JPS5885153A - Surface flaw detecting device for round bar - Google Patents

Surface flaw detecting device for round bar

Info

Publication number
JPS5885153A
JPS5885153A JP56183422A JP18342281A JPS5885153A JP S5885153 A JPS5885153 A JP S5885153A JP 56183422 A JP56183422 A JP 56183422A JP 18342281 A JP18342281 A JP 18342281A JP S5885153 A JPS5885153 A JP S5885153A
Authority
JP
Japan
Prior art keywords
round steel
flaw detection
flaw
steel bar
round
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183422A
Other languages
Japanese (ja)
Inventor
Koji Inazaki
稲崎 宏治
Kozo Ozaki
小崎 巧三
Mitsuo Yoshida
吉田 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56183422A priority Critical patent/JPS5885153A/en
Publication of JPS5885153A publication Critical patent/JPS5885153A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect surface flaws with excellent S/N along the whole circumference and length of a round bar by providing the flaw detection head with flaw probes for an inclined angle more than one that transmit ultrasonic wave by refracting it in the round steel bar by 30-60 deg. to the side with respect to the vertical line. CONSTITUTION:When facing the cross-section of a round steel bar 1 a ultrasonic wave 3 is directed obliquely to the side direction with respect to the vertical line, that is, with an inclination by an angle theta1 to the direction that is perpendicular to the axis of a round steel bar, by means of an oblique angle probe 2 from above, the ultrasonic wave 3 is divided at the surface 4 into a component that is transmitted in the round steel bar with a refraction angle theta and a component that is reflected by an angle theta1. When the ultrasonic wave that is transmitted in the round steel bar with the refraction angle theta and reaches the side face 5 of the round steel 1, and there is a surface flaw at the side face 5, reflection echo (defect echo) develops due to the surface flaw and it is detected as 6A. According to the present invention, surface flaws of a round steel bar can be detected with excellent S/N round the whole circumference and the whole length.

Description

【発明の詳細な説明】 本発明は、丸棒等棒状体(以下丸鋼と云う)の表面疵探
傷装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface flaw detection device for rod-shaped objects such as round bars (hereinafter referred to as round steel).

最近の丸鋼の品質要求水準はますます高度化してきてお
)、丸鋼の表面疵に対しては4IiFKその内容が厳し
くなっている。丸鋼の表面疵は、従来から渦流探傷装置
、磁気探傷装置等各種の非破壊検査装置によって検査が
行なわれているが、これらの装置は一般に価格が高く、
またこれらすべての方式が丸鋼の表面側即ち丸鋼の外側
から表面疵を検査するものであるため、表面からの深さ
が浅い表、面疵を検出する場合、丸鋼表面の凹凸、性状
等の影譬を大きく受けて検出信号/ノイズ(以下8/N
と略す、)が悪くなり、疵を見のがす確率が大きくなる
ことから、要求レベルを10ロー完全に満足する探傷装
置となっていないのが現状である。
Recently, the quality requirements for round steel have become more and more sophisticated), and 4IiFK has become stricter in terms of surface flaws in round steel. Surface flaws on round steel have traditionally been inspected using various non-destructive testing devices such as eddy current flaw detection devices and magnetic flaw detection devices, but these devices are generally expensive;
In addition, all of these methods inspect surface flaws from the surface side of the round steel, that is, from the outside of the round steel, so when detecting surface flaws that are shallow from the surface, it is necessary to check the irregularities and properties of the round steel surface. Detection signal/noise (hereinafter 8/N
Currently, there is no flaw detection device that fully satisfies the required level of 10 rows, because the probability of overlooking defects increases.

本発明はこのような点Vcwiみてなされたものであり
、従来性なわれていた丸鋼の外側から表面疵を検出する
方法Kかわって、丸鋼の内部から表面疵を検出する装置
を提供するものであり、その内容は、丸鋼を回転させな
がら長手方向に移動させる移送装置と、この移送装置に
よる移送ライン中に設置した超音波探傷ヘッドからなり
、探傷ヘッドには、丸鋼の内部に垂線に対して側方[3
G〜60度屈折させて超音波を伝搬させる1個以上の斜
角用探触子を備えて、丸鋼の表面疵を丸鋼の内部から探
傷する装置に関するものである。
The present invention has been made in view of these points, and instead of the conventional method of detecting surface flaws from the outside of a round steel, it provides an apparatus for detecting surface flaws from the inside of a round steel. It consists of a transfer device that rotates and moves the round steel in the longitudinal direction, and an ultrasonic flaw detection head installed in the transfer line by this transfer device. Lateral to the perpendicular [3
The present invention relates to an apparatus for detecting surface flaws in a round steel from inside the round steel, which is equipped with one or more bevel probes that propagate ultrasonic waves by refraction of G to 60 degrees.

本装置の構造は極く簡単なものであるため安価であり、
また丸鋼の表面疵を丸鋼の内部から探傷するため、丸鋼
表面の凹凸、性状の影響を大巾に減少させられ、表面か
らの深さの浅い表面疵も8/N良くきわめて安定した探
傷が行なえる大きな利点をもつ。
The structure of this device is extremely simple, so it is inexpensive.
In addition, since surface flaws on round steel are detected from inside the round steel, the influence of irregularities and properties on the surface of round steel can be greatly reduced, and even surface flaws with a shallow depth from the surface can be detected with a good 8/N stability. It has the great advantage of being able to perform flaw detection.

以下本発明O実施例を図面に基づいて詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の原理を示す図、第2図。FIG. 1 is a diagram showing the principle of the present invention, and FIG. 2 is a diagram showing the principle of the present invention.

第3図、第4図は本発明に係る超音波探傷ヘッド、緩衝
機構及び搬送装置をそれぞれ示す図であり、第5図は本
発明装置による表面疵の検出結果を示す図である。91
図に示すように、丸鋼1を断面でみてその上方から斜角
用探触子2によって垂線に対して側方に、即ち丸鋼1の
軸心に対して直交する方向に角度θ1だけ傾斜させて斜
めに超音波3を入射させると、角鋼1の表面4において
超音波3は丸鋼内部に屈折角0で伝搬する成分と、反射
角度l、で反射する成分とに分かれる。この反射成分の
大部分は探触子2に戻らないが、その1部は丸鋼1の表
面の小さな凹凸によって乱反射されて探触子に戻るため
反射エコー(表面エコー)4人が発生する。この表面エ
コー4Aの巾りは通常10〜15箇程度あり、丸鋼1の
表面4に表面疵があっても、表面疵エコーは表面エコー
4Aの巾りの中に入ってしまい、欠陥エコーとして検知
することは出来ない。しかし、屈折角θで丸鋼内部を伝
搬し丸鋼1の側面5まで達した超音波!1は、この側面
5の所に表面疵6があると、表面疵の形状が一般に複雑
であるため必ず探触子2へ超音波5を反射させる成分を
持つので、表面疵による反射エコー(欠陥エコー)が発
生し6Aとして検出出来る。
FIG. 3 and FIG. 4 are diagrams showing an ultrasonic flaw detection head, a buffer mechanism, and a conveying device according to the present invention, respectively, and FIG. 5 is a diagram showing the detection results of surface flaws by the device of the present invention. 91
As shown in the figure, when the round steel 1 is viewed in cross section, the bevel probe 2 is tilted from above by an angle θ1 to the side with respect to the perpendicular line, that is, in the direction orthogonal to the axis of the round steel 1. When the ultrasonic wave 3 is incident obliquely on the surface 4 of the square steel 1, the ultrasonic wave 3 is divided into a component that propagates inside the round steel at a refraction angle of 0 and a component that is reflected at a reflection angle l. Most of this reflected component does not return to the probe 2, but a portion of it is diffusely reflected by small irregularities on the surface of the round steel 1 and returns to the probe, resulting in four reflected echoes (surface echoes). The width of this surface echo 4A is usually about 10 to 15, and even if there is a surface flaw on the surface 4 of the round steel 1, the surface flaw echo will fall within the width of the surface echo 4A and will be treated as a defect echo. It cannot be detected. However, the ultrasonic wave propagated inside the round steel at the refraction angle θ and reached the side surface 5 of the round steel 1! 1, if there is a surface flaw 6 on this side surface 5, the shape of the surface flaw is generally complex, so it always has a component that reflects the ultrasonic wave 5 to the probe 2. echo) is generated and can be detected as 6A.

この場合、丸−1の側面5に到達した超音波6け、入射
角θと同じ反射角θで丸鋼内部〈反射されてしまうため
反射エコーが発生せず、表面疵6による欠陥エコー6ム
だけが発生するので不感帯を全く伴う事なく、きわめて
S/N良く検出出来る。
In this case, the ultrasonic wave 6 that reached the side surface 5 of the circle-1 is reflected inside the round steel at the same reflection angle θ as the incident angle θ, so no reflected echo is generated, and the defective echo 6 due to the surface flaw 6 is reflected inside the round steel. Since only this occurs, there is no dead zone at all and detection can be performed with an extremely good S/N ratio.

斜角探触子2から発信する超音波ビーム3の探傷中Wは
一般に10−〜20−程度であるから、丸鋼1の全周を
探傷する場合には九銅1を回転させるか又は探触子2を
丸鋼1のまわりに回転させればよい。
Since the flaw detection W of the ultrasonic beam 3 emitted from the angle probe 2 is generally about 10 to 20, when testing the entire circumference of the round steel 1, it is necessary to rotate the nine copper 1 or What is necessary is to rotate the feeler 2 around the round steel 1.

又、表面疵6の形状は一般に複雑な形状であるため、そ
の方向性によりては探触子2の方向へ超音波3を反射さ
せる成分が非常に小さい場合もある丸め、第1図に示す
超音波と反対方向にも超音波を発信する探触子を備える
と、探触面を逆方向から探傷できて表面疵の形状、方向
性にかかわらず當に表面疵の反射成分の大きい部分を検
出出来、高い感度で検出可能である0本発明に係る屈折
角−は30度超40度以下とするのが有効であり、30
度以下では丸鋼1の側面5からの反射エコーが発生する
場合がありて表面疵の検出が難かしくなる。又、60度
を超えると超音波601部が丸鋼1の表面を表面波とし
て伝搬し、この表面波により丸鋼表面の凹凸が検出され
てノイズ成分の増大をもたらすため、B/Nを低下させ
ることとなる。
Furthermore, since the shape of the surface flaw 6 is generally complex, depending on its directionality, the component that reflects the ultrasonic wave 3 toward the probe 2 may be very small. If equipped with a probe that emits ultrasonic waves in the opposite direction to the ultrasonic waves, the surface to be probed can be detected from the opposite direction, allowing the detection of areas with large reflected components of surface flaws, regardless of the shape or direction of the surface flaw. It is effective to set the refraction angle according to the present invention to more than 30 degrees and less than 40 degrees, which can be detected with high sensitivity.
If the temperature is less than 100 degrees, reflected echoes from the side surface 5 of the round steel 1 may occur, making it difficult to detect surface flaws. Moreover, when the angle exceeds 60 degrees, the ultrasonic wave 601 propagates on the surface of the round steel 1 as a surface wave, and this surface wave detects irregularities on the surface of the round steel, resulting in an increase in noise components, reducing the B/N. It will be necessary to do so.

第2図は超音波探傷ヘッドを示す図であり、探傷ヘッド
はその底面にシ凰−7を有し、とのシェー7を囲うよう
に壁体21が設けられており、この中に2個の斜角用探
触子2を備えている。探触子2と丸鋼1とはシ:L−7
によって常K11lLs■程度の間隔に保たれ、給水口
8から供給された探傷水はこのギャップ間に水膜を形成
しながら流れる。
FIG. 2 is a diagram showing an ultrasonic flaw detection head. The flaw detection head has a shell 7 on its bottom surface, and a wall 21 is provided to surround the shell 7. It is equipped with an oblique angle probe 2. Probe 2 and round steel 1 are: L-7
Therefore, a gap of about K11Ls■ is normally maintained, and the flaw detection water supplied from the water supply port 8 flows while forming a water film between these gaps.

従って、探触子2から丸鋼1への超音波の入射はきわめ
て安定に維持出来る。本探傷ヘッドは簡易な構造であり
、大きさも全長で120閣程度とコンパクトなものであ
る。尚、丸鋼のサイズがかわった場合にも、本装置はシ
ー−7の交換だけで対応可能な構造である。
Therefore, the incidence of ultrasonic waves from the probe 2 to the round steel 1 can be maintained extremely stably. This flaw detection head has a simple structure and is compact, with a total length of about 120 mm. Furthermore, even if the size of the round steel changes, this device is structured so that it can be handled simply by replacing the seam 7.

第5図は、探傷ヘッドの緩衝機構を説明する図である。FIG. 5 is a diagram illustrating the buffer mechanism of the flaw detection head.

探傷ヘッド9はエアシリンダー10の駆動装置を介して
上下移動自在に設置されており、丸鋼1が移送されその
先端が前記ヘッドの設置位置に到達した際、駆動装[1
0によ如ヘッド9を丸鋼1の外周面へ接材させ、丸w4
1の最後部の探傷を終えた後は沓び駆動装置10によプ
ヘッド9を元の位置へ待避させる。丸鋼1の移送時に発
生する上下の振動はジンバル機構14及び2本の平行リ
ンク機構11を介してエアシリンダーによる駆動装置1
0で吸収し、左右の振動は回転機構12゜13によって
追従する構造となっている*2oA。
The flaw detection head 9 is installed to be able to move up and down via a drive device of an air cylinder 10, and when the round bar 1 is transferred and its tip reaches the installation position of the head, the drive device [1
0, connect the head 9 to the outer peripheral surface of the round steel 1, and press the round w4
After completing the flaw detection at the rearmost part of the head 9, the scoop head 9 is retracted to its original position by the scoop drive device 10. The vertical vibration that occurs when the round bar 1 is transferred is transmitted to the driving device 1 using an air cylinder via a gimbal mechanism 14 and two parallel link mechanisms 11.
0, and left and right vibrations are tracked by a rotating mechanism 12°13*2oA.

20B、2QCはビンである。20B and 2QC are bins.

第4図は本発明装置の全体を示す平面図であり、給材床
15か−払い出された丸鋼を回転させながら長手方向に
搬送する送)装置16(以下探傷テーブルと云う)と、
探傷テーブル16にて搬送される丸鋼を探傷する探傷ヘ
ッド9及び探傷の終った丸鋼を収納する集材床1Bとか
らなる。又、探傷テーブルの駆動軸端には、丸鋼の搬送
回転数を検知するPLO装置19が設置され、探傷ヘッ
ド9は探傷架台17に取付けられている。
FIG. 4 is a plan view showing the entire apparatus of the present invention, which includes a material feeding bed 15, a feeding device 16 (hereinafter referred to as a flaw detection table) that rotates and conveys the discharged round steel in the longitudinal direction, and
It consists of a flaw detection head 9 for flaw detection on the round steel transported by a flaw detection table 16, and a wood collection floor 1B for storing the round steel after flaw detection. Further, a PLO device 19 for detecting the conveyance rotation speed of the round steel is installed at the end of the drive shaft of the flaw detection table, and the flaw detection head 9 is attached to the flaw detection stand 17.

給材床15から払い出された丸鋼は探傷テーブル16に
よりで回転送〕され丸鋼の先端が探傷ヘッドの所まで来
たら探傷ヘッド9を丸鋼に接材させ、探傷を開始する。
The round steel discharged from the material supply bed 15 is transferred by the flaw detection table 16, and when the tip of the round steel reaches the flaw detection head, the flaw detection head 9 is brought into contact with the round steel to start flaw detection.

その後、丸鋼の後端が探傷ヘッド9の所まで搬送される
と探傷ヘッド9t−丸鋼から離材させ、探傷合否結果に
もとづいて合格材紘良材ポケットに、不合格材は不良材
ポケットに集材床18において振り分けられる。探傷テ
ーブル16の駆動軸端に設置されたPLO装置19丸鋼
の回転送りピッチとから、探傷ヘッド9によって検出さ
れる丸鋼の表面疵の位置が検知され、探傷ヘッド9の下
流@に設けたマーキング装置(図示せず)によってその
部位をマーキングし、表面疵の位置を明らかにする事が
出来る。
After that, when the rear end of the round steel is transported to the flaw detection head 9, it is separated from the round steel by the flaw detection head 9t, and based on the pass/fail results of the flaw detection, the passed material is placed in the good material pocket, and the rejected material is placed in the defective material pocket. The wood is distributed on the wood collection floor 18. The position of the surface flaw on the round steel detected by the flaw detection head 9 is detected from the rotation feed pitch of the PLO device 19 installed at the end of the drive shaft of the flaw detection table 16, and the position of the surface flaw on the round steel detected by the flaw detection head 9 is detected. The site can be marked with a marking device (not shown) to reveal the location of the surface flaw.

本発明装置は超音波を丸鋼内部に斜めに伝搬させる方法
即ち斜角法によって丸鋼の表面疵を検出するものである
が、丸鋼の表面疵ばか)でなく超音波の伝搬経路内にあ
る欠陥は全て検出される。
The device of the present invention detects surface flaws in round steel using a method in which ultrasonic waves are propagated obliquely inside the round steel, that is, by the bevel method. All certain defects are detected.

一般に丸鋼の表面疵も内部にある欠陥も同等圧有害であ
るため欠陥検出上問題とはならないが、特に表面疵が内
部の欠陥かの弁別が必要な時には表面エコーから欠陥エ
コーまでの路程を検知すればよい、即ち第1図に示すよ
うに超音波3が丸鋼1中を屈折角θで伝搬する場合、ビ
ームの入射点から側面までの路程Aは丸鋼の直径をDと
すると、A = D C(IIθ となり、表面疵ではこの路程付近に欠陥エコーが現われ
る。従ってこの路程よ如短い所に現われる欠陥エコーは
内部の欠陥と判定出来る。又、表面疵と内部欠陥との判
別は前述のマーキング装置にようてマーキングされた部
位を調査する事でも可能である。
In general, both surface flaws and internal flaws in round steel are equally harmful, so they do not pose a problem for defect detection, but especially when it is necessary to distinguish whether a surface flaw is an internal defect, the path from the surface echo to the defect echo is In other words, when the ultrasonic wave 3 propagates through the round steel 1 at a refraction angle θ as shown in Fig. 1, the path A from the beam incidence point to the side surface is as follows, where D is the diameter of the round steel. A = D C (IIθ), and in the case of a surface flaw, a defect echo appears near this path.Therefore, a defect echo that appears at a location as short as this path can be determined to be an internal defect.Also, it is difficult to distinguish between a surface flaw and an internal defect. It is also possible to investigate the area marked using the above-mentioned marking device.

尚、本探傷装置は探触子固定で丸鋼を回転させて搬送し
ながら丸鋸の全周、全長の探傷を行うものであるが、こ
れとは逆に、丸鋼を直進搬送し、探触子を丸鋼のまわ如
に回転させる方法によって行り九際の表面疵の深さと8
7Nとの関係を示す図である。これより表面からの深さ
0−2wm以上の表面疵を8/N1Gd1以上で検出で
きている。
This flaw detection device detects flaws around the entire circumference and entire length of the circular saw while rotating and transporting the round steel with a fixed probe. The depth of the surface flaw and the depth of 8.
FIG. 7 is a diagram showing the relationship with 7N. From this, surface flaws with a depth of 0-2wm or more from the surface can be detected at 8/N1Gd1 or more.

以上述べたように、本発明装置によれば、丸鋼の表面疵
を全周、全長にわたって8/N良くまた安定して探傷す
ることが可能であり、装置も安価であるため、丸鋼の品
質保証装置としてきわめて大きな効果がある。
As described above, according to the device of the present invention, it is possible to stably detect surface flaws on round steel with a good 8/N over the entire circumference and entire length, and the device is inexpensive. It is extremely effective as a quality assurance device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の原理を説明する図、第2図、第3
図、第4図は本発明装置に係る超音波探傷ヘッド、緩債
機構及び探傷装置の全体を示す図、第5図は本発明装置
による丸鋼の表面疵探傷の結果を示す図である。 1:丸鋼      1に平行リンク機構2:斜角用探
触子  12.15:回転機構+S:超音超音波   
 14ニシンパル機構4 : 丸f1401NVl  
  1s :給材床5:丸鋼の側面   16:送り装
置 6:表面疵     17:探傷架台 7:シ、−18:集材床 8:給水口     19:PLG装置9:探傷ヘッド
   21:壁体 10:駆動装置 出願人  新日本製鐵株式会社
Figure 1 is a diagram explaining the principle of the device of the present invention, Figures 2 and 3.
FIG. 4 is a diagram showing the entirety of the ultrasonic flaw detection head, slow bonding mechanism, and flaw detection device according to the device of the present invention, and FIG. 5 is a diagram showing the results of surface flaw detection of round steel by the device of the present invention. 1: Round steel 1 Parallel link mechanism 2: Oblique angle probe 12.15: Rotating mechanism + S: Ultrasound Ultrasonic
14 Nishinpal mechanism 4: Maru f1401NVl
1s: Material supply floor 5: Side surface of round steel 16: Feeding device 6: Surface flaw 17: Flaw detection stand 7: -18: Material collection floor 8: Water supply port 19: PLG device 9: Flaw detection head 21: Wall body 10 :Drive device applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 丸棒を回転させながら長さ方向に移動させる移送装置と
、この移送装置による移送ライン中に進退自在に設置し
た超音波探傷ヘッドからな如、このヘッドは丸棒の外周
面に摺接するシ、−とこのシ島−を囲む壁体とからなり
、仁の壁体内には丸棒の内部に@@に対して側方[30
〜60度屈折させて超音波を伝搬させる1個以上の斜角
用探触子を備えて、丸棒の表面疵を丸棒内部よシ探傷す
ることを特徴とする丸棒の表面疵探傷装置。
There is a transfer device that moves the round bar in the length direction while rotating it, and an ultrasonic flaw detection head that is installed in the transfer line of this transfer device so that it can move forward and backward. - and a wall surrounding this island -, and inside the wall of Jin, there is a side [30
A surface flaw detection device for a round bar, which is equipped with one or more oblique angle probes that propagate ultrasonic waves by refraction of up to 60 degrees, and detects surface flaws in the round bar from inside the bar. .
JP56183422A 1981-11-16 1981-11-16 Surface flaw detecting device for round bar Pending JPS5885153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183422A JPS5885153A (en) 1981-11-16 1981-11-16 Surface flaw detecting device for round bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183422A JPS5885153A (en) 1981-11-16 1981-11-16 Surface flaw detecting device for round bar

Publications (1)

Publication Number Publication Date
JPS5885153A true JPS5885153A (en) 1983-05-21

Family

ID=16135498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183422A Pending JPS5885153A (en) 1981-11-16 1981-11-16 Surface flaw detecting device for round bar

Country Status (1)

Country Link
JP (1) JPS5885153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150679A (en) * 2007-12-19 2009-07-09 Sanyo Special Steel Co Ltd Surface flaw evaluation device of round bar steel by submerged ultrasonic flaw detection using electron scanning type array prob,e and surface flaw evaluation method of round bar steel

Similar Documents

Publication Publication Date Title
US5419196A (en) Ultrasonic side-looker for rail head flaw detection
US5431054A (en) Ultrasonic flaw detection device
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
US20130111997A1 (en) Method and apparatus for detecting internal rail defects
US20090266166A1 (en) Method and apparatus for detecting internal rail defects
US3924453A (en) Ultrasonic testing of tubing employing a spiral wave generator
JPS58500674A (en) Ultrasonic rail test method
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
US5591912A (en) Method and apparatus for inspecting conduits
FI85773C (en) Procedure and system for inspection of a solid material under the surface
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JPS5885153A (en) Surface flaw detecting device for round bar
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2002022714A (en) Ultrasonic flaw detector for welded steel pipe
JPH09304358A (en) Defect detecting method for lead sheath pipe for electric wire
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
CN112213385A (en) Ultrasonic creeping wave detection method for butt weld of thin-wall section
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
JPH0760150B2 (en) Ultrasonic flaw detector
JPS58216950A (en) Ultrasonic flaw detection
JP2922508B1 (en) Automatic ultrasonic flaw detector
JPH0278949A (en) Ultrasonic flaw detecting device
US8375795B2 (en) Non-destructive inspection of high-pressure lines