JPS588563A - Apparatus for separating magnetic particulate material - Google Patents
Apparatus for separating magnetic particulate materialInfo
- Publication number
- JPS588563A JPS588563A JP56105555A JP10555581A JPS588563A JP S588563 A JPS588563 A JP S588563A JP 56105555 A JP56105555 A JP 56105555A JP 10555581 A JP10555581 A JP 10555581A JP S588563 A JPS588563 A JP S588563A
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- magnetic field
- magnetic
- hollow barrel
- particulate material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はガス、ヒエーム、水等の流体に混入している磁
性粉粒体を流体から構成される装置に関するもので1例
えば、原子カプラントの1 。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device comprising magnetic powder mixed in a fluid such as gas, heat, water, etc., such as an atomic couplant.
次、2体冷却水系の配管等の冷却材中に分散懸濁しでい
る放射性を帯びたクラウド(0RUD )粒子を流体よ
り分離し9粒子を1個所に集中化するのに適した装置に
係、わるものである。Next, regarding a device suitable for separating radioactive cloud (0RUD) particles dispersed and suspended in a coolant such as piping of a two-body cooling water system from the fluid and concentrating the nine particles in one place, It's bad.
使用中の原子カプラントの冷却材中には燃料棒等から生
成される放射能を帯びたクラウド粒子が分散懸濁してい
て、冷却材と共に流動している。このクラウド粒子はマ
グネタイト(pe3o4)等で大半が構成されている。Radioactive cloud particles generated from fuel rods and the like are dispersed and suspended in the coolant of an atomic couplant in use, and flow together with the coolant. Most of these cloud particles are composed of magnetite (pe3o4) and the like.
また使い古した原子カプラントを壊すときには、放射性
を帯びた煙霧即ちヒ具−ムが発生する。Also, when a worn-out atomic couplant is destroyed, radioactive fumes or weapons are created.
従来は、原子カプラントの稼動日数が少ないこともあり
て、前記り2ウド粒子はは74!:んど無視され、それ
の除去は行われていない。しかし稼動時間が長くなって
くると、その発生量は膨大となることは明らかであり、
従って機器の保護、定期検査、補修時等における作業員
の放射線被爆量の増大が問題にされるであろう。逆に言
えば、クラウド粒子を除去すれば1作業員の放射線被爆
量の低減を図ることができると共に。Conventionally, the number of 2-Udo particles was 74! : It is often ignored and no effort has been made to remove it. However, it is clear that as the operating time becomes longer, the amount generated becomes enormous.
Therefore, the increased radiation exposure of workers during equipment protection, periodic inspections, repairs, etc. will be a problem. Conversely, if cloud particles are removed, the amount of radiation exposure per worker can be reduced.
プラント全体の放射線低減および冷却材の浄化再利用を
図ることができるであろう。It will be possible to reduce radiation throughout the plant and purify and reuse the coolant.
したがって本発明の一般的な目的は、流体中に混入して
いる磁性粉粒体を分離する装置を提供することにある。SUMMARY OF THE INVENTION Accordingly, it is a general object of the present invention to provide an apparatus for separating magnetic particles contained in a fluid.
さらに本発明の目的は、小型でかつ分離効率の高い磁性
粉粒体の分離装置を提供することにある。A further object of the present invention is to provide a magnetic powder separation device that is small in size and has high separation efficiency.
本発明は、軸心を縦にした円筒形空胴を有するハウジン
グを含み、該円筒形空胴内に流体が周方向に流通するよ
うに構成し、しかもその周方向に流れる流体に対し、直
角にしかも下向きに進行磁界ε印加するようにしたこと
に基いている。The present invention includes a housing having a cylindrical cavity with a vertical axis, and is configured such that fluid flows in the circumferential direction within the cylindrical cavity, and is perpendicular to the fluid flowing in the circumferential direction. Moreover, it is based on the fact that a downward traveling magnetic field ε is applied.
本発明について図面を用いてさらに詳細に説明する。The present invention will be explained in more detail using the drawings.
第1図は本発明の一実施例を示したもので。FIG. 1 shows an embodiment of the present invention.
1は軸心が垂直な円筒形空胴1aを上部に有したハウジ
ングである。ハウジング1は円筒形空胴1aの底部に流
体人口゛2を有し、また頂部には流体出口3を有してい
る。流体人口2と流体出口3とは仕切り板4で隔絶され
ているため。Reference numeral 1 denotes a housing having a cylindrical cavity 1a whose axis is vertical. The housing 1 has a fluid port 2 at the bottom of the cylindrical cavity 1a and a fluid outlet 3 at the top. This is because the fluid population 2 and the fluid outlet 3 are separated by the partition plate 4.
流体人口2から円筒形空胴1a内に人、っだ磁性粉粒体
の混入した流体P。は9円筒形空胴1a内を円周方向A
に沿って進み、出口6よりPlで示すように排出される
。From the fluid population 2, the cylindrical cavity 1a contains people and a fluid P mixed with magnetic particles. 9 inside the cylindrical cavity 1a in the circumferential direction A
, and is discharged from the exit 6 as shown by Pl.
互は円筒形空胴1aの外周囲に嵌合配置された円筒形の
磁界発生装置で1円筒形の磁極5aの内面に円周方向に
沿ってのびたリング状の溝を複数本形成し、これらの溝
にリング状に構成したコイル6を夫々埋設し、しかもこ
れらのコイル6を三相交流電源に接続して下向きの進行
磁界を発生するように構成されている とのようにして
円筒形空胴1aの内部に下向きの進行磁界が印加される
と、流体の流れに対し、磁界が直角に作用し9円筒形空
胴1aの外周壁部の内面に磁性粒子が磁気的に吸引され
るとともに矢印Fで示すように落下移送される。このと
き流体の流れの方向と粒子への磁界進行方向とは互いに
直角をなすため分離効率は極めて良くなる。Each is a cylindrical magnetic field generator fitted around the outer periphery of a cylindrical cavity 1a, and a plurality of ring-shaped grooves extending in the circumferential direction are formed on the inner surface of one cylindrical magnetic pole 5a. A ring-shaped coil 6 is buried in each groove of the cylinder, and these coils 6 are connected to a three-phase AC power source to generate a downward traveling magnetic field. When a downward traveling magnetic field is applied inside the shell 1a, the magnetic field acts perpendicularly to the fluid flow, and magnetic particles are magnetically attracted to the inner surface of the outer peripheral wall of the cylindrical cavity 1a. As shown by arrow F, it is transferred by falling. At this time, the direction of the flow of the fluid and the direction of the magnetic field traveling toward the particles are perpendicular to each other, so that the separation efficiency is extremely high.
また、ハウジング1の底部には溜り場1bが設けられて
いる。動作時間がたつにつれ、磁性粒子が分離し徐々に
濃縮されて溜り場1bに溜る。溜り場1bに濃縮された
磁性粒子は、溜り場“1bの外あるいは内部に設けられ
た磁気センサあるいは放射能検知素子等のセンサ8によ
り感知される。センサ8により感知された磁性粒子の量
は表示装置9にて表示される。溜り場1bの磁性粒子が
一定量以上になると、入口からの流体を止めてパルプ7
を開け、磁性粒子を鉛容器等の放射性物質格納容器に濃
縮した状態で落下させ、隔離収納する。溜り場1bの磁
性粒子がなくなったならば、前記同様に入口2より流体
を流入させて、磁気的分離を行な→、せる。又、\上記
の運転サイクルにこだわらず連続的にも出来、放射性濃
度をコントロールしながらの回収も合せて可能である。Furthermore, a reservoir 1b is provided at the bottom of the housing 1. As the operating time elapses, the magnetic particles separate, gradually become concentrated, and accumulate in the reservoir 1b. The magnetic particles concentrated in the reservoir 1b are detected by a sensor 8 such as a magnetic sensor or a radiation detection element provided outside or inside the reservoir 1b.The amount of magnetic particles detected by the sensor 8 is displayed on a display device. 9. When the magnetic particles in the reservoir 1b exceed a certain amount, the fluid from the inlet is stopped and the pulp 7
is opened, and the magnetic particles are dropped in a concentrated state into a radioactive material storage container such as a lead container, and then stored in isolation. Once the magnetic particles in the reservoir 1b are gone, fluid is allowed to flow in from the inlet 2 in the same manner as described above to perform magnetic separation. In addition, it is possible to perform continuous recovery without worrying about the above operation cycle, and it is also possible to recover while controlling the radioactive concentration.
第2図は本発明の他の実施例を示し、下向きの進行磁界
を発生する磁界発生装置yを/%ウジング1の円筒形空
胴1aの内周に嵌合配置し。FIG. 2 shows another embodiment of the present invention, in which a magnetic field generator y for generating a downward traveling magnetic field is fitted into the inner periphery of the cylindrical cavity 1a of the housing 1.
しかも円筒形空胴1aの内部の円周方向に沿って互いに
間隔をおいだ二箇所にそれぞれ仕切9板4a、4bを設
け、入口2より流入した流体P。In addition, partition plates 4a and 4b are provided at two locations spaced apart from each other along the circumferential direction inside the cylindrical cavity 1a, so that the fluid P can flow in from the inlet 2.
を矢印A方向に流しつつ一度分離して出口11より出し
、配管12を通してもう一方の入口13より再度取り入
れ、て矢印A′方向に流しつつ分離し。is separated once while flowing in the direction of arrow A, and taken out from the outlet 11, taken in again from the other inlet 13 through piping 12, and separated while flowing in the direction of arrow A'.
出口3より磁性粉粒体を除去した流体P2を排出させる
ものである。他については第1図と同様である。The fluid P2 from which the magnetic powder has been removed is discharged from the outlet 3. The rest is the same as in FIG. 1.
以上実施例を用いて説明したように9本発明によれば、
流体の流れと磁界の作用とが直角となるため、従来に比
し、同一コイルに同一電流を流しても、その分離効率は
大幅に改善され。As explained above using the embodiments, according to the present invention,
Since the flow of fluid and the action of the magnetic field are at right angles, the separation efficiency is significantly improved compared to conventional methods even when the same current is passed through the same coil.
、また確実であり、また装置全体も極めてコンノきクト
にできるようになった。It is also reliable, and the entire device can now be made extremely simple.
以下余白Margin below
第1図は本発明の一実施例の構成を示し、(a)は平面
図、(b)は断面図、第2図は本発明の他の実施例の構
成例を示し、(a)は平面図、(b)は断面図である。
1・・・ハウジング、 1a・・・円筒形空胴。
1b・・・溜り場、2・・・流体入口、3・・・流体出
口。
4.4a、4b・・・仕切り板、 5・・・磁界発生装
置。
5a・・・磁極、6・・・コイル、7・・・バルブ、8
・・・センサ、9・・・表示装置。
第1図 第2図
第1頁の続き
0発 明 者 佐々木幸太部
仙台市郡山六丁目7番1号東北
金属工業株式会社内
■出 願 人 石川島播磨重工業株式会社東京都千代田
区大手町2丁目2
番1号
■出 願 人 東北金属工業株式会社
仙台市郡山六丁目7番1号FIG. 1 shows the configuration of an embodiment of the present invention, (a) is a plan view, (b) is a sectional view, and FIG. 2 is a configuration example of another embodiment of the present invention, (a) is a plan view. A plan view, and (b) a cross-sectional view. 1... Housing, 1a... Cylindrical cavity. 1b... Reservoir, 2... Fluid inlet, 3... Fluid outlet. 4.4a, 4b... Partition plate, 5... Magnetic field generator. 5a... Magnetic pole, 6... Coil, 7... Valve, 8
...Sensor, 9...Display device. Figure 1 Figure 2 Continued from page 1 0 Author Kotabe Sasaki 6-7-1 Koriyama, Sendai City Tohoku Metal Industry Co., Ltd. Applicant Ishikawajima Harima Heavy Industries Co., Ltd. 2-chome Otemachi, Chiyoda-ku, Tokyo No. 2 No. 1 ■ Applicant Tohoku Metal Industry Co., Ltd. 6-7-1 Koriyama, Sendai City
Claims (1)
該円筒形空胴内に流体を通過させる手段と、該円筒形空
胴内の流体の流れる向きを周方向に規定する手段と、該
円筒形空胴の外周又は内周に接するように磁極を有しか
つ下向きの進行磁界を発生する磁界発生装置とを含み、
流体中に混在する磁性粉粒体を・該円筒形空胴の内壁面
に吸引し、かつ該内壁面に沿って落下移送するように構
成したことを特徴と゛する磁性粉粒体の分離装置。1. A housing having a cylindrical cavity with a vertical axis;
means for passing fluid through the cylindrical cavity; means for regulating the flow direction of the fluid within the cylindrical cavity in a circumferential direction; and a magnetic pole in contact with the outer or inner periphery of the cylindrical cavity. and a magnetic field generating device that has a magnetic field and generates a downward traveling magnetic field,
A device for separating magnetic powder and granules, characterized in that the magnetic powder and granules mixed in a fluid are attracted to the inner wall surface of the cylindrical cavity and are transported falling along the inner wall surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56105555A JPS588563A (en) | 1981-07-08 | 1981-07-08 | Apparatus for separating magnetic particulate material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56105555A JPS588563A (en) | 1981-07-08 | 1981-07-08 | Apparatus for separating magnetic particulate material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS588563A true JPS588563A (en) | 1983-01-18 |
JPS6324746B2 JPS6324746B2 (en) | 1988-05-23 |
Family
ID=14410798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56105555A Granted JPS588563A (en) | 1981-07-08 | 1981-07-08 | Apparatus for separating magnetic particulate material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS588563A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2333978A (en) * | 1997-12-09 | 1999-08-11 | Boxmag Rapid Ltd | Extracting magnetically susceptible materials from a fluid using travelling fields |
WO2011131411A1 (en) * | 2010-04-22 | 2011-10-27 | Siemens Aktiengesellschaft | Device for separating ferromagnetic particles from a suspension |
-
1981
- 1981-07-08 JP JP56105555A patent/JPS588563A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2333978A (en) * | 1997-12-09 | 1999-08-11 | Boxmag Rapid Ltd | Extracting magnetically susceptible materials from a fluid using travelling fields |
WO2011131411A1 (en) * | 2010-04-22 | 2011-10-27 | Siemens Aktiengesellschaft | Device for separating ferromagnetic particles from a suspension |
US8715494B2 (en) | 2010-04-22 | 2014-05-06 | Siemens Aktiengesellschaft | Device for separating ferromagnetic particles from a suspension |
AU2011244583B2 (en) * | 2010-04-22 | 2014-05-08 | Siemens Aktiengesellschaft | Device for separating ferromagnetic particles from a suspension |
Also Published As
Publication number | Publication date |
---|---|
JPS6324746B2 (en) | 1988-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4306970A (en) | Magnetic particle separating device | |
GB939687A (en) | Improvements in or relating to a process and an apparatus for separating a constituent from a stream of media | |
US4144163A (en) | Magnetodensity separation method and apparatus | |
EP0082925A1 (en) | Magnetic separator | |
JPH0314486B2 (en) | ||
JPS588563A (en) | Apparatus for separating magnetic particulate material | |
US4594160A (en) | Magnetizable separator for the purification of liquids | |
GB2157195A (en) | Magnetic separators | |
US3714037A (en) | Flocculating apparatus and method | |
JPS6144541B2 (en) | ||
JPS5927625B2 (en) | Magnetic powder separation equipment | |
JPS6333679B2 (en) | ||
KR850001771B1 (en) | Magnetic filter | |
JPS588562A (en) | Apparatus for separating magnetic particulate material | |
JP3513597B2 (en) | Magnetic separation method and magnetic separation device | |
US3149066A (en) | Magnetic separator | |
JPS6119808Y2 (en) | ||
JPS5921881Y2 (en) | magnetic sorter | |
JPS5910263B2 (en) | Magnetic powder collection device | |
JPS62204819A (en) | Multi-flow velocity magnetic filter | |
JPH02218453A (en) | Magnetic separator | |
JPS5938819B2 (en) | Magnetic powder separation device | |
GB1561819A (en) | Reactor based on a magnetohydrodynamically driven supersontonic gas vortex | |
SU682579A1 (en) | Apparatus for the purification of a mercury flow from ferromagnetic impurities | |
SU1091944A1 (en) | Electromagnetic separator |