JPS6144541B2 - - Google Patents

Info

Publication number
JPS6144541B2
JPS6144541B2 JP55128163A JP12816380A JPS6144541B2 JP S6144541 B2 JPS6144541 B2 JP S6144541B2 JP 55128163 A JP55128163 A JP 55128163A JP 12816380 A JP12816380 A JP 12816380A JP S6144541 B2 JPS6144541 B2 JP S6144541B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
fluid
outlet
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55128163A
Other languages
Japanese (ja)
Other versions
JPS5753257A (en
Inventor
Hideyuki Tanaka
Kotaro Sasaki
Hiroto Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Kinzoku Kogyo KK
Original Assignee
Tohoku Kinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Kinzoku Kogyo KK filed Critical Tohoku Kinzoku Kogyo KK
Priority to JP55128163A priority Critical patent/JPS5753257A/en
Publication of JPS5753257A publication Critical patent/JPS5753257A/en
Publication of JPS6144541B2 publication Critical patent/JPS6144541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Description

【発明の詳細な説明】 本発明は水等に混入している磁性粉粒体を水等
から分離させる装置に関するもので、例えば、原
子力プラントの1次、2次冷却水系の配管等の冷
却水中に分散懸濁している放射性を帯びたクラツ
ド(CRUD=CHALKRIVER REACTOR
UNIDENTIFIED DEPOSITの略)粒子を水より
分離し、粒子を1個所に集中化するのに適した装
置に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for separating magnetic particles mixed in water, etc., from water, etc. CRUD = CHALKRIVER REACTOR
(abbreviation for UNIDENTIFIED DEPOSIT) pertains to equipment suitable for separating particles from water and concentrating the particles in one location.

供用中の原子力プラントの冷却水中には燃料棒
等から生成される放射能を帯びたクラツド粒子が
分散懸濁していて、冷却水と共に流動している。
このクラツド粒子にはマグネタイト(Fe3O4)が
ある程度含まれている。
Radioactive crud particles generated from fuel rods and the like are dispersed and suspended in the cooling water of nuclear power plants in operation, and flow together with the cooling water.
These clad grains contain some magnetite (Fe 3 O 4 ).

クラツド粒子の発生量は運転回数が重なつてく
ると多くなることは明らかであり、、そのため空
間線量が増加し機器の保護、定期検査、補修時等
における作業員の放射線被曝量の増大が問題にさ
れるであろう。逆に言えば、クラツド粒子を除去
すれば、作業員の放射線被曝量の低減を図ること
ができると共に、プラント全体の空間放射線抵減
および水の再利用を図ることができるであろう。
更にはプラントの安全稼動にも結び付く事にな
る。
It is clear that the amount of crud particles generated increases as the number of operations increases, and as a result, the amount of radiation in the air increases, causing a problem of increased radiation exposure for workers during equipment protection, periodic inspections, repairs, etc. will be made into Conversely, if the cladding particles are removed, it will be possible to reduce the amount of radiation exposure of workers, as well as to reduce the spatial radiation resistance of the entire plant and to reuse water.
Furthermore, it will also lead to safe operation of the plant.

本発明者らはこの様な点に鑑みて、種々検討を
進めてきた。この検討段階において、例えば特願
昭54年56571号として出願している磁界発生装置
第3図、第4図を用いた分離装置として、第1図
及び第2図に示すようなものを提案している。こ
のの装置、第3図及び第4図に示すような磁性円
筒7の外周面に緩やかなスパイラルとしたスロツ
ト8を設け、該スロツト8にコイル9を埋設し
て、回転成分を含む進行磁界10を発生させる磁
界発生装置1が空胴ハウジング2に組み込まれて
おり、入口5より流入した流体W0に進行磁界1
0が作用して磁性粉粒体Xは分離されN側に引き
寄せられて、出口4より取り出される。尚、図中
3は処理後の流体W1を取り出す出口、6は仕切
り板を示している。
In view of these points, the present inventors have conducted various studies. At this stage of consideration, we proposed, for example, a separation device as shown in Figs. 1 and 2 using the magnetic field generator shown in Figs. ing. In this device, as shown in FIGS. 3 and 4, a gently spiral slot 8 is provided on the outer peripheral surface of a magnetic cylinder 7, and a coil 9 is embedded in the slot 8 to create a traveling magnetic field 10 containing a rotating component. A magnetic field generating device 1 that generates a magnetic field is built into the cavity housing 2, and a traveling magnetic field 1 is applied to the fluid W0 flowing in from the inlet 5.
0 acts, the magnetic powder X is separated, drawn toward the N side, and taken out from the outlet 4. In the figure, 3 indicates an outlet from which the treated fluid W1 is taken out, and 6 indicates a partition plate.

このような構造の場合、分離効率を高めるため
に進行磁界をさらに大きく発生させようとする
と、磁界発生装置1のコイルへ流す電流あるいは
スロツト8断面を大きくしてコイルの巻数を増す
必要がある。ところがこのようにすると、磁性円
筒7は内部にいくにつれ、即ち径が小さくなるに
つれコイル9と隣りのコイル9′との間隔が狭く
なり、この為コイルに大電流を流すとこの部分が
逸早く磁気的に飽和してしまい、結果的には外周
面11での進行磁界の増加は達成しなくなる。
In the case of such a structure, in order to generate a larger traveling magnetic field in order to improve the separation efficiency, it is necessary to increase the number of turns of the coil by increasing the current flowing to the coil of the magnetic field generating device 1 or by increasing the cross section of the slot 8. However, when doing this, the distance between the coil 9 and the adjacent coil 9' becomes narrower as the magnetic cylinder 7 goes inside, that is, as the diameter becomes smaller, and for this reason, when a large current is passed through the coil, this part quickly becomes magnetic. As a result, the traveling magnetic field on the outer circumferential surface 11 cannot be increased.

本発明はこのような点に鑑みてなされたもの
で、より大きい進行磁界を集中して発生させるよ
うとするもので、終局的には磁性粉粒体の分離効
率をさらに高めようとするものである。
The present invention has been made in view of these points, and aims to generate a larger traveling magnetic field in a concentrated manner, and ultimately to further improve the separation efficiency of magnetic powder and granules. be.

斯る目的を達成する本発明の特徴は、流体通路
の途中でしかも該通路の外周に、回転成分を含む
進行磁界を発生するよう、内周面にコイルを適宜
傾斜させ3/4全節巻となるよう配設させた構成の
筒状の交番磁界発生装置を配し、通路に沿つて流
れる流体に前記進行磁界を印加して、流体中に混
在している磁性物粒体を磁界発生装置の筒状内周
面に吸引しかつ内周面に沿つて移送するように構
成したところにあり、本発明の実施態様には、流
体通路途中に、上下の一方に流体の入口、他方に
出口を有し、さらに下部には第2の出口を設け、
前記下部の入口又は出口と第2の出口との間に上
下に延びる仕切り板を有する非磁性の空胴ハウジ
ングを配し、流体入口より流入した磁性粉粒体が
混在した流体より、回転成分を含む進行磁界を前
記空胴ハウジング外周より印加して磁性粉粒体を
分離させ、前記第2の出口より磁性粉粒体を取り
出すよう構成した磁性粉粒体の分離装置を含むも
のである。
A feature of the present invention that achieves this object is that the coil is appropriately inclined on the inner circumferential surface and wound at 3/4 full pitch so as to generate a traveling magnetic field containing a rotating component in the middle of the fluid passage and on the outer periphery of the passage. A cylindrical alternating magnetic field generator is arranged so that the traveling magnetic field is applied to the fluid flowing along the passage, and the magnetic particles mixed in the fluid are removed by the magnetic field generator. The embodiment of the present invention includes a fluid inlet on one side of the upper and lower sides and an outlet on the other side in the middle of the fluid passage. further provided with a second outlet at the lower part,
A non-magnetic cavity housing having a partition plate extending vertically is arranged between the lower inlet or outlet and the second outlet, and a rotating component is removed from the fluid mixed with magnetic powder that flows in from the fluid inlet. The present invention includes a magnetic powder separation device configured to apply a traveling magnetic field containing the magnetic powder from the outer periphery of the cavity housing to separate the magnetic powder and take out the magnetic powder from the second outlet.

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第5図は本発明に用いる回転成分を含む進行磁
界を発生させる交番磁界発生装置20を示すもの
である。磁性材料で構成された磁性円筒21の内
周面21aに、断面が第6図で示すような軸に対
し傾斜を有するスロツト23を複数設ける。この
スロツト23に、多数の巻線をして絶縁処理して
いる長尺コイル22を埋設する。このように構成
し、コイルに電流を流してやると第5図に示す矢
印f方向に回転成分を含む進行磁界が発生する。
FIG. 5 shows an alternating magnetic field generating device 20 for generating a traveling magnetic field including a rotational component used in the present invention. A plurality of slots 23 whose cross section is inclined with respect to the axis as shown in FIG. 6 are provided on the inner peripheral surface 21a of a magnetic cylinder 21 made of a magnetic material. A long coil 22 having a large number of windings and insulated is buried in this slot 23. With this structure, when a current is passed through the coil, a traveling magnetic field containing a rotating component is generated in the direction of arrow f shown in FIG.

第8図及び第9図はこのような装置の三相交換
電源接続を示すもので、第8図磁性円筒21に長
尺コイルA〜F6ケを3/4全節巻している様子を示
し、第9図は電気結線図を示している。
Figures 8 and 9 show the connection of a three-phase exchange power supply for such a device, and Figure 8 shows six long coils A to F wound around the magnetic cylinder 21 at 3/4 full length. , FIG. 9 shows an electrical wiring diagram.

本発明は以上の如き構造であつて磁極が内周面
であるため磁束の集中が高く、コイルに大電流を
流してやつても磁性円筒21の磁極内部即ち径が
大きいところでの磁気飽和は、内周面21aが飽
和に達するまでは行いえず、従つてコイルへ流れ
る電流と磁界の強さは比例関係が維持され、しか
もそれは大電流に至るまで保たれる。
The present invention has the above structure, and since the magnetic pole is on the inner circumferential surface, the concentration of magnetic flux is high, and even when a large current is passed through the coil, the magnetic saturation inside the magnetic pole of the magnetic cylinder 21, that is, the area where the diameter is large, is This cannot be done until the inner circumferential surface 21a reaches saturation, so that the current flowing to the coil and the strength of the magnetic field maintain a proportional relationship, and this is maintained even up to a large current.

第10図及び第11図はこのようにして構成さ
れた回転成分を含む進行磁界の発生装置20を、
流体通路の途中に設置した空胴ハウジング24の
外周に組み込んだ様子を示すものである。非磁性
材で構成された空胴ハウジング24の上下には流
体用入口25および出口26を有し、さらに下部
には分離された磁性粉粒体を取り出す出口27も
設けられ、入口25および27との間には上下方
向に延びる仕切り板28が設けてある。
FIG. 10 and FIG. 11 show a traveling magnetic field generating device 20 including a rotating component configured in this manner.
It shows how it is assembled into the outer periphery of a cavity housing 24 installed in the middle of a fluid passage. The cavity housing 24 made of a non-magnetic material has a fluid inlet 25 and an outlet 26 at the top and bottom, and an outlet 27 for taking out the separated magnetic powder at the bottom. A partition plate 28 extending vertically is provided between them.

磁性粉粒体が混在する流体W0の流量、圧力を
調整して入口25より取り入れ、磁界発生装置2
0を動作させる。非磁性の流体は出口26に押し
上げられるが、混在している磁性粉粒体は、第1
0図及び第11図の矢印fのように回転しつつ下
部方向に進行する磁界が印加されているため、仕
切り板28を介して左側の空間底部Nに集めら
れ、磁性粉粒体は濃縮される。このようにして濃
縮されあるいは単一になつた磁性粉粒体Xは連続
的あるいは断続的に出口27より取り出される。
上記において、本発明者等の実験の結果、6個の
コイルを適宜傾斜させて3/4全節巻とした場合に
は、磁界のとぎれがなく、磁気密度、磁場勾配を
均一に作ることができ、磁性粉粒体を磁界の上に
乗せて移送することができ、粉粒体の移送率を高
めることができた。従つて、出口26より流出す
る流体W1中には磁性粉粒体が全く混在しないか
あるいは流体W1中の磁性粉粒体は極めて低濃度
となる。
Adjust the flow rate and pressure of the fluid W 0 containing magnetic powder and granules, and take it in from the inlet 25, and connect it to the magnetic field generator 2.
Operate 0. The non-magnetic fluid is pushed up to the outlet 26, but the mixed magnetic powder and granules are
Since a magnetic field is applied that rotates and moves downward as shown by the arrow f in Figures 0 and 11, the magnetic powder is concentrated at the bottom N of the left space through the partition plate 28 Ru. The magnetic powder X thus concentrated or unified is taken out from the outlet 27 continuously or intermittently.
In the above, as a result of experiments by the present inventors, when the six coils are appropriately inclined to form 3/4 full-pitch winding, there is no discontinuity in the magnetic field and it is possible to create a uniform magnetic density and magnetic field gradient. It was possible to transfer the magnetic powder by placing it on top of a magnetic field, and it was possible to increase the transfer rate of the powder. Therefore, the fluid W 1 flowing out from the outlet 26 does not contain magnetic particles at all, or the concentration of magnetic particles in the fluid W 1 is extremely low.

尚本発明における空胴ハウジングの上下に設け
られた流体用出入口25および26はどちらを入
口にしても良いが、好ましくは下部に設けた方が
分離効率が高い。
In the present invention, either of the fluid inlets and outlets 25 and 26 provided on the upper and lower sides of the cavity housing may be used as an inlet, but preferably, the separation efficiency is higher if they are provided at the lower part.

以上本発明について説明したが、本発明によれ
ば、内周面にコイルを適宜傾斜させ3/4全節巻と
なるよう配設させた構成の筒状の交番磁界発生装
置を備えたので、磁界のとぎれがなく磁気密度、
磁場勾配を均一に作ることができ、磁性粉粒体を
磁界の上に乗せて移送することができ、粉粒体の
移送率を高めることができる。従つて、原子炉の
1次あるいは2次冷却水系に混入する高い放射能
を帯びたFe3O4等のクラツド磁性粉粒体を冷却水
から分離する効率を高めることを可能とし、原子
力プラントにおける安全性の向上、あるいは定期
検査等における作業員の移動時間の延長を可能と
し、コスト等の軽減等の効果が期待できる。
The present invention has been described above.According to the present invention, a cylindrical alternating magnetic field generator having a structure in which the coil is appropriately inclined on the inner circumferential surface and arranged to have a 3/4 full pitch winding is provided. Uninterrupted magnetic density of magnetic field,
A uniform magnetic field gradient can be created, magnetic powder and granules can be transferred while being placed on top of the magnetic field, and the transfer rate of the powder and granules can be increased. Therefore, it is possible to improve the efficiency of separating clad magnetic particles such as highly radioactive Fe 3 O 4 that are mixed into the primary or secondary cooling water system of a nuclear reactor from the cooling water, and to It can be expected to improve safety, extend the travel time of workers during periodic inspections, etc., and reduce costs.

また本発明は原子力プラントに限らず、工場廃
液等の公害処理、あるいは食品工業、薬品工業等
のあらゆる産業の流体における磁性異物混入防止
処理等にも利用できることは明らかである。
Furthermore, it is clear that the present invention is applicable not only to nuclear power plants, but also to pollution treatment of factory waste fluids, and prevention of magnetic foreign matter contamination in fluids in all industries, such as the food industry and the pharmaceutical industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分離装置の斜視図、第2図は第
1図に示した装置の横断面図、第3図は従来の磁
界発生装置の側面図(一部破断)、第4図は第3
図の−方向より見た断面図である。第5図は
本発明による磁界発生装置の側面(一部破断)
図、第6図は同装置の磁極の断面図、第7図は同
装置に用いる長尺コイルの斜視図、第8図及び第
9図は同装置の電気接続図、第10図は本発明に
よる装置を用いて磁性粉粒体を分離する様子を示
す斜視図、第11図は第10図に示した本発明の
磁性粉粒体の分離装置の横断面図である。 20……磁界発生装置、21……磁性円筒、2
1a……内周面、22……長尺コイル、23……
スロツト、24……空胴ハウジング、25……流
体用入口、26……流体用出口、27……磁性粉
粒体の出口、28……仕切り板、W0……処理前
の流体、W1……処理後の流体、X……磁性粉粒
体、f……磁界の方向。
Fig. 1 is a perspective view of a conventional separation device, Fig. 2 is a cross-sectional view of the device shown in Fig. 1, Fig. 3 is a side view (partially cut away) of a conventional magnetic field generation device, and Fig. 4 is a Third
It is a sectional view seen from the - direction of the figure. Figure 5 is a side view (partially broken) of the magnetic field generator according to the present invention.
6 is a sectional view of the magnetic pole of the same device, FIG. 7 is a perspective view of a long coil used in the device, FIGS. 8 and 9 are electrical connection diagrams of the device, and FIG. 10 is the invention of the present invention. FIG. 11 is a cross-sectional view of the magnetic powder separation device of the present invention shown in FIG. 10. 20... Magnetic field generator, 21... Magnetic cylinder, 2
1a... Inner peripheral surface, 22... Long coil, 23...
Slot, 24...Cavity housing, 25...Fluid inlet, 26...Fluid outlet, 27...Magnetic powder outlet, 28...Partition plate, W0 ...Fluid before treatment, W1 ...Fluid after treatment, X...Magnetic powder, f...Direction of magnetic field.

Claims (1)

【特許請求の範囲】 1 流体流路の途中でしかも該通路の外周に、回
転成分を含む進行磁界を発生するよう、内周面に
コイルを適宜傾斜させ3/4全節巻となるよう配設
させた構成の筒状の交番磁界発生装置を配し、通
路に沿つて流れる流体に前記進行磁界を印加し
て、流体中に混在している磁性粉粒体を磁界発生
装置の筒状内周面に吸引しかつ内周面に沿つて移
送するように構成したことを特徴とする磁性粉粒
体の分離装置。 2 流体通路途中に、上下の一方に流体の入口、
他方に出口を有しさらに下部には第2の出口を設
け、前記下部の入口又は出口と第2の出口との間
に上下に延びる仕切り板を有する非磁性の空胴ハ
ウジングを配し、流体入口より流入した磁性粉粒
体が混在した流体より、回転成分を含む進行磁界
を前記空胴ハウジング外周より印加して磁性粉粒
体を分離させ、前記第2の出口より磁性粉粒体を
取り出すように構成した特許請求の範囲第1項記
載の磁性粉粒体の分離装置。
[Scope of Claims] 1. The coil is appropriately inclined on the inner circumferential surface and arranged to have a 3/4 full pitch winding so as to generate a traveling magnetic field containing a rotating component in the middle of the fluid flow path and on the outer periphery of the passage. A cylindrical alternating magnetic field generator having the same configuration as above is arranged, and the traveling magnetic field is applied to the fluid flowing along the passage, so that the magnetic particles mixed in the fluid are moved into the cylindrical shape of the magnetic field generator. 1. A separating device for magnetic powder and granules, characterized in that the device is configured to attract the magnetic powder to the peripheral surface and transport it along the inner peripheral surface. 2 In the middle of the fluid passage, there is a fluid inlet on one of the upper and lower sides,
A non-magnetic cavity housing having an outlet on the other side and a second outlet in the lower part, and a partition plate extending vertically between the inlet or outlet in the lower part and the second outlet, A traveling magnetic field containing a rotating component is applied from the outer periphery of the cavity housing to the fluid mixed with the magnetic powder that has flowed in from the inlet to separate the magnetic powder and the magnetic powder is taken out from the second outlet. An apparatus for separating magnetic powder and granular material according to claim 1, configured as follows.
JP55128163A 1980-09-16 1980-09-16 Apparatus for separating magnetic particulate body Granted JPS5753257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55128163A JPS5753257A (en) 1980-09-16 1980-09-16 Apparatus for separating magnetic particulate body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55128163A JPS5753257A (en) 1980-09-16 1980-09-16 Apparatus for separating magnetic particulate body

Publications (2)

Publication Number Publication Date
JPS5753257A JPS5753257A (en) 1982-03-30
JPS6144541B2 true JPS6144541B2 (en) 1986-10-03

Family

ID=14977940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55128163A Granted JPS5753257A (en) 1980-09-16 1980-09-16 Apparatus for separating magnetic particulate body

Country Status (1)

Country Link
JP (1) JPS5753257A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500343B2 (en) 1995-02-21 2002-12-31 Iqbal W. Siddiqi Method for mixing and separation employing magnetic particles
US6884357B2 (en) 1995-02-21 2005-04-26 Iqbal Waheed Siddiqi Apparatus and method for processing magnetic particles
WO1996026011A1 (en) 1995-02-21 1996-08-29 Siddiqi Iqbal W Apparatus and method for mixing and separation employing magnetic particles
DE19938372A1 (en) * 1999-08-09 2001-03-08 Diagnostikforschung Inst Method and device for separating magnetic particles
WO2001049419A1 (en) * 2000-01-04 2001-07-12 Siddiqi Iqbal W Apparatus and method for mixing and separation employing magnetic particles
FR2830204A1 (en) * 2001-10-02 2003-04-04 Centre Nat Rech Scient PROCESS AND DEVICE FOR SEPARATING MARKED PARTICLES SUSPENDED IN A VISCOUS MEDIUM AND ITS APPLICATION TO MICROBIOLOGICAL PROCESSES
CN102698869B (en) * 2012-04-16 2015-07-29 王永强 A kind of vertical magnetic separation machine

Also Published As

Publication number Publication date
JPS5753257A (en) 1982-03-30

Similar Documents

Publication Publication Date Title
JPS6144541B2 (en)
US3869390A (en) Electromagnetic filter
US4395746A (en) Method and device for magnetically transporting
US4251372A (en) Magnetic filter with permanent magnets
JPS631888B2 (en)
JPS6123005B2 (en)
US4557667A (en) Electromagnetic pump
CA2568738C (en) Method of treating radioactive waste
CA1210737A (en) Rotary magnetic separators
JPS5927625B2 (en) Magnetic powder separation equipment
CN101002285B (en) Nuclear plant and method for removing charged particle from cooling fluid of nuclear plant
JPS6327061B2 (en)
GB928836A (en) Improvements relating to nuclear magnetohydro-electric generators
US2971145A (en) Uni-directional high voltage generator
US4454909A (en) Mold stator for electromagnetic stirring
KR850001771B1 (en) Magnetic filter
JPS588563A (en) Apparatus for separating magnetic particulate material
JPS6119808Y2 (en)
EP0301673B1 (en) A multilayered-eddy-current-type strong magnetic field generator
JPH02218453A (en) Magnetic separator
JPS5938819B2 (en) Magnetic powder separation device
JPS5927224B2 (en) Transfer device for magnetic powder and granules
JPS5910263B2 (en) Magnetic powder collection device
JP2962669B2 (en) Corrosion product removal equipment for sodium cooled reactor
JPS59196764A (en) Clad separator