである。
[Detailed Description of the Invention] Jin's invention relates to a tension control method for controlling the tension between the stands to an arbitrary target value while keeping the roux-po shield angle between the stands of a continuous rolling mill almost constant. be.

従来の連続式圧延機スタンド間にルー・譬を備え九張力
制御装置においては、スタンド間張力はル〜・9七〜り
に所定のトルクを発生させ、かつルー・ダ角度をスタン
ド間速度を変えることにより制御してい慶。しかし、こ
の方式ではルー・譬高さが変わる事により張力が変化し
、かつ張力が変化する事によるルー・ず高さが変化する
所謂相互干渉系となり、制御性の限界を有していた。
In a conventional continuous rolling mill with a tension control device that has a loop between the stands, the tension between the stands generates a predetermined torque between the stands, and the angle between the stands is controlled by the speed between the stands. Control by changing. However, this method has a so-called mutual interference system in which the tension changes as the height of the loop changes, and the height of the loop changes as the tension changes, resulting in a limit in controllability.

一方、ルー・!角速変、ルー・101、張力、スタンド
間板速度差を状態ベクトルとして、ルー・譬モヘタ駆動
トルクとスタンド間板達度差基準値を操作ベクトルとす
る状態フィードバック制御が提案されている(4111
!昭58−23309 )。
On the other hand, Lou! A state feedback control has been proposed in which the angular velocity change, Roux 101, tension, and plate speed difference between stands are used as state vectors, and the operating vector is Roux 101 drive torque and plate reach difference reference value between stands (4111
! (Sho 58-23309).

しかし、この方式は最適制御理論によると、単なる比例
動作のみによるツイード・イックを構成するものであり
、定常的に比較的大きな外乱がある場合とか、目標張力
が時間的に変化する場合は、オフセットを生じ制御性を
低下させると一般に言われている。
However, according to optimal control theory, this method constitutes a tweed wick using only proportional operation, and when there is a steady relatively large disturbance or when the target tension changes over time, the offset It is generally said that this causes a decrease in controllability.

仁の発明はE記のような実情に鑑みてなされた本のであ
って、その目的は積分杉状謄フィード・櫂ツク制御をす
ることによりオフセットの生じない連続圧延機スタンド
間張力制御方法を提供しようとするものである。
Jin's invention was made in view of the actual situation described in E, and its purpose is to provide a method for controlling the tension between stands of a continuous rolling mill that does not cause offset by performing integral cedar-shaped reciprocating feed/paddle control. This is what I am trying to do.

以下この発明方法を詳細く説明する。第1図は一般的な
張力制御系におけるルー・量系の幾何学的配置を示しえ
もので、図中の1は前段スタンド、2は後段スタンドで
、それぞれ速度制御装置を備えている。3はルー・昔装
置で、ルー・譬制御装置を備えている@(Fi被圧延材
である。
The method of this invention will be explained in detail below. FIG. 1 shows the geometrical arrangement of the roux/quantity system in a general tension control system. In the figure, 1 is a front stage stand, and 2 is a rear stage stand, each of which is equipped with a speed control device. 3 is the Roux machine, which is equipped with a Roux control device (for rolling material).

ここで、説明を簡単にする九めに制御の基準速度スタン
P(♂Iノットタンド>を後段スタンド2に採る。従り
てルー・譬高さ及びスタンド間張力は飾段スタンド1の
ロール周速とルーツ奢モータトルクの影響を受けること
になる。
Here, to simplify the explanation, the reference speed stand P (♂I knot stand) of the control is adopted for the rear stage stand 2. Therefore, the roll circumferential speed of the decorative stage stand 1 is the height and the tension between the stands. And the roots will be affected by the extra motor torque.

ルー・青の運動力li式は、基準ルー・々内直−0゜シ
で線形近似化して次式を得る。
The Roux-Qing kinetic force li equation is linearly approximated using the reference Roux-in-direction -0° to obtain the following equation.

d          4 7−(Δ” ” ’ 11 a t (Δθ)十m、2
(Δθ)+Js(Δσ)+ b、、(ΔTr@t)  
   ・・・・・・・・(1)但し、0:ルーノ中角度 σ:スタンド間張力 T、。f:ルーノ譬駆動トルク Δ:基準値層すの偏差を示すオペレータ(1)式の各・
臂うメータは以下の様に求められる。
d 4 7-(Δ” ” ' 11 a t (Δθ) 10 m, 2
(Δθ)+Js(Δσ)+b,,(ΔTr@t)
・・・・・・・・・(1) However, 0: Luno middle angle σ: Tension between stands T. f: Drive torque Δ: Each of the operator formula (1) that indicates the deviation of the reference value layer.
The arming meter is calculated as follows.

”11″″丁D             、、、、、
曲 (2)”+5””  Kl(’。)       
曲・叩(4)b =〜王 ・・  、              用°曲 (5
)K2(a)=2ρhoBOr+asθνσワテコ;〒
+WLar」(θ十〇、)   ・・・・・(7)但し
、 g:重力の加速度 Jニル−・譬の慣性能率 r:ルーノやのアーム長 arニル−I譬重心のアーム長 @ニルー・や回転軸の・ヤスラインからのオフセラ  
ト 量 t:スタンド間距離の棒 0゜ニル−,1重心のオフセット角度 Dニル−・前軸の摩擦係数 ho:材料級犀 Bo:材料板中 ρ:材料vH蜜 WLニル−・譬重量 またスタンド間張力発生式は次式で表わされる。
"11"" Ding D...
Song (2)"+5""Kl('.)
Song/beat (4) b = ~ King..., used ° song (5
)K2(a)=2ρhoBOr+asθνσWateko;
+WLar'' (θ 10,) ... (7) However, g: Acceleration of gravity J nil - Inertia rate r: Arm length of Runoya Ar nil - I (Arm length of center of gravity @Nil) Off-sera from the rotating shaft and file line
Quantity t: Distance between stands 0°, 1 Offset angle of center of gravity D, coefficient of friction of front shaft ho: Material grade Bo: Material board ρ: Material vH WL nil, weight also The inter-stand tension generation formula is expressed by the following equation.

但し、 K4(#)=2み5石;−? ・・・・・・・・・(9
)Δマ、=(1+f )ΔV       ・・・・・
・・・・(2)E:ヤング率 ΔマM:材料運蜜差 1:#段スタンド材料先進率 4マ:前段スタンYロール周速偏差 (8)式を微分して基準値廻りで線形化し、次式を得る
However, K4 (#) = 2 or 5 stones; -?・・・・・・・・・(9
)ΔMa,=(1+f)ΔV・・・・・・
...(2) E: Young's modulus Δma M: Material transport difference 1: # stage stand material advance rate 4 Ma: Front stage stand Y roll circumferential speed deviation Differentiate equation (8) and find linear around the reference value , and obtain the following equation.

但し、 一方、メイン七−夕の応答Fi1次遅れで表わす。however, On the other hand, the main Tanabata response Fi is expressed as a first-order delay.

但し、 テ:メインモータ時定数 ツマr*f”スタンドロール同遼鋼差指示値そして、ζ
ζで以下の変数を定義する。
However, Te: Main motor time constant knob r*f” stand roll same Liao steel difference indicated value and ζ
Define the following variables in ζ.

Δ’r@f sΔσ1.、バルー・譬角変及びスタンド
間張力各々の基準値廻りの目標値偏差である。
Δ'r@f sΔσ1. , the target value deviations around the reference values of ballou, angle change, and inter-stand tension.

以上ノ(x) 、 01 、 a4 、 n 、 a*
式を連立サーtテ、かつ目標値O蜜動項を無視すると、
次式を得る。
Above (x), 01, a4, n, a*
If we combine the equations and ignore the target value O movement term, we get
We get the following equation.

晶×暑枢+1        曲・曲(ロ)但し、 LJ=(ΔTrsf’Δマ1.f) すなわち、×は状Ili数ベクトル、Uは操作ベクトル
、AおよびBは係数行列を示す。
Crystal x heat exchange + 1 song/song (b) However, LJ = (ΔTrsf'ΔMa1.f) That is, × indicates a shaped Ili number vector, U indicates an operation vector, and A and B indicate a coefficient matrix.

この尭*#i(財)、(至)弐に依る積分要素を考直し
良形で、2次評価指標 但し、 Q:非負定行列 R:正定行列 を最小化するUを求める事に依り、応答性が良く、かつ
定常外乱及び目標張力の変動に強い張力制御を行うもの
である。
By reconsidering the integral element depending on this *#i (goods) and (to) 2 and making it a good form, we can obtain a quadratic evaluation index.However, Q: Non-negative definite matrix R: By finding U that minimizes the positive definite matrix, It performs tension control that has good responsiveness and is resistant to steady disturbances and fluctuations in target tension.

ここで、QおよびRは張力制御精度、ルー・豐角度制御
精度、オフセット除去性等への重IIIrRによって決
まる評価規範を構成するものである。
Here, Q and R constitute evaluation criteria determined by the weight IIIrR on tension control accuracy, Roux angle control accuracy, offset removability, etc.

さて、一式はリカッチ形黴分方程式を解き、フィード/
4ツク行列Kを求めることにより最小化できる。即ち、
次式に依る操作量をフィード・fツクすることが最適で
ある。
Now, the complete set is to solve the Riccati-type mold equation and feed/
It can be minimized by finding a four-dimensional matrix K. That is,
It is optimal to feed and check the manipulated variable according to the following equation.

LJ = KX          、=−0,@以上
の説明ではビIットスタンドを後段スタンド2に採って
いたが、前段スタンド1に採っても同様の方法が適用で
きる。
LJ = KX , = -0, @ In the above explanation, the bit I stand is used as the rear stage stand 2, but the same method can be applied even if it is used as the front stage stand 1.

次にこの発明方法を行う張力制御装置OIIg&を第2
図により説明する@ # @後段スタンドJ。
Next, the tension control device OIIg& that performs the method of this invention is installed in the second
@ # @ Rear stand J explained with diagrams.

2には、それぞれミル速度制御装置1i、rxが設けら
れ、またルー・譬装置jKFiルー/譬トルタ制御装置
13が設けられている。21は張力制御装置で、定常状
態での制御基準値0゜、σ0゜”ref@’マ。並びに
(2)〜(7)式、(9)〜(イ)式、(ロ)〜(至)
式及び(至)〜(至)式に必要な材料仕様、設備定数等
は予めこの張力制御装置21jfC与えられている。
2 are respectively provided with mill speed control devices 1i and rx, and are also provided with a roux/tortoror control device 13. Reference numeral 21 denotes a tension control device, which has control reference values of 0° and σ0°"ref@'ma in a steady state, as well as equations (2) to (7), equations (9) to (a), and (b) to (to )
The material specifications, equipment constants, etc. necessary for the equations and equations (to) to (to) are given in advance to this tension control device 21jfC.

またルー/譬装置3にはスタンド間張力針、ルー・母角
度針、ルー・9自速度針が設置され、それぞt九メイン
モータに設けられ九速度針からマが張力制御装f’ I
K大入力れるようになりている。そしてこの場合ビはッ
トスタンドは後段スタンド2とし、張力制御装置21か
ら前段スタンド1のメインモータ速度マrefとルー/
豐装置3のルー・臂モータトルクTratを設定できる
ようになって込る。
In addition, an inter-stand tension needle, a Roux main angle needle, and a Roux 9 self-speed needle are installed in the Roux/manual device 3, and each is provided on the t9 main motor, and the tension control device f' I is provided from the 9th speed needle to the
It is now possible to input a large K. In this case, the bit stand is the rear stand 2, and the tension control device 21 outputs the main motor speed ref of the front stand 1 and the loop/
It becomes possible to set the loop motor torque Trat of the tread device 3.

而して以上の制御装置及び計測器にて張力制御動作は以
下の様に行われる。まず、σ、θ。
The tension control operation using the above control device and measuring instrument is performed as follows. First, σ, θ.

−0,マを計測し、(ロ)、C1時式により状態ペクト
i ル×を求める。ついで(1)〜榊式を用いて係数行列人
およびBを求める0次に(ホ)式の評価指[Jを最小に
するフィード・櫂ツクrインkを求める。
-0, Ma is measured, and (b), the state spectrum i is determined by the C1 equation. Next, use (1) to Sakaki equations to find the coefficient matrix and B. Find the feed/paddle r ink that minimizes the evaluation index [J] of the zero-order equation (E).

フィードペックダインKには状態ベクトルの各要素がメ
インモータ速度変更量とルー・1七−タトルク変f菫に
与える重みを決めるものである。
In the feed peck dyne K, each element of the state vector determines the weight to be given to the main motor speed change amount and the Roux torque change f.

そして最終的にQ塾代により求めた前段スタンドロール
#fjA運−差指示値とルー・譬駆動トルクとを#段ス
タンドのメインモータとルーI?モータとに各々設定す
る0以上の処暑は一定閾期毎に行うO 以との制御を行うことに依シ、定常外乱および張力目標
値の肇更に対してオフセットを生じることなく制御する
ことができる。
Finally, the front stage stand roll #fjA luck-difference instruction value and the driving torque of the #stage stand's main motor and the Ru I? The temperature of 0 or more that is set for each motor depends on the control that is performed every certain threshold period, and can be controlled without causing an offset in response to steady disturbances and changes in the tension target value. .

この発明方法を適用し九例を従来方法と比較して第3図
に示す。これはランl状に入っ九外乱に対して従来方法
ではオフセットを生じるがこの発明の積分形制御によシ
オフセットを歇牧することができることを示している。
FIG. 3 shows nine cases in which the method of this invention is applied and compared with the conventional method. This shows that the offset occurs in the conventional method for nine disturbances entering the run l shape, but it is possible to reduce the offset intermittently by the integral type control of the present invention.

この発明方法は上記のようなもので、積分形状態フィー
ドバック制御をすることにより、外乱が大きくてもまた
目標張力値を変更しても、オフセットの生じないスタン
ド間張力制御を行うことができる。
The method of the present invention is as described above, and by performing integral state feedback control, it is possible to perform inter-stand tension control without causing offset even if the disturbance is large or the target tension value is changed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を説明するための一般的な張力制
御系の説明図、第2図はこの発明方法を実施するえめの
張力制御装置の概要説明図、第3図はこの発明方法によ
る制御系の応答度を従来方法と比較して示す説明図であ
る。 1・・・前段スタンド、2・・・後段スタンP53・・
ルー・ヤ装瞳、11.12・・ミル速度制御装置。 13 ルー・母トルク制御装置、21・・・張力制御装
置。 出願人代理人  弁理士 鈴 江 武 彦才1YI!A 第2図 才3図 −一一一二状敷オ焦
Fig. 1 is an explanatory diagram of a general tension control system for explaining the method of this invention, Fig. 2 is an explanatory diagram of a general tension control system for implementing the method of this invention, and Fig. 3 is an explanatory diagram of a general tension control system according to the method of this invention. FIG. 3 is an explanatory diagram showing the response of the control system in comparison with a conventional method. 1...Front stage stand, 2...Rear stage stand P53...
Lu Yasoupui, 11.12... Mill speed control device. 13 Roux/mother torque control device, 21... tension control device. Applicant's agent Patent attorney Takeshi Suzue Hikosai 1YI! A Figure 2 Figure 3 - 1112 condition

Claims (1)

【特許請求の範囲】[Claims] 連続式圧延機スタンド間に配置され九ルー・中のトルク
制御装置及びiル速度制御装置よりなる張力制御方法を
備えて、ルー・ζ角を一定値に制御しつつ、スタンド間
張力を目標値に制御する連続式圧延機スタンド間張力制
御方法に於いて、上記ルー・譬の角変偏差、自速[4差
、スタンド間張力偏差、スタンド間速度偏差、並びにル
ー・臂角寂1差積分値及びスタンド間張力偏差積分値を
状態変数ベクトルとし、又張力制御系の運動方程式及び
2次形式評価指標最小化に沿ってル〜/#トルク目標値
とメインモー−適度目標値を操作ベクトルとして補正し
てメタ71間張力制御を行うことを特長とする連続式圧
延機スタン「開帳力制御方法。
Equipped with a tension control method that is arranged between the stands of a continuous rolling mill and consists of a torque control device of 9 mm and a speed control device of 1 to control the tension between the stands to a target value while controlling the ζ angle to a constant value. In the continuous rolling mill inter-stand tension control method, the above-mentioned angular variation deviation, self-speed [4 difference, inter-stand tension deviation, inter-stand speed deviation, and 1-difference integral of Roux and arm angle] are used. The value and the integrated value of the tension deviation between stands are used as state variable vectors, and the torque target value and main mo-moderate target value are corrected as operation vectors according to the equation of motion of the tension control system and quadratic form evaluation index minimization. ``Opening force control method'' for a continuous rolling mill, which is characterized by controlling the tension between the meta 71 and the continuous rolling mill.
JP56185492A 1981-11-20 1981-11-20 Interstand tension controlling method of continuous rolling mill Granted JPS5886919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185492A JPS5886919A (en) 1981-11-20 1981-11-20 Interstand tension controlling method of continuous rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185492A JPS5886919A (en) 1981-11-20 1981-11-20 Interstand tension controlling method of continuous rolling mill

Publications (2)

Publication Number Publication Date
JPS5886919A true JPS5886919A (en) 1983-05-24
JPH0230766B2 JPH0230766B2 (en) 1990-07-09

Family

ID=16171711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185492A Granted JPS5886919A (en) 1981-11-20 1981-11-20 Interstand tension controlling method of continuous rolling mill

Country Status (1)

Country Link
JP (1) JPS5886919A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161223A2 (en) * 1984-03-15 1985-11-13 ANSALDO SISTEMI INDUSTRIALI S.p.A. Device for regulating the draught of the strip in a hot rolling mill
JPS61222621A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Looper control device for continuous rolling mill
DE4003548A1 (en) * 1989-02-07 1990-08-09 Toshiba Kawasaki Kk Looper control regulates looper angle and tension between roll stands - using current or speed control to compensate for variations in roller process characteristics and thereby improve rolling quality
KR100330434B1 (en) * 1998-09-14 2002-03-27 니시무로 타이죠 Plate feeding speed controlling apparatus for tandem rolling mill
EP2671652A1 (en) * 2012-06-06 2013-12-11 GE Energy Power Conversion Technology Limited Hot strip mill controller
CN107812792A (en) * 2017-10-11 2018-03-20 河钢股份有限公司 A kind of accuracy control method of wire and rod continuous rolling tension force

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439963U (en) * 1990-08-02 1992-04-06

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0161223A2 (en) * 1984-03-15 1985-11-13 ANSALDO SISTEMI INDUSTRIALI S.p.A. Device for regulating the draught of the strip in a hot rolling mill
JPS61222621A (en) * 1985-03-28 1986-10-03 Sumitomo Metal Ind Ltd Looper control device for continuous rolling mill
JPH0472609B2 (en) * 1985-03-28 1992-11-18 Sumitomo Metal Ind
DE4003548A1 (en) * 1989-02-07 1990-08-09 Toshiba Kawasaki Kk Looper control regulates looper angle and tension between roll stands - using current or speed control to compensate for variations in roller process characteristics and thereby improve rolling quality
US5040395A (en) * 1989-02-07 1991-08-20 Kabushiki Kaisha Toshiba Looper control system for continuous rolling mill
KR100330434B1 (en) * 1998-09-14 2002-03-27 니시무로 타이죠 Plate feeding speed controlling apparatus for tandem rolling mill
EP2671652A1 (en) * 2012-06-06 2013-12-11 GE Energy Power Conversion Technology Limited Hot strip mill controller
CN103551396A (en) * 2012-06-06 2014-02-05 Ge能源能量变换技术有限公司 Hot strip mill controller
CN107812792A (en) * 2017-10-11 2018-03-20 河钢股份有限公司 A kind of accuracy control method of wire and rod continuous rolling tension force

Also Published As

Publication number Publication date
JPH0230766B2 (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JPS5886919A (en) Interstand tension controlling method of continuous rolling mill
CN105034853B (en) A kind of control system and method for reducing electric automobile cruise velocity perturbation
CN103069713B (en) Motor control assembly
US3578298A (en) Method and apparatus for cement kiln control
CN109062276A (en) Indirect control method for tension of vertical loop
JPS61131816A (en) Controlling method of rotary cutter
CN106957953B (en) Automatically with addition of the system and control method of red soil in a kind of sinter mixture
JPS61201304A (en) Method for controlling position of robot
JP3041162B2 (en) Control device for continuous hot rolling mill
JPH0734929B2 (en) Method for controlling plate thickness and tension between stands of continuous rolling mill
JPS59149260A (en) Controller for motor of winder/rewinder
JPS6343164B2 (en)
JPS5825618B2 (en) Control method for continuous automatic quantitative cutting device
JPH09192716A (en) Looper multi-variable controller
JPH04166727A (en) Method for controlling feeding of determined quantity of granular material
JPH02194128A (en) Method for operating sintering machine
SU495280A1 (en) Method for automatic control of a reactor
JPH05305322A (en) Looper height controller
SU780888A1 (en) Apparatus for automatic control of multistep jigging process
JPH04329838A (en) Method for operating sintering machine
JPS5839050B2 (en) How to adjust the thickness of thermoimageable resin film
SU1096119A1 (en) Method of automatic control of placing of concrete mix and loose materials
SU839669A1 (en) System for automatic regulating of metal level in continuous casting mould
JPS5564917A (en) Automatic gauge controller for rolling mill
JPH0553704B2 (en)