JPS588529B2 - Method for manufacturing electrode alloy - Google Patents

Method for manufacturing electrode alloy

Info

Publication number
JPS588529B2
JPS588529B2 JP53018502A JP1850278A JPS588529B2 JP S588529 B2 JPS588529 B2 JP S588529B2 JP 53018502 A JP53018502 A JP 53018502A JP 1850278 A JP1850278 A JP 1850278A JP S588529 B2 JPS588529 B2 JP S588529B2
Authority
JP
Japan
Prior art keywords
alloy
copper
producing
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53018502A
Other languages
Japanese (ja)
Other versions
JPS54111676A (en
Inventor
隆二 渡辺
英夫 荒川
啓一 国谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53018502A priority Critical patent/JPS588529B2/en
Priority to DE19792906767 priority patent/DE2906767A1/en
Priority to US06/013,807 priority patent/US4231814A/en
Publication of JPS54111676A publication Critical patent/JPS54111676A/en
Publication of JPS588529B2 publication Critical patent/JPS588529B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】 本発明は、銅を主成分とし、銅に対し固状で1重量%以
下固溶し得るような低融点、高蒸気圧元素を、銅に対す
る該元素の固溶限以上から25重量%以下迄含有する電
極用合金の製造方法にかかり、特に、真空しゃ断器用電
極として用いるのに好適な、鉛、ビスマス等の低融点、
高蒸気圧の元素を多量に含んだ銅合金電極材料の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a low-melting-point, high-vapor-pressure element that has copper as its main component and is capable of forming a solid solution of 1% by weight or less in copper. Based on the above, the method for producing an alloy for electrodes containing up to 25% by weight, particularly low melting point alloys such as lead and bismuth suitable for use as electrodes for vacuum breaker,
The present invention relates to a method for manufacturing a copper alloy electrode material containing a large amount of high vapor pressure elements.

真空しゃ断器用電極材料として具備すべき電気的特性と
しては、耐溶着特性、耐圧特性、しゃ断特性、低截断特
性などがあげられる。
Electrical properties that the electrode material for a vacuum breaker should have include welding resistance, pressure resistance, breaking properties, and low cutting properties.

従来の真空しゃ断器用電極材料としては、一般に銅合金
を主成分として他の添加元素等により、耐圧特性や耐溶
着特性を維持した電極材料が多い。
Conventional electrode materials for vacuum circuit breakers are generally made of copper alloy as a main component and have other additive elements to maintain pressure resistance and welding resistance.

従来技術においては、前者の耐圧特性を増すには、コバ
ルト、鉄などの鉄族元素を添加すると効果のあることが
知られている(特公昭48−40384号)。
In the prior art, it is known that adding iron group elements such as cobalt and iron is effective in increasing the voltage resistance characteristics of the former (Japanese Patent Publication No. 48-40384).

一方、後者の耐溶着特性を満足させるには、銅に固溶し
ない低融点元素である鉛やビスマスなどを微量添加した
合金が効果があることが知られている(特公昭41−1
2131号)。
On the other hand, in order to satisfy the latter welding resistance property, it is known that alloys containing small amounts of lead or bismuth, which are low-melting elements that do not dissolve in copper, are effective (Japanese Patent Publication No. 41-1
No. 2131).

なお、鉛ビスマスを添加すれば、耐溶着特性が向上する
だけでなく、特に鉛、ビスマスを多量に含有させると低
截断電流特性が得られることも知られている。
It is also known that adding lead-bismuth not only improves welding resistance, but also that low cutting current characteristics can be obtained, especially when lead and bismuth are contained in large amounts.

しかし、これらの低融点元素を多量に含有させると、電
極ろう接時、脱ガス処理時、あるいはしゃ断中において
、上記の低融点元素がしみだしたり、蒸発により真空バ
ルブの内壁に付着するだめに急激な耐圧劣化をおこして
しまうという問題があった。
However, if these low melting point elements are contained in large amounts, they may seep out during electrode soldering, degassing, or during shutoff, or they may evaporate and adhere to the inner wall of the vacuum valve. There was a problem in that the pressure resistance suddenly deteriorated.

したがって、従来においてはこのように多量の鉛、ビス
マス等を含有させ、低截断電流特性を維持することは困
難であった。
Therefore, in the past, it was difficult to maintain low cutting current characteristics by containing such large amounts of lead, bismuth, etc.

このような欠点を解消するには、通常、銅に固溶しない
前記低融点元素を、銅の結晶粒界のみならず、マトリッ
クス全域に均一に分散させ、なおかつ細かく球状化させ
ておけばよいと考えられる。
In order to eliminate these drawbacks, it is recommended that the low melting point element, which is not normally dissolved in copper, be uniformly dispersed not only in the grain boundaries of copper but also throughout the entire matrix, and that it be made into fine spherules. Conceivable.

すなわち、何らかの手法で結晶粒界に多量存在する前記
元素を、結晶粒内にとじこめ、しみだしゃ蒸発を防止す
ればよい。
That is, it is sufficient to use some method to confine the elements present in large amounts at the grain boundaries within the crystal grains and prevent them from seeping out and evaporating.

しかし、従来おこなわれている通常の造塊方法や、ある
いは第三の元素を添加する方法や、あるいは一般的な熱
処理等を考慮する程度では十分な改善をすることが困難
であった。
However, it has been difficult to achieve sufficient improvement by considering conventional agglomeration methods, methods of adding a third element, or general heat treatment.

本発明は、前記従来の欠点を解消するべくなされたもの
で、多量に含まれる低融点、高蒸気圧元素のしみだしゃ
蒸発を少なくし、大電流しゃ断特性及び安定した低截断
特性を有する電極用合金を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and is an electrode that reduces seepage and evaporation of low melting point and high vapor pressure elements contained in large amounts, and has large current cutoff characteristics and stable low cutting characteristics. The purpose is to provide alloys for

本発明は、銅を主成分とし,銅に対し固状で1重量%以
下固溶し得るような低融点、高蒸気圧元素を、銅に対す
る該元素の固溶限以上から25重量%以下迄含有する電
極用合金の製造方法において、合金の溶解凝固後、加工
歪みを加える結晶微細化加工工程と、前記加工工程を経
た合金が再結晶化する温度で焼鈍する球状化焼鈍工程と
を、少なくとも1回以上含むようにして、前記目的を達
成したものである。
The present invention has copper as its main component, and contains a low melting point, high vapor pressure element that can dissolve in copper in a solid state of 1% by weight or less, from above the solid solubility limit of the element in copper to 25% by weight or less. In the method for producing an alloy for electrodes, the method includes at least a crystal refining processing step in which processing strain is applied after melting and solidification of the alloy, and a spheroidizing annealing step in which the alloy subjected to the processing step is annealed at a temperature at which it recrystallizes. The above objective was achieved by including the test one or more times.

まだ同じく電極用合金の製造方法において、合金の溶解
凝固後、合金の融点以下の銅デンドライトが2次再結晶
化する温度で焼鈍する第1次球状化焼鈍工程と、加工歪
みを加える結晶微細化加工工程と、再び合金が再結晶化
する温度で焼鈍する第2次球状化焼鈍工程とを、少なく
とも1回以上含むようにして、同じく前記目的を達成し
たものである。
In the same manufacturing method for electrode alloys, after the alloy is melted and solidified, there is a primary spheroidizing annealing process in which copper dendrites undergo secondary recrystallization below the melting point of the alloy, and crystal refinement in which processing strain is applied. The above object is also achieved by including the processing step and the secondary spheroidizing annealing step of annealing at a temperature at which the alloy recrystallizes again at least once.

以下、本発明の原理を説明する。The principle of the present invention will be explained below.

微量の鉛、ビスマス等を含有した銅合金であれば、真空
バルブの組み立て時のろう接や脱ガス排気中においても
蒸発やしみだしによる悪影響は生じていない。
If the copper alloy contains trace amounts of lead, bismuth, etc., there will be no adverse effects due to evaporation or seepage during soldering or degassing during vacuum valve assembly.

これに対し、およそ3重量係以上の前記元素を含むと,
蒸発やしみたしにより真空バルプ内壁に前記元素が付着
し耐圧特性劣化を起こしてしまい、しゃ断不能となるこ
とが多かった。
On the other hand, if the above elements are contained in a weight coefficient of about 3 or more,
The elements adhere to the inner wall of the vacuum valve due to evaporation or staining, resulting in deterioration of the pressure resistance characteristics and often making it impossible to shut off.

一方、前記元素を多量に含んだ銅合金においては、すぐ
れた低截断特性が得られることも知られているため、伺
らかの手段を講じて蒸発やしみだしを防ぐことが望まれ
ていた。
On the other hand, it is known that copper alloys containing a large amount of the above-mentioned elements have excellent low cutting properties, so it has been desired to take appropriate measures to prevent evaporation and seepage. .

本発明者らは、このしみたし現象を検討した結果、この
しみだしはほとんど銅の結晶粒界に存在する鉛やビスマ
ス等であることを確認した。
As a result of studying this seepage phenomenon, the present inventors confirmed that this seepage is mostly lead, bismuth, etc. present in the grain boundaries of copper.

すなわち、上記元素は銅に対して化合物の生成もなく、
ほとんど固溶もしない。
In other words, the above elements do not form compounds with copper,
Almost no solid solution.

したがって、含有量の多少にかかわらず通常は銅結晶粒
界に連続して線状に存在するものである。
Therefore, regardless of the amount of content, it usually exists in a continuous line at the copper grain boundaries.

これが前記添加元素の融点以上の温度まで加熱されると
、添加元素のみが溶けだし、同時に含有ガスが膨張し、
これが駆動力となって銅の結晶粒界を通じて前記元素が
おしだされ、しみだし及び蒸発が生じる。
When this is heated to a temperature higher than the melting point of the added element, only the added element begins to melt, and at the same time the contained gas expands.
This acts as a driving force, causing the element to seep out through the grain boundaries of the copper, causing seepage and evaporation.

したがって、加熱温度が高いほどガス膨張が大となり、
しみたし量も大となる。
Therefore, the higher the heating temperature, the greater the gas expansion.
The amount of stain will also be large.

なお3重量%以上の鉛やビスマスを含有した通常の鋳込
みインゴットにおける鉛、ビスマス等は,銅デンドライ
ト間隙に連続的につながって存在しているが、これは非
常にしみたしが容易に起きやすい状態となっている。
In addition, lead, bismuth, etc. in ordinary cast ingots containing 3% by weight or more of lead, bismuth, etc. are continuously connected to the gaps between copper dendrites, but this is a state in which staining easily occurs. It becomes.

本発明者らは、この粒界に連続している鉛やビスマスを
不連続に分断及び球状化すること,あるいは、結晶粒内
に閉じ込めることなどの絹織改善を計ることによって、
しみだしを阻止する効果的な方法をみいだしたものであ
る。
The present inventors attempted to improve the silk weave by discontinuously dividing and spheroidizing the lead and bismuth that are continuous at the grain boundaries, or by confining them within the crystal grains.
We have discovered an effective method to prevent seepage.

すなわち,通常の鋳込みインゴットをその合金の融点直
下まで加熱すれば,鋳込みにおける銅デンドライトは2
次再結晶化現象によって崩壊あるいは粒成長を生ずる。
In other words, if a normal casting ingot is heated to just below the melting point of the alloy, the copper dendrite in the casting will be 2.
Collapse or grain growth occurs due to the next recrystallization phenomenon.

このことは従来からの知見でも推測できるものである。This can be inferred from conventional knowledge.

本発明は、この現象にあわせ、次の事がらを究明し,し
みだし等を阻止する方法をみいだしたものである。
In view of this phenomenon, the present invention investigated the following points and discovered a method for preventing seepage.

すなわち、(1)前記加熱により、銅デンドライト崩壊
が起こり、鉛やビスマスが連続状から球状に分断され不
連続となる。
That is, (1) the heating causes copper dendrite collapse, and lead and bismuth are separated from a continuous shape into spherical shapes and become discontinuous.

(2)鋼粒成長によって一部の鉛、ビスマスが鋼粒内に
閉じ込めらn,る。
(2) Some lead and bismuth are trapped within the steel grains due to grain growth.

(3)前記(1)及び(2)の効果によって、合金それ
自体の伸びが増し、若干の鍛造による再結晶微細化が可
能となる(たとえば、銅−7重量係鉛合金の鋳込みイン
ゴットでは、2〜4チ伸びであるが、(1),(2)の
操作により8〜10%伸びとなる)前記のように(1)
から(3)を実現させるためには,第1図に示すように
、大別して、第1次球状化焼鈍(融点直下の混度が望ま
しい)によって球状化及び伸びを増加させる工程と、鍛
造による結晶微細化加工工程と、最終的にさらに再結晶
化及び球状化するための第2次球状化焼鈍(融点直下の
温度が望ましい)工程の3工程が必要である。
(3) The effects of (1) and (2) above increase the elongation of the alloy itself, making it possible to refine the recrystallization by some forging (for example, in a cast ingot of copper-7 weight-lead alloy, The elongation is 2 to 4 inches, but the elongation becomes 8 to 10% by operating (1) and (2)) As described in (1)
In order to achieve (3), as shown in Figure 1, there are two main steps: primary spheroidizing annealing (desirably a mixture just below the melting point) to increase spheroidization and elongation, and forging. Three steps are required: a crystal refining process and a secondary spheroidizing annealing process (preferably at a temperature just below the melting point) for final further recrystallization and spheroidization.

第2次焼鈍においては、鉛、ビスマス等が微細化される
と同時に含有鉛、ビスマス量の7〜8割が鋼粒内に閉じ
込められるかたちになり、従来のじみだ,しを大幅に阻
止できるようになる。
In the secondary annealing, lead, bismuth, etc. are refined, and at the same time, 70 to 80% of the lead and bismuth content is confined within the steel grains, which can significantly prevent conventional oozing. It becomes like this.

したがって、本発明の電極合金を用いた真空バルブにお
いては低截断特性を発揮しつつ大電流しゃ断が可能とな
る。
Therefore, in the vacuum valve using the electrode alloy of the present invention, it is possible to cut off a large current while exhibiting low cutting characteristics.

なお、従来の学なる球状化焼鈍のみでも、ある程度のし
みたしが阻止可能であるが、鉛、ビス.マス自体が粗大
に球状什していたため,しゃ断時のアークの位置によっ
ては、截断電流値がばらつくなどの欠点も多かった。
Although it is possible to prevent staining to some extent by conventional spheroidizing annealing alone, lead, screws, etc. Because the mass itself was roughly spherical, there were many drawbacks, such as the cutting current value varying depending on the position of the arc at the time of cutting.

これ力ζ本発明においては、しみだし阻止と同時に鉛、
ビスマス等を微細に分布きせることによって、安定した
低截断特性が得られるため、真空バルブの信頼性も向上
する。
This force ζIn the present invention, at the same time as preventing seepage, lead,
By finely distributing bismuth or the like, stable low cutting characteristics can be obtained, which improves the reliability of the vacuum valve.

なお、電極合金の溶解において、前記鉛、ビスマス量を
25重量係以上も含有すると,液相分離が生じ溶製困難
となるだけでなく、バルブ電極の耐圧特性が著しく劣化
することが一連の実験により判明している。
In addition, a series of experiments have shown that when melting an electrode alloy, if the lead or bismuth content exceeds 25% by weight, liquid phase separation occurs, making it difficult to melt, and also significantly deteriorating the pressure resistance characteristics of the valve electrode. It has been revealed that

さらには、前記のように多量含有されると、電極製造工
程における各種排気設備面への汚染がひどくなるなどの
問題が生じてくるので、低融点、高蒸気圧元素の最大含
有量は25重量%以下とすべきである。
Furthermore, if the content is large as mentioned above, problems such as serious contamination of various exhaust equipment surfaces in the electrode manufacturing process will occur, so the maximum content of low melting point, high vapor pressure elements is 25% by weight. % or less.

この低融点、高蒸気圧元素の含有量は、一連の截断電流
特性試験によれば、7重量%以上含有すれば効果が変わ
らないことが判明しており、3〜7重量係含有する電極
用合金が実用合金に適している。
According to a series of cutting current characteristic tests, it has been found that the effect does not change if the content of this low melting point, high vapor pressure element is 7% by weight or more. The alloy is suitable for practical use.

なお、前記説明における第1次球状化工程は、冷却速度
の遅いとき等、例えば金型に鋳込まず、るつぼ中凝固の
ような場合には省略可能である。
Note that the primary spheroidization step in the above description can be omitted when the cooling rate is slow, for example, when solidification is performed in a crucible without being cast into a mold.

以下実施例について説明する。Examples will be described below.

実施例 1 銅−7重量%鉛合金の原料として無酸素銅(OFC)お
よび脱ガス精製した鉛(JIS第1種)を用い、1〜5
×105torrの圧力で黒鉛るつぼを外側にし、内側
に60φのアルミナるつぼを設けて高周波溶解した。
Example 1 Oxygen-free copper (OFC) and degassing purified lead (JIS Class 1) were used as raw materials for a copper-7 wt% lead alloy.
A graphite crucible was placed on the outside under a pressure of ×105 torr, and an alumina crucible of 60φ was placed on the inside for high-frequency melting.

溶解量は銅及び鉛を含めて2.5kgとした。The amount dissolved was 2.5 kg including copper and lead.

なお、高温真空下で蒸発等による鉛減少を防ぐために、
銅溶解確認後に前記真空雰囲気を10〜50torrア
ルゴンガス雰囲気に置換してから添加し、るつぼ中凝固
させた。
In addition, to prevent lead loss due to evaporation under high-temperature vacuum conditions,
After confirming that the copper had melted, the vacuum atmosphere was replaced with an argon gas atmosphere of 10 to 50 torr, and then the copper was added and solidified in the crucible.

この方法で溶製したインゴットをそのまま加工せずに、
5×105torr,900℃で一時間加熱し第1次球
状化焼鈍を施した。
The ingots melted using this method are not processed directly,
Primary spheroidizing annealing was performed by heating at 5×10 5 torr and 900° C. for one hour.

第2図a(倍率400倍)は、凝固のまま組織を示し、
第2図b(倍率400倍)は、前記第1次球状化焼鈍の
組織を示すものである。
Figure 2a (400x magnification) shows the tissue as solidified;
FIG. 2b (400x magnification) shows the structure of the first spheroidizing annealing.

第2図aでは、鉛が結晶粒界にそって連続的につながっ
ているが、bではほぼ球状化し、一部結晶粒内にも閉じ
込められていることがわかる。
In Fig. 2a, lead is continuously connected along the grain boundaries, but in Fig. 2b, it becomes almost spheroidal and is partially confined within the crystal grains.

さらに、前記加熱処理後のインゴット材に、冷間タツプ
鍛造を施した。
Furthermore, the ingot material after the heat treatment was subjected to cold tap forging.

この時の加工度は約50%である。The degree of processing at this time is approximately 50%.

このインゴットを再び5×105torr,900℃で
1時間加熱し、第2次球状化焼鈍を施した。
This ingot was heated again at 5×10 5 torr and 900° C. for 1 hour to perform secondary spheroidizing annealing.

この加熱後の組織は、第2図C(倍率400倍)に示す
ごとくであり、結晶粒が大きく成長し、鉛も微細に球状
に分布し、しかも銅結晶粒界の内外を問わず、マトリッ
クス全域にほほ一様に分散していることがわかる。
The structure after heating is as shown in Figure 2C (magnification: 400x), in which the crystal grains have grown large, lead is distributed in a fine spherical shape, and the matrix is present both inside and outside the copper grain boundaries. It can be seen that they are evenly distributed over the entire area.

また、前記採取処理後の鉛分析値もほぼ7重量%に維持
されているため問題はない。
Furthermore, the lead analysis value after the collection process was maintained at approximately 7% by weight, so there was no problem.

以上の各種処理後のインゴットから電極を切9出し、真
空バルブに組み込み、バルプ製作工程における加熱処理
(ろう接温度850〜900℃)を模擬し,5×105
torr,900℃で1時間加熱を行い、鉛しみだし状
況を調べだところ、ほとんどしみだしは認め得なかった
Electrodes were cut out from the ingot after the various treatments described above, and assembled into a vacuum valve to simulate the heat treatment (welding temperature 850 to 900°C) in the valve manufacturing process.
When heating was performed at 900° C. for 1 hour and the state of lead oozing was examined, almost no lead oozing was observed.

次に、前記真空バルプについて、6.5kV,15A試
験電流で截断電流を測定したところ、平均4.6Aで銅
単体の場合の半分以下となり、繰返し試験においても変
動幅が非常に少なく安定した低截断特性を示した。
Next, when we measured the cutting current of the vacuum valve at 6.5kV and 15A test current, the average was 4.6A, which was less than half that of copper alone, and even in repeated tests, the fluctuation range was very small and the cutting current was stable. It showed cutting characteristics.

実施例2 実施例1と同様な造塊方法によって、銅−4重量%鉛−
3重量%ビスマス合金を作成した。
Example 2 Copper-4wt% lead-
A 3% by weight bismuth alloy was prepared.

用いたビスマスの純度は99.9%である。The purity of the bismuth used was 99.9%.

次に、インゴットのままで5×105torr,850
℃で1時間加熱を施こし第1次球状化焼鈍を施こした。
Next, as an ingot, 5 × 105 torr, 850
It was heated at ℃ for 1 hour to perform primary spheroidizing annealing.

この結果においても実施例1と同様な組織変化が生じ、
鉛一ビスマス合金が分断及び球状化されることがわかっ
た。
In this result, the same tissue change as in Example 1 occurred,
It was found that the lead-bismuth alloy was fragmented and spheroidized.

さらに上記インゴット加工度50%まで冷間タツプ鍛造
を施し、この後に、5×105torr,850℃で1
時間加熱し、第2次球状化焼鈍を行なった。
Furthermore, the above ingot was subjected to cold tap forging to a degree of processing of 50%, and then 1
Second spheroidizing annealing was performed by heating for a certain period of time.

この時の鉛及びビスマスの分布も、実施例1の鉛争独添
加時と全く同様に微細化され且つ球状に分散している。
The distribution of lead and bismuth at this time is also fine and spherically dispersed, just as in Example 1 when lead is added.

次に、同様に電極形状に加工してから、ろう接湛度を模
擬し、5×105torr,850〜900℃の加熱を
施して、鉛一ビスマス合金のしみだし状況を調べたとこ
ろ、真空バルプ内壁及び電極表面などへの汚染は非常に
少なく極めて良好であり.た。
Next, after processing it into an electrode shape in the same way, we simulated the degree of soldering and heated it at 5 x 105 torr and 850 to 900°C, and investigated the seepage of the lead-bismuth alloy. There is very little contamination on the inner wall and electrode surface, which is extremely good. Ta.

さらに,同様な方法で截断電流試験を実施したところ、
平均4.1Aであり、実施例1に比べても低截断特性に
すぐれていた。
Furthermore, when we conducted a cutting current test using the same method, we found that
The average current was 4.1 A, and compared to Example 1, it had excellent low cutting characteristics.

実施例3 本実施例は、るつぼ中凝固方式による徐冷のため、第1
次球状化焼鈍工程を省いて、直接加工を加え、後に球状
化焼鈍を施したものである。
Example 3 In this example, the first
The subsequent spheroidizing annealing step was omitted, direct processing was added, and spheroidizing annealing was subsequently performed.

すなわち、鉛を0.7重量%、3重量%、7重量%含む
試料につき、それぞれ、加工度75%のスエージングに
より鍛造加工を施し、次いで,5×105torrの真
空中で925℃、3時間の球状化焼鈍を施したものにつ
き、組織を調べたところ第3図a−iに示すごとくであ
った。
That is, samples containing 0.7% by weight, 3% by weight, and 7% by weight of lead were each forged by swaging with a working degree of 75%, and then forged at 925°C in a vacuum of 5 x 105 torr for 3 hours. When the structure of the sample which had been subjected to spheroidizing annealing was examined, it was as shown in Fig. 3 a-i.

第3図の倍率は100倍である。The magnification of FIG. 3 is 100x.

本実施例においても前記実施例l、実施例2と同様に、
鉛が銅の結晶粒内中に分散されており、実施例l、実施
例2と同様な効果が得られた。
In this example, as well as in Example 1 and Example 2,
Lead was dispersed within the copper crystal grains, and the same effects as in Examples 1 and 2 were obtained.

なお、前記実施例においては、低融点、高蒸気圧元素と
して、鉛、ビスマスが使用されていたが特に鉛において
その効果が大である。
In the above embodiments, lead and bismuth were used as low melting point, high vapor pressure elements, but lead is particularly effective.

一方これ以外の元素、例えば、テルル、セレン、カドミ
ウムタリウム等が使用されている電極用合金にも、本発
明は適用可能である。
On the other hand, the present invention is also applicable to electrode alloys in which other elements such as tellurium, selenium, cadmium thallium, etc. are used.

なお、本発明の方法は、銀および該銀と固溶しない同様
な元素との組合せにも有効である。
Note that the method of the present invention is also effective in combination with silver and a similar element that does not form a solid solution with silver.

また、るつぼ凝固材の他に全型鋳込み材にも十分に適用
できる。
In addition to the crucible-solidified material, the present invention can also be fully applied to all-type casting materials.

また、第1次球状化焼鈍により球状化と同時に材料自体
に伸びを増加させ、加工組織を得る方法としては、タッ
プ鍛造のほかに、圧延や線引きなどを用いることも可能
である。
In addition to tap forging, it is also possible to use rolling, wire drawing, etc. as a method of increasing the elongation of the material itself simultaneously with spheroidization through primary spheroidizing annealing to obtain a processed structure.

また、第1及び第2次球状化焼鈍温度は、融点直下であ
ることが最も効果が大であるが、わずかな効果は300
℃付近から起こるので、だとえぱ、300℃から950
℃の範囲以内において適宜選ぶことが可能である。
In addition, the first and second spheroidizing annealing temperatures have the greatest effect when they are just below the melting point, but the slight effect is 300
It occurs from around ℃, so it is from 300℃ to 950℃.
It is possible to appropriately select the temperature within the range of °C.

以上説明したとおり、本発明は、銅を主成分とし、銅に
対し固状で1重量%以下固溶し得るような低融点、高蒸
気圧元素を、銅に対する該元素の固溶限以上から25重
量%以下迄含有する電極用合金の製造方法において、合
金の溶解凝固後、加工歪みを加える結晶微細化加工工程
と、合金が再結晶化する温度で焼鈍する球状化焼鈍工程
とを、少なくとも1回以上含むようにした。
As explained above, the present invention has copper as its main component, and contains a low melting point, high vapor pressure element that can form a solid solution of 1% by weight or less in copper at a temperature higher than the solid solubility limit of the element in copper. In the method for producing an alloy for electrodes containing up to 25% by weight, after melting and solidifying the alloy, at least a crystal refining process in which processing strain is applied and a spheroidizing annealing process in which the alloy is annealed at a temperature at which it recrystallizes. Included at least once.

まだ,同じく電極用合金の製造方法において、必要に応
じて合金の溶解凝固後、合金が再結晶化する温度で焼鈍
する第1次球状化焼鈍工程と、加工歪みを加える結晶微
細化加工工程と、再び前記合金が再結晶化する温度で焼
鈍する第2球状化焼鈍工程と、を少なくとも1回以上含
むようにしだ。
In the same manufacturing method for electrode alloys, if necessary, after melting and solidifying the alloy, a primary spheroidizing annealing process is performed, in which the alloy is annealed at a temperature at which it recrystallizes, and a crystal refining process in which processing strain is applied. , and a second spheroidizing annealing step of annealing at a temperature at which the alloy recrystallizes, at least once.

しだがって低融点、高蒸気圧元素のしみだしを阻止し、
安定した低截断特性を有する大電流しゃ断真空バルブ用
電極合金を実現できるという優れた効果を有する。
Therefore, it prevents the seepage of low melting point, high vapor pressure elements,
It has the excellent effect of realizing an electrode alloy for a large current cutoff vacuum valve that has stable and low cutting characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にかかる電極用合金の製造方法の実施
例を示す工程図,第2図は、第1図の製造方法により製
造した,銅−7重量%鉛電極合金の組織を示す。 倍率400倍の顕微鏡写真、第3図は、本発明にかかる
電極用合金の他の製造工程により製造した、銅−0.7
重量%鉛電極合金、銅−3重量%鉛電極合金、銅−7重
量%鉛電極合金の絹織を示す、倍率100倍の顕微鏡写
真である。
Fig. 1 is a process diagram showing an example of the method for manufacturing an electrode alloy according to the present invention, and Fig. 2 shows the structure of a copper-7% by weight lead electrode alloy manufactured by the manufacturing method shown in Fig. 1. . FIG. 3, a micrograph at a magnification of 400 times, shows copper-0.7 produced by another manufacturing process of the electrode alloy according to the present invention.
1 is a micrograph at 100x magnification showing silk weave of wt% lead electrode alloy, copper-3wt% lead electrode alloy, and copper-7wt% lead electrode alloy.

Claims (1)

【特許請求の範囲】 1 銅を主成分とし、銅に対し固状で1重量%以下固溶
し得るような低融点。 高蒸気圧元素を、銅に対する該元素の固溶限以上から2
5重量%以下迄含有する電極用合金の製造方法において
、合金の溶解凝固後、加工歪みを加える結晶微細化加工
工程と、前記加工工程を経た合金が再結晶化する温度で
焼鈍する球状化焼鈍工程とを、少なくとも1回以上含む
ことを特徴とする電極用合金の製造方法。 2 前記低一点、高蒸気圧元素が、鉛である特許請求の
範囲第1項記載の電極用合金の製造方法。 3 前記低融点、高蒸気圧元素がビスマスである特許請
求の範囲第1項記載の電極用合金の製造方法。 4 前記低融点、高蒸気圧元素が、釦一ビスマス合金で
ある特許請求の範囲第1項記載の電極用合金の製造方法
。 5 銅を主成分とし、銅に対し固状で1重量%以下固溶
し得るような低融点、高蒸気圧元素を、銅に対する該元
素の固溶限以上から25重量%以下迄含有する電極用合
金の製造方法において、合金の溶解凝固後、前記合金が
再結晶化する湿度で焼鈍する第一次球状化焼鈍工程と、
加工歪みを加える結晶微細化加工工程と、再び前記合金
が再結晶化する湿度で焼鈍する第二次球状化焼鈍工程と
を、少なくとも1回以上含むことを特徴とする電極用合
金の製造方法。 6 前記低融点、高蒸気圧元素が、鉛である特許請求の
範囲第5項記載の電極用合金の製造方法。 7 前記低融点、高蒸気圧元素が,ビスマスである特許
請求の範囲第5項記載の電極用合金の製造方法。 8 前記低融点、高蒸気圧元素が、鉛一ビスマス合金で
ある特許請求の範囲第5項記載の電極用合金の製造方法
[Scope of Claims] 1. A substance containing copper as a main component and having a low melting point such that it can form a solid solution with copper in an amount of 1% by weight or less. The high vapor pressure element is
In the method for producing an alloy for electrodes containing up to 5% by weight, the alloy is melted and solidified, and then the alloy is melted and solidified, followed by a crystal refining processing step in which processing strain is applied, and spheroidizing annealing in which the alloy that has undergone the processing step is annealed at a temperature at which it recrystallizes. 1. A method for producing an electrode alloy, the method comprising the steps of: at least once. 2. The method for producing an electrode alloy according to claim 1, wherein the low point, high vapor pressure element is lead. 3. The method for producing an electrode alloy according to claim 1, wherein the low melting point, high vapor pressure element is bismuth. 4. The method for producing an electrode alloy according to claim 1, wherein the low melting point, high vapor pressure element is a Button bismuth alloy. 5. An electrode whose main component is copper, and which contains a low melting point, high vapor pressure element that can form a solid solution of 1% by weight or less in copper, from the solid solubility limit of the element in copper to 25% by weight or less. In the method for producing an alloy for use, after melting and solidifying the alloy, a primary spheroidizing annealing step of annealing at a humidity where the alloy recrystallizes;
A method for producing an electrode alloy, comprising at least one crystal refining process in which processing strain is applied, and a secondary spheroidizing annealing process in which the alloy is annealed at a humidity that recrystallizes the alloy. 6. The method for producing an electrode alloy according to claim 5, wherein the low melting point, high vapor pressure element is lead. 7. The method for producing an electrode alloy according to claim 5, wherein the low melting point, high vapor pressure element is bismuth. 8. The method for producing an electrode alloy according to claim 5, wherein the low melting point, high vapor pressure element is a lead-bismuth alloy.
JP53018502A 1978-02-22 1978-02-22 Method for manufacturing electrode alloy Expired JPS588529B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53018502A JPS588529B2 (en) 1978-02-22 1978-02-22 Method for manufacturing electrode alloy
DE19792906767 DE2906767A1 (en) 1978-02-22 1979-02-21 METHOD OF MANUFACTURING A VACUUM CIRCUIT BREAKER
US06/013,807 US4231814A (en) 1978-02-22 1979-02-22 Method of producing a vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53018502A JPS588529B2 (en) 1978-02-22 1978-02-22 Method for manufacturing electrode alloy

Publications (2)

Publication Number Publication Date
JPS54111676A JPS54111676A (en) 1979-09-01
JPS588529B2 true JPS588529B2 (en) 1983-02-16

Family

ID=11973395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53018502A Expired JPS588529B2 (en) 1978-02-22 1978-02-22 Method for manufacturing electrode alloy

Country Status (1)

Country Link
JP (1) JPS588529B2 (en)

Also Published As

Publication number Publication date
JPS54111676A (en) 1979-09-01

Similar Documents

Publication Publication Date Title
KR20020028890A (en) Copper sputtering target assembly and method of making same
US4311522A (en) Copper alloys with small amounts of manganese and selenium
CN113564408B (en) High-strength high-conductivity rare earth copper alloy Cu-Cr-Zr-Y and preparation method thereof
JPH06184679A (en) Copper alloy for electrical parts
CN115287503B (en) Aluminum-beryllium intermediate alloy and preparation method thereof
US4347413A (en) Electrodes of vacuum circuit breaker
JPS646158B2 (en)
US4439247A (en) Method for manufacture of high-strength high-electroconductivity copper alloy
JP2011174142A (en) Copper alloy plate, and method for producing copper alloy plate
CN116397128A (en) Rare earth copper chromium alloy material and preparation method thereof
CN114277280B (en) Precipitation strengthening type tin brass alloy and preparation method thereof
JPS588529B2 (en) Method for manufacturing electrode alloy
US4231814A (en) Method of producing a vacuum circuit breaker
KR0157258B1 (en) The manufacturing method of cu alloy
US4014689A (en) Method of fabricating a contact material for high-power vacuum circuit breakers
JPH048494B2 (en)
Singh et al. Impact of substrate temperature on rapid solidification of an Al-Cu eutectic alloy
EP0071295B1 (en) Beta alloys with improved properties
JPH06279894A (en) Copper alloy excellent in strength and electrical conductivity
JPH0413824B2 (en)
US4650650A (en) Copper-based alloy with improved conductivity and softening properties
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
Acharya Thermal analysis of slow cooled copper-tin alloys
US3113020A (en) Methods of improving extrusion properties of lead-antimony alloys
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy