JPS5884931A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS5884931A
JPS5884931A JP18413781A JP18413781A JPS5884931A JP S5884931 A JPS5884931 A JP S5884931A JP 18413781 A JP18413781 A JP 18413781A JP 18413781 A JP18413781 A JP 18413781A JP S5884931 A JPS5884931 A JP S5884931A
Authority
JP
Japan
Prior art keywords
sintering
sintered ore
limestone
layer
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18413781A
Other languages
Japanese (ja)
Inventor
Yasumasa Sawamura
沢村 靖昌
Katsuya Ono
斧 勝也
Katsuhiko Sato
勝彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18413781A priority Critical patent/JPS5884931A/en
Publication of JPS5884931A publication Critical patent/JPS5884931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enhance the yield, strength and reduction powdering index (RDI) of sintered ore obtd. by a sintering method using air sucked downward by adjusting limestone in starting materials including fine iron ore to a prescribed grain size and vibrating the surface of sintered ore in the early stage of sintering. CONSTITUTION:Limestone as a starting material is adjusted so that fine granules having <=0.25mm. grain size are contained by <=19% of the total amount of the limestone, and the adjusted limestone and other blended starting materials are charged into a sintering machine using air sucked downward. After firing the starting materials on the pallet of the sintering machine, vibration load is applied to the surface of sintered ore. Thus, the yield, strength and RDI of the resulting sintered ore are enhanced.

Description

【発明の詳細な説明】 本発明は下向吸気焼結機例えばDL式焼結機等で製造さ
れる焼結鉱の、特に上層部の歩留及び強度を向上させる
と共に、焼結鉱の還元性状の1つである、還元粉化指数
(RDI)を向上させる粉鉱石の焼結法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves the yield and strength of sintered ore produced by a downward suction sintering machine, such as a DL type sintering machine, particularly in the upper layer, and also improves the reduction of sintered ore. The present invention relates to a method for sintering fine ore that improves the reduction index (RDI), which is one of its properties.

下向吸気焼結機で製造される焼結鉱即ちクンターケーク
は、その上層、中層及び下層においてその物理的強度は
異っている。この相違は上層と中層との間において着し
い。シンターケーク上層の歩留及び物理的強度が、中、
下層に比して著しく劣る原因は種々考えられるが、その
主たるものは次の如きものと考えられる。即ち、 (1)  I[料装入を均一にふんわりとなしたとじて
も中、下層はそれより上層部の原料自体の重置のために
圧縮され、原料密度は上昇し、歩留、強度が上昇するが
上層部はこのようなことはないこと。
The sintered ore, ie, kunter cake, produced by the downward suction sintering machine has different physical strengths in its upper layer, middle layer, and lower layer. This difference is significant between the upper and middle layers. The yield and physical strength of the upper layer of sinter cake are medium,
Various reasons can be considered for the remarkable inferiority compared to the lower layer, but the main ones are thought to be as follows. That is, (1) Even if the material is charged evenly and fluffy, the middle and lower layers will be compressed due to the overlapping of the raw material itself in the upper layer, and the density of the material will increase, resulting in lower yield and strength. will rise, but this will not happen to the upper management.

(2)上層部は中、下層部に比して充分な熱的保持が得
られず、粉鉱石粒子の半溶融層の発達が比較的不完全で
あり、各粒子の融着層が充分得られないこと。
(2) In the upper layer, sufficient thermal retention is not obtained compared to the middle and lower layers, and the development of the semi-molten layer of fine ore particles is relatively incomplete, and the fused layer of each particle is not sufficiently developed. What you can't do.

(3)上層部は中、下層に比して半溶融状態にあると幹
圧縮されることがない。しかし中、下層部におい【は焼
結進行中、上層部にある焼結鉱自体の荷重により圧縮さ
れ、気孔の圧縮が行なわれ物理的強度が向上し歩留も轟
然向上すること。勢が考えられる。
(3) If the upper layer is in a semi-molten state than the middle and lower layers, the trunk will not be compressed. However, during sintering, the middle and lower layers are compressed by the load of the sintered ore itself in the upper layer, compressing the pores, improving physical strength and dramatically increasing yield. There is a strong possibility that

本発明の1つの目的は上述した問題を解決すべくシンタ
ーケークの特に上層部の状態(気孔率)を改善し、強度
、歩留を向上させ、全層にわたって均一な、物理性状の
焼結鉱を得んとするものである。
One purpose of the present invention is to improve the condition (porosity) of the sinter cake, especially in the upper layer, to improve strength and yield, and to achieve uniform physical properties of sintered ore throughout the entire layer. The aim is to obtain the following.

一般に焼結原料を無偏析に焼結機に装入した場合、上、
下層の密度変化は下層にいくほど密度大となり、下層は
上層に対して20〜25%上昇し【いる。したがって焼
結層断面各部における気孔率の均一化は得られない。層
間における原料粒子の焼結進行に伴5半溶融化の進行と
共に下層部ではその部分より上部にある焼結鉱の荷重の
影響を受は圧縮される。従って気孔は減縮する。このよ
うな焼結層各部の気孔状態はそのまま焼結層各部の歩留
及び強度罠影響する。
Generally, when sintering raw materials are charged into a sintering machine without segregation,
The density change in the lower layer becomes larger as you go to the lower layer, and the density in the lower layer increases by 20 to 25% compared to the upper layer. Therefore, it is not possible to make the porosity uniform in each section of the sintered layer. As sintering of the raw material particles between the layers progresses, semi-melting progresses, and the lower layer is compressed under the influence of the load of the sintered ore above that portion. The pores are therefore reduced. The state of the pores in each part of the sintered layer directly affects the yield and strength of each part of the sintered layer.

本発明者郷は種々研究の結果上層部においても牟溶融化
の進行中に下層部と同じような荷重条件を与えれば、焼
結層全断面にわたってほぼ均一な歩留、強度を得る事を
見出した。
As a result of various studies, the inventor Go has found that if the same loading conditions as in the lower layer are applied to the upper layer during the progress of melting, almost uniform yield and strength can be obtained over the entire cross section of the sintered layer. Ta.

焼結鉱における気孔の生成は装入層を形成する原料台粒
子間隙がその−まま残るものと、発生ガスによるものと
が考えられるが、これら気孔の変化は気孔の周壁を形成
する部分が半溶融状態にあるときが最も容易である。即
ち半溶融帯が上層部を  “進行している時期に、未焼
結部に影響を及ぼさない@度の荷重を振動を付与しなが
ら加えることによつ【上層部の物理性状向上の目的は達
せられる。
The formation of pores in sintered ore is thought to be due to the gap between the raw material grains that form the charge layer remaining as is, or due to generated gas, but these changes in pores are caused by the fact that the part forming the peripheral wall of the pore is half This is easiest when in the molten state. In other words, when the semi-molten zone is progressing through the upper layer, by applying a load with vibration that does not affect the unsintered zone, the purpose of improving the physical properties of the upper layer is to It can be achieved.

目的層が半溶融状態になった時、これに効率的な荷重を
与え、しかも未焼結部に影響を及ぼさないようにするに
は単なる荷重のみではなく、これに振動を与える事によ
って小さな荷重で大荷重に匹敵する効果をあげる事が出
来ると共に、振動が半溶融帯で吸収され、未焼結部に影
響を及ぼさないよりにする事が可能となる点に最も特徴
を有している。
When the target layer is in a semi-molten state, in order to apply an efficient load to it without affecting the unsintered part, it is necessary to apply not only a simple load but also a small load by applying vibration to it. The most distinctive feature is that it can produce an effect comparable to that of a large load, and that vibrations are absorbed by the semi-molten zone, making it possible to prevent them from affecting the unsintered part.

以上はシンターケークの上層部の強度及び歩留の向上を
目的としたものであるが、焼結鉱の還元性状の1つであ
るRDIは、後述の実施例で述べるように振動荷重を附
与してもあまり改善されないのが現状である。そこでこ
のRDIについてその改善策に対する技術思想尋を述べ
ることとする。
The above is intended to improve the strength and yield of the upper layer of the sinter cake, but RDI, which is one of the reducing properties of sintered ore, can be applied by applying a vibration load as described in the example below. However, the current situation is that there is not much improvement. Therefore, I would like to discuss the technical philosophy regarding improvement measures regarding this RDI.

焼結鉱の還元性状の一つである還元粉化指数(RDI)
は上層部は一般的に低く、下層部では態化の傾向があり
、高い値となっている。これは上層と下層とでは配合原
料の充填密度が異なることと、上面点火の下方吸気焼結
のために、配合原料が焼結過程で受ける熱履歴が異なる
ことの2つが主なる原因と考えられている。
Reduction pulverization index (RDI), which is one of the reduction properties of sintered ore
is generally low in the upper layers, and tends to change in the lower layers, resulting in high values. This is thought to be due to two main reasons: the packing density of the raw materials differs between the upper and lower layers, and the thermal history that the raw materials receive during the sintering process differs due to the downward intake sintering with top ignition. ing.

本発明者等はこの上層と上層で熱履歴が異なることを重
視し、焼結鉱中に生成した鉱物組織の面から種々調査検
討を行った結果、次のことが明らかになった。即ち、上
層部は焼結時のコークス燃焼排ガスからの受熱が少ない
ことと、シンターケーク層−1が薄いために、急熱急冷
となり、組織の成員が適当か又は充分でないのに対し、
下層部では上層部からの燃焼排ガスの利用度が上がるた
めに、焼結層の最^温度が高くなると共に高温での酸化
性雰囲気維持時間も長くなる。このため下層部の組織は
生成鉱物の結晶が粗大化し、特にRDI 悪化の原因鉱
物である2次へマタイトの結晶粒の粗大化が顕著である
ことが明らかとなった。
The present inventors placed importance on the fact that the thermal history differs between the upper layer and the upper layer, and conducted various investigations and studies from the viewpoint of the mineral structure generated in the sintered ore, and as a result, the following became clear. That is, because the upper layer receives less heat from the coke combustion exhaust gas during sintering and the sinter cake layer-1 is thin, rapid heating and cooling occur, and the structure members are either appropriate or insufficient.
In the lower layer, the degree of utilization of the combustion exhaust gas from the upper layer increases, so the maximum temperature of the sintered layer increases and the time for maintaining the oxidizing atmosphere at high temperature increases. As a result, it was revealed that the crystals of the formed minerals in the lower layer structure became coarse, and in particular, the crystal grains of secondary hematite, which is the mineral responsible for the deterioration of RDI, became coarse.

そこで1本発明者等は、下層部のへマタイト結晶の成長
を抑えることの研究に着手し、焼結過程での融体生成挙
動等を基礎実験及び試験焼結鋼等で調査検討した結果、
焼結配合原料中の石灰石の焼結過程に於ける反応を遅ら
せることにより、2次へマタイトの生成又は成長を制御
出来ることを見出した。
Therefore, the present inventors began research on suppressing the growth of hematite crystals in the lower layer, and as a result of investigating and examining the behavior of melt formation during the sintering process using basic experiments and test sintered steel, etc.
It has been found that the formation or growth of secondary hematite can be controlled by delaying the reaction of limestone in the sintering compound raw material during the sintering process.

これは焼結過程後半の系内雰囲気が酸化性になった時点
でFe、O,とCmOを積極的に反応させてカルシウム
−フェライトを生成させて2次へマタイトの生成を抑え
ようとするものである。そのためには゛焼結過程前半で
のCaOの反応例えばFeO−8i0.−CaO系融体
でのCaOの反応を抑える必要があり、このために添加
する石灰石の粒度の微粒部分をカット又は制限しようと
するものである。
This is an attempt to suppress the formation of secondary hematite by actively reacting Fe, O, and CmO to generate calcium ferrite when the internal atmosphere becomes oxidizing in the latter half of the sintering process. It is. For this purpose, the reaction of CaO in the first half of the sintering process, for example FeO-8i0. It is necessary to suppress the reaction of CaO in the -CaO-based melt, and for this purpose it is attempted to cut or limit the fine particle size of the limestone added.

なぜならば、微粒の石灰石は他の微粉鉱石との接触がよ
く、焼結過程後半での還元性雰囲気で反応t、F・0−
810.−CaO系スラグを生成しやすくするためであ
る。したがってRDIの改善に関しては、ノ々レット又
は鍋に装入する配合原料中の石灰石粒度の−0,25−
の微粒子が石灰石全量に対して19参以下、特に好まし
くは17−以下になるように粒度を調整して焼結を行う
方法か又は、鍋又は、Rレットの原料層の下層部のみに
前記の石灰石微粒子を制限する方法を適用しようとする
ものである。
This is because fine limestone has good contact with other fine ores, and reacts in the reducing atmosphere in the latter half of the sintering process.
810. This is to facilitate the generation of -CaO-based slag. Therefore, regarding the improvement of RDI, the limestone particle size of -0,25-
Either the method of sintering is carried out by adjusting the particle size so that the fine particles are 19 mm or less, particularly preferably 17 mm or less, based on the total amount of limestone, or the above-mentioned method is applied only to the lower layer of the raw material layer of the pot or R-let. This is an attempt to apply a method to limit limestone particles.

加される石灰石の粒度な調整すると共に、焼結過程で半
溶融層(焼結帯)が原料層の上層部を進行している時期
に、未焼結部に影響を及ぼさない程度の振動荷重を付与
することにより、物理性状及び還元性状が良好な焼結鉱
を製造せんとするものである。
In addition to adjusting the particle size of the applied limestone, vibration load is applied to a level that does not affect the unsintered part during the sintering process when the semi-molten layer (sintered zone) is progressing through the upper layer of the raw material layer. The purpose is to produce sintered ore with good physical properties and reducing properties.

尚、原料層の下層部のみ石灰石微粒子を制限する方法を
適用する場合の理由は、上層部のRDIは前述の如く、
下層部と比較すると通常の場合低い値であり良好である
事、したがって2段装入等の手段で装入原料を2段に装
入出来る場合は、下層部にのみ適用することにより、R
DIの平均化が計れるからである。
The reason for applying the method of restricting limestone fine particles only in the lower layer of the raw material layer is that the RDI of the upper layer is as described above.
Compared to the lower layer, the value is normally low and good. Therefore, if the charging material can be charged in two stages by means such as two-stage charging, by applying it only to the lower layer, the R
This is because the DI can be averaged.

以下本発明の内容を実施例に基づいて述べる。The content of the present invention will be described below based on examples.

実施例1 現在一般的に焼結配合原料中に添加されている石灰石の
一度分布は第1表に示すようなものである。この中で−
0,25mmの量を30−からoチの範囲に破砕方法又
は粒度調整方法によって変化させて、他の配合原料とと
もに焼結装置に装入し、点火後、焼結形成層がlO及至
15薗になった時期に荷重100ゆ/―で振幅IIII
a13oサイクルの振動荷重を付与しながら焼結試験を
行いRDIを測定して、石灰石微粒部分の量がRDIに
及ぼす影響を調査した。又比較のため通常の焼結試験も
行った。
Example 1 The distribution of limestone, which is currently generally added to sintering compound raw materials, is as shown in Table 1. In this-
The amount of 0.25 mm is varied from 30 mm to 15 mm by a crushing method or particle size adjustment method, and charged into a sintering device along with other blended raw materials, and after ignition, the sintered forming layer is 10 to 15 mm When the load became 100 Y/-, the amplitude was
A sintering test was conducted while applying a vibrating load of a13o cycle, RDI was measured, and the influence of the amount of limestone fine particles on RDI was investigated. For comparison, a normal sintering test was also conducted.

その結果を第1図に示す。これによって石灰石粒度の−
0,25mW!の量はRDIK対して、少ない程改善効
果があり19イ以下でかなり有効で特に17チ以下にお
いて顕著である事が判明した。
The results are shown in FIG. This results in a limestone particle size of -
0.25mW! It has been found that the smaller the amount of RDIK, the better the improvement effect, and it is quite effective at 19 inches or less, and especially noticeable at 17 inches or less.

第1表石灰石の粒度分布 配合原料の配合割合は第2表に示した。Table 1 Particle size distribution of limestone The blending ratios of the raw materials are shown in Table 2.

第2表 実施例2 実施例1と同様に石灰石中の−0,25mの量を4水準
に変化させて、第2表に示す他の配合原料とともに焼結
装置に装入し、点火後の焼結形成層が1011135m
になった時期に振幅1閣、3oサイタルの振動を付与し
ながら荷重を変化させて焼結試験を行い、石灰石の粒度
分布と振動荷重を変化させた場合の焼結鉱の性状をしら
べた。
Table 2 Example 2 Similar to Example 1, the amount of -0.25m in limestone was changed to four levels, and the mixture was charged into a sintering device together with the other blended raw materials shown in Table 2, and after ignition. Sintered formation layer is 1011135m
At this time, a sintering test was conducted by varying the load while applying vibrations with an amplitude of 1° and 3°, and the particle size distribution of limestone and the properties of the sintered ore when changing the vibration load were investigated.

この配合では軟化し易い鉱石が多く含ま“れており比較
的軽量の振動荷重で効果があり、したがって荷重は50
 町帰〜200 kl?/、まで4水準とした。尚振動
荷重の振巾及び荷重は配合される鉱石の銘柄によって軟
化性状が異るので適宜変える必要がある。結果を第2図
に示している。振動荷重を逐次増加することによって、
歩留、強度が向上度を通常のものにした場合RDIは振
動荷重を付加することによって、わずかではあるが悪化
する傾向があるが、石灰石粒度中の−0,25+mnを
19−11o弧〇−に調整することにより、RDIは改
善されてくる。
This formulation contains a large amount of easily softened ore and is effective with a relatively light vibration load, so the load is 50
Return to town ~ 200 kl? /, up to 4 levels. Note that the amplitude and load of the vibration load need to be changed as appropriate since the softening properties differ depending on the brand of ore to be blended. The results are shown in Figure 2. By successively increasing the vibration load,
When yield and strength improve to normal levels, RDI tends to deteriorate, albeit slightly, by adding a vibration load; RDI is improved by adjusting.

崗焼結鉱の還元率(RI)についても向上することが確
認された。
It was also confirmed that the reduction rate (RI) of the sintered ore was improved.

実施例3 第3図は石灰石の粒度調整を下層部に配合する石灰石の
みに適用し、振動荷重を付加した場合の試験結果である
。下層部のみ石灰石粒度な調整する理由については前述
の如(、シンターケーク下層部のRDIが上層部と比較
して劣るためである。
Example 3 FIG. 3 shows test results when particle size adjustment of limestone was applied only to limestone mixed in the lower layer and a vibration load was applied. The reason why the limestone particle size is adjusted only in the lower layer is as described above (this is because the RDI of the lower layer of the sinter cake is inferior to that of the upper layer).

下層部のみの場合は全層と比較して、強度は向上の傾向
があり、RIDIについてはわずかに悪化したが、第2
図に示した石灰石粒度未調整(−0,25aumが23
.99b)F)場合と比較すると格段の改善効果が認め
られる。
In the case of only the lower layer, the strength tended to improve compared to the whole layer, and RIDI slightly deteriorated, but the second
The limestone particle size shown in the figure is not adjusted (-0.25 aum is 23
.. 99b) A significant improvement effect is recognized when compared with case F).

第4図は、本発明を実施する場合に用いる振動荷重付与
装置の一例を示す路線図であり、i奨囁雫互いに接近し
た加圧ロール%1 j l’l 1#、・・・・・・を
装入面2の上面、点火炉3の後面に配置し、該ロール1
.1’、f・・・・・・は振動装置4 、4’ 、 l
・・・・・・に連結されているものを製作したが、これ
に限るものではなく要は必要とする加圧振動が得られる
装置であれば良く、その場合には加圧振動によって装入
層の通気41−阻害し焼結時間を延長しないように留意
しなければならない・
FIG. 4 is a route map showing an example of a vibration load applying device used when carrying out the present invention.・ is arranged on the upper surface of the charging surface 2 and the rear surface of the ignition furnace 3, and the roll 1
.. 1', f... are vibration devices 4, 4', l
Although we have manufactured a device that is connected to ..., it is not limited to this, and in short, any device that can obtain the required pressurized vibration will suffice. Layer ventilation 41 - Care must be taken not to obstruct and prolong the sintering time.

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は石灰石微粒部分(−0,25Ilm)の量とR
DIとの関係を示す図、 ′?2図は才1表の配合割合で振動加重を付与し、且つ
石灰石粒度を調整した場合の、歩留、強度、凡DI、の
関係な示す図、 矛3図は石灰石の粒度調整を下層部のみに適用した場合
の、歩留、強1117、I’LT)Iの関係な示す図、
才4図は本発明で用いる振動荷重付与装置の1例な示す
図である。 代理人弁理士 秋 沢 政 光 外2名 j!r1図 第3図 妃 155、叩。 薯4M
Figure 1 shows the amount of limestone fine particles (-0,25Ilm) and R
Diagram showing the relationship with DI, '? Figure 2 shows the relationship between yield, strength, and general DI when vibration load is applied at the mixing ratio shown in Table 1 and the limestone particle size is adjusted. Figure 3 shows the relationship between limestone particle size adjustment in the lower layer. A diagram showing the relationship between yield, strong 1117, I'LT)I when applied only to
Figure 4 is a diagram showing one example of a vibration load applying device used in the present invention. Representative patent attorney Masaaki Akizawa Mitsugai 2 people j! r1 figure 3 queen 155, hit. Potato 4M

Claims (5)

【特許請求の範囲】[Claims] (1)粉鉄鉱石の下向き吸気焼結方法において、配置原
料中に添加される石灰石の粒度を−0,25Mの微粒子
が石灰石全量に対して19−以下になるよう、llI整
すると共に、焼結機上で点火後の焼結鉱表面に振動荷重
を付与することを特徴とする焼結鉱製造法。
(1) In the downward suction sintering method for fine iron ore, the particle size of the limestone added to the disposed raw material is adjusted so that -0.25M fine particles are 19 or less with respect to the total amount of limestone, and the sintering A sintered ore manufacturing method characterized by applying a vibration load to the surface of the sintered ore after ignition on a sintering machine.
(2)粉鉄鉱石を下向き吸気焼結方法において、焼結機
パレット上の原料層下層部に添加される石灰石の粒度だ
けを−0,25mの微粒子が19嗟以下になるように調
整する特許請求の範囲(1)項記載の焼結鉱製造法。
(2) A patent that adjusts only the particle size of the limestone added to the lower layer of the raw material layer on the sintering machine pallet so that -0.25 m fine particles are 19 mm or less in the downward suction sintering method of powdered iron ore. A method for producing sintered ore according to claim (1).
(3)  *鉄鉱石の下向き焼結方法において、焼結機
上で義人原料に点火後、焼結帯が原料層の上層部を進行
中の時のh振動荷重を付与する特許請求の範囲)口)、
又は偉)項記載の焼結鉱製造法。
(3) *In the downward sintering method for iron ore, the scope of the patent claims is to apply h-vibration load when the sintering zone is moving through the upper layer of the raw material layer after igniting the raw material on the sintering machine) mouth),
or the method for producing sintered ore described in section 1).
(4)粉鉄鉱石の下向き吸気焼結方法において装入原料
に点火後、焼結形成層が10〜15■になった時点から
焼結鉱表面に振動荷重を付与する特許請求の範囲(1)
、 (2)又は(3)項記載の焼結鉱製造法。
(4) In the downward suction sintering method for powdered iron ore, a vibration load is applied to the surface of the sintered ore from the time when the sintered formation layer reaches 10 to 15 cm after igniting the charged raw material (1) )
, The sintered ore manufacturing method described in (2) or (3).
(5)使用する焼結原料の軟化性状によって振動荷重を
適正に調整する特許請求の範囲(1)、(2)、(3)
、又は(4)項記載の焼結鉱製造法。
(5) Claims (1), (2), (3) in which the vibration load is appropriately adjusted depending on the softening properties of the sintering raw material used.
, or the method for producing sintered ore described in item (4).
JP18413781A 1981-11-17 1981-11-17 Manufacture of sintered ore Pending JPS5884931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18413781A JPS5884931A (en) 1981-11-17 1981-11-17 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18413781A JPS5884931A (en) 1981-11-17 1981-11-17 Manufacture of sintered ore

Publications (1)

Publication Number Publication Date
JPS5884931A true JPS5884931A (en) 1983-05-21

Family

ID=16148012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18413781A Pending JPS5884931A (en) 1981-11-17 1981-11-17 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS5884931A (en)

Similar Documents

Publication Publication Date Title
JPS5884931A (en) Manufacture of sintered ore
WO2014013775A1 (en) Method for producing sinter
JPH1161282A (en) Manufacture of sintered ore
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPS62130227A (en) Method for sintering fine ore
JPH10298670A (en) Production of sintered ore
JPH0881717A (en) Production of sintered ore
JPH0598358A (en) Manufacture of sintered ore
JPH01316428A (en) Manufacture of sintered ores
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JPS59166633A (en) Preparation of sintered ore
JPH04304326A (en) Manufacture of sintered ore
JPH0230722A (en) Manufacture of briquetted ore for blast furnace
JPH01184236A (en) Production of mgo-containing sintered ore
JPH0873951A (en) Production of sintered ore
JPH0559972B2 (en)
JPH06100951A (en) Manufacture of sintered ore
JP2002121619A (en) Method for producing sintered ore
JPH0130894B2 (en)
JPS6047887B2 (en) Sintered ore manufacturing method
JPS6349728B2 (en)
KR20010058306A (en) Method for manufacturing sinter
JPH08109407A (en) Operation of blast furnace
JPS59133332A (en) Production of sintered ore
JPH06212294A (en) Production of sintered ore