JPS5884484A - Semiconductor laser-photodiode beam integrating element - Google Patents

Semiconductor laser-photodiode beam integrating element

Info

Publication number
JPS5884484A
JPS5884484A JP56181618A JP18161881A JPS5884484A JP S5884484 A JPS5884484 A JP S5884484A JP 56181618 A JP56181618 A JP 56181618A JP 18161881 A JP18161881 A JP 18161881A JP S5884484 A JPS5884484 A JP S5884484A
Authority
JP
Japan
Prior art keywords
layer
inp
semiconductor laser
grooves
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56181618A
Other languages
Japanese (ja)
Other versions
JPS6358391B2 (en
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56181618A priority Critical patent/JPS5884484A/en
Priority to US06/408,302 priority patent/US4470143A/en
Publication of JPS5884484A publication Critical patent/JPS5884484A/en
Publication of JPS6358391B2 publication Critical patent/JPS6358391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Abstract

PURPOSE:To improve yield rate of the manufacture of the beam integrating element by completely removing the discontinuity in the direction of a stripe of a mesa etching pattern and conducting burying growth extremely smoothly. CONSTITUTION:Two parallel grooves 120, 121 with 5mum width and 2mum depth are formed to a multilayer film structure semiconductor wafer, which is manufactured by laminating an n-InP buffer layer 102, an In0.72Ga0.23As0.61P0.39 active layer 103 having the composition of 1.3mum light emitting wavelength and a p-InP clad layer 104 onto a (100)n-InP substrate 101 in succession, in parallel in the <011> direction, and the mesa stripe 105 with 2mum width held by the two grooves is shaped. A p-InP current block layer 106 and an n-InP current block layer 107 are laminated except only the upper surface of the mesa stripe 105 and further a p-InP buried layer 108 and a p-In0.65Ga0.15As0.33P0.37 electrode layer 109 having the composition of 1.1mum light emitting wavelength in succession. A Zn diffusion layer 110 is shaped through the whole-surface Zn diffusion for PD up to the depth penetrating the n-InP current block layer 107 in both side sections of the grooves, and an electrode is formed.

Description

【発明の詳細な説明】 本発明は埋め込みへテロ構造半導体レーザとPN接合型
フォトダイオードとが同一半導体基板上に形成された半
導体レーザ・フォトダイオード光集積化素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser/photodiode optical integrated device in which a buried heterostructure semiconductor laser and a PN junction type photodiode are formed on the same semiconductor substrate.

近年光半導体素子や光ファイバの萬品質化が進み、光フ
アイバ通信の実用化が進められている。
In recent years, the quality of optical semiconductor devices and optical fibers has improved, and optical fiber communications have been put into practical use.

それKつれ、各種光□半導体素子を一体化してシステム
の安定化をはかろうとする気運が高まってきておシ、光
集積回路という新しい研究分野が発展しつつある。甲で
も半導体レーザと受光素子との集積化は光源の光出力を
モニタする必要性からシステム構成上重要である。性能
のよい埋め込みへテロ構造半導体レーザ(BH−LD)
とフォトダイオード(PD)とを同−半4体基板上に集
積化したものとして本出願人は特願昭56−12905
7号明細書に示した様なエツチング法を用い九B)I−
LD @PD光集積化素子を発明した。これはBH−L
Dの一方の共振器面を工、チングによって形成し、それ
に相対する面をPDの受光向とした吃のである。この素
子においてはFDのキャリア発生領域のストライプ幅が
BH−LDの活性層の幅よシも大きいため受光効率がよ
く、またBH−LDの特性が共振器画形成の丸めのエツ
チングにあまシ強く左右されず、したがりて製造歩留り
が^いという特徴を有している。
At the same time, there is a growing trend to stabilize systems by integrating various optical semiconductor devices, and a new research field called optical integrated circuits is developing. In case A, the integration of the semiconductor laser and the light receiving element is important for the system configuration because it is necessary to monitor the light output of the light source. Buried heterostructure semiconductor laser (BH-LD) with good performance
The present applicant has filed a patent application filed in 1983-12905 as a device in which a photodiode (PD) and a photodiode (PD) are integrated on the same semi-quartet substrate.
9B) I- using the etching method as shown in Specification No. 7
Invented the LD@PD optical integrated device. This is BH-L
One resonator surface of D is formed by machining and chiming, and the surface opposite to it is made to face the light receiving direction of the PD. In this device, the stripe width of the carrier generation region of the FD is larger than the width of the active layer of the BH-LD, so the light receiving efficiency is good, and the characteristics of the BH-LD are resistant to round etching in the formation of the resonator image. Therefore, it has the characteristic that the manufacturing yield is high.

しかしながら、上述の光素子においては幅の狭いBH−
LDのメサストライプと幅の広いFDのメサストライプ
との中間部分では埋め込み成長時に、明確な結晶の面方
位が出ないため、しばしば異常成長することが観11j
され、素子の製造歩留シの低下を招いていた。
However, in the above-mentioned optical device, the narrow BH-
It is observed that in the middle part between the LD mesa stripe and the wide FD mesa stripe, abnormal growth often occurs because no clear crystal plane orientation occurs during buried growth.
This has led to a decrease in device manufacturing yield.

本発明の目的は上記の欠点を除去すべく、結晶成長の再
現性が向上し、製造歩留シのよい半導体レーザ・フォト
ダイオード光集積化素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser/photodiode optical integrated device with improved crystal growth reproducibility and good manufacturing yield, in order to eliminate the above-mentioned drawbacks.

本発明によれば、活性層の周囲がよシエネルギーギャ、
プの大きな、屈折率の小さな半導体材料でおおわれてい
る埋め込みへテロ構造半導体レーザとフォトダイオード
とが、同一半導体基板上に集積化された半導体レーザ・
フォトダイオード光集積化素子において、埋め込みへテ
ロ構造半導体レーザが2つの錦にはさまれた、発光再結
合する活性層を含む1本のメサストライプを有し、メサ
ストライプ以外の部分に電流ブロック層が形成されてな
シ、フォトダイオードが2本の婢によって分割されたキ
ャリア発生領域を有してなることを特徴とする半導体レ
ーザ争フォトダイオード光集積化素子が得られる。
According to the present invention, the area around the active layer has a high energy gap.
A semiconductor laser is a semiconductor laser in which a buried heterostructure semiconductor laser covered with a semiconductor material with a large thickness and a low refractive index and a photodiode are integrated on the same semiconductor substrate.
In a photodiode optical integrated device, a buried heterostructure semiconductor laser has one mesa stripe sandwiched between two brocades, which includes an active layer that recombines light, and a current blocking layer in the area other than the mesa stripe. There is obtained a semiconductor laser photodiode optical integrated device characterized in that the photodiode has a carrier generation region divided by two layers.

以下本発明の実施例を示す図面を参照しつつ、本発明を
説明する。
The present invention will be described below with reference to drawings showing embodiments of the invention.

第1図は本発明の実施例の断面図を示す。図中(a)は
その中のB)I−LDO断面図、(b)UPDO断面図
である。また第2図はこの光素子の平面図を示す0@2
図に示すようにB)(−LD2011!:PD202と
がエツチングされ丸溝203に相対して、同一半導体基
板上に直列に配列されている。このような素子を得るに
はまず(Zoo)n−InJP基板101上に、n−I
nPバッファ層102、発光波長が13amの組成のI
 n66 G m(,1B人”a6t P&、活性層1
03、p−InPクラ、ド層104を順次積層させた多
層膜構造半導体ウェファに(011)方向に平行にl!
5μm1深さ2μmの2本の平行な$120,121を
形成し、これらの2本の溝に拡さまれた輪2μmのメチ
ストライプ105を形成する◎続いてp−InP電流プ
ロ、り層106、n−InP電流ブロック層107をメ
サストライプ105の上面のみを除いて、さらにp−I
nP埋め込み層108、発光波長11μm組成のp−I
 flUs G ae、ts人”IJIP@Jff電極
層109を順次積層させる。FD用の全面Zn拡散を溝
の両わきの部分でn−InP電流ブロック層107をつ
きぬける深さまで行なって、Zn拡散層110を形成し
た後、電極を形成し、さらに共振器形成のためのエツチ
ングを行なって目的の光集積化素子を得る。この光素子
において、BH−Ln2O3に正のバイアスをかけて電
流を流しレーザ発振させ、PD202に基板に対して負
のバイアスをかけることによシ、レーザ出力光をモニタ
することができた。この際PD202の=?、リア発生
層となるIn6.?lG”0.0人11L@I P(L
、11層103か細い2本の溝によって分離されている
ものの、幅が広く、シたがってこのFDは広い−にわた
って受光することができるため、レーザ出力光を有効に
モニタすることができ、受光感度はさらに向上し九。
FIG. 1 shows a cross-sectional view of an embodiment of the invention. In the figure, (a) is a cross-sectional view of B) I-LDO and (b) a cross-sectional view of UPDO. Also, Fig. 2 shows a plan view of this optical element.
As shown in the figure, B)(-LD2011!:PD202) are etched and arranged in series on the same semiconductor substrate facing the round groove 203.To obtain such an element, first (Zoo)n -On the InJP substrate 101, n-I
nP buffer layer 102, I having a composition with an emission wavelength of 13 am
n66 G m(,1B person"a6t P&, active layer 1
03, l! in parallel to the (011) direction on a multilayer structure semiconductor wafer in which p-InP layers 104 and 104 are sequentially laminated.
Two parallel grooves 120 and 121 of 5 μm and 2 μm in depth are formed, and a ring 2 μm wide stripe 105 is formed in these two grooves. ◎Subsequently, a p-InP current layer 106 is formed. , the n-InP current blocking layer 107 is removed only from the top surface of the mesa stripe 105, and the p-I
nP buried layer 108, p-I composition with emission wavelength 11 μm
The electrode layers 109 are sequentially laminated. Zn is diffused over the entire surface for FD to a depth that penetrates the n-InP current block layer 107 on both sides of the groove, and the Zn diffusion layer is After forming 110, electrodes are formed and further etching is performed to form a resonator to obtain the desired optical integrated device.In this optical device, a positive bias is applied to BH-Ln2O3 and a current is applied to the laser beam. By oscillating the PD 202 and applying a negative bias to the substrate, it was possible to monitor the laser output light. Person 11L@I P(L
Although the 11 layers 103 are separated by two thin grooves, they are wide, so this FD can receive light over a wide area, so it can effectively monitor the laser output light and improve the light reception sensitivity. further improved.

本発明の実施例においては、埋め込み成長前までの基板
のメサエッチングパターンに、ストライプ方向で何ら不
連続な要素がなく、電流ブシツク層の形成もきわめてス
ムーズになさ゛れる。會九PD側)1?ヤリ7発生層と
なるInGaAsPfil 03は2本の溝によって分
離されているが、等価的に横に広く広がった形状をもっ
ておシ、横方向に拡がりたレーザ出力光を効率よく受光
することができ九〇 本発明の%徽はメサエ、チングバタニンが、ストライプ
方向に何ら不連続性をもたないために、埋め込み成長が
きわめてスムーズに行なうことができ、BH−LD、P
D光#Ik槓化素子の製造歩留シが大幅に向上したこと
であfi、PDのキ、−ヤリ7発生領域が等価的に横に
拡がった構造であるために受光効率もきわめて良い。
In the embodiment of the present invention, there is no discontinuous element in the stripe direction in the mesa etching pattern of the substrate before buried growth, and the current busic layer can be formed extremely smoothly. Kai9 PD side) 1? The InGaAsPfil 03, which is the laser 7 generation layer, is separated by two grooves, but it has a shape that is equivalently wide in the horizontal direction, so it can efficiently receive the laser output light spread in the horizontal direction. 〇The characteristic of the present invention is that the mesae and chingbatanine do not have any discontinuity in the stripe direction, so that buried growth can be performed extremely smoothly, and BH-LD, P
The manufacturing yield of the D-light #Ik emitter element has been greatly improved, and the light-receiving efficiency is also extremely high because the fi, PD's key, - and yoke 7 generation regions are equivalently spread laterally.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図(1)拡BH−LDの断面図、第1図(b)はF
DのIT面図、第2図社本発明の実施例の光素子の平面
図である。 図中101はn−InP基板s 102an−Inp/
<、ファ層、103はI n6@ G 1g@ A 1
64 P6.@活性層、104はp−InPクラッド層
、105Fi、メサストライプ、106はp−InP電
流電流クロッ2層07はn−InP電流プHyり層、1
08はp−InP埋め込み層、109はp−” ”al
l G”all A I 011 F(1,@’F電極
層、110はZn拡散層、111.112はp形オーミ
、り電極、113はn形オーミック電極、120゜12
1は平行な溝、201はBH−LD、202はPD、2
03はエツチング溝、204はBH−LDの活性層部分
である。 #1面 草2図
@Figure 1 (1) Cross-sectional view of enlarged BH-LD, Figure 1 (b) is F
FIG. 2 is a plan view of an optical element according to an embodiment of the present invention. In the figure, 101 is an n-InP substrate s 102 an-Inp/
<, F layer, 103 is I n6 @ G 1g @ A 1
64 P6. @Active layer, 104 is p-InP cladding layer, 105Fi is mesa stripe, 106 is p-InP current current cross layer 2 layer 07 is n-InP current pull layer, 1
08 is p-InP buried layer, 109 is p-""al
l G”all A I 011 F (1, @'F electrode layer, 110 is Zn diffusion layer, 111.112 is p-type ohmic electrode, 113 is n-type ohmic electrode, 120°12
1 is a parallel groove, 201 is BH-LD, 202 is PD, 2
03 is an etching groove, and 204 is an active layer portion of the BH-LD. #1 side grass 2 drawings

Claims (1)

【特許請求の範囲】[Claims] 活性層の周囲がよシエネルギーギャ、プが大金くかつ屈
折率の小さな半導体材料でおおわれている埋め込みへテ
ロ構造半導体レーザとフォトダイオードとが、同一半導
体基板上に集積化された半導体レーザ・フォトダイオー
ド光集積化素子において、前記埋め込みへテロ構造半導
体レーザが2つの溝にはさまれた、発光杏結合する活性
層を含む1本のメサストライプを有し、そのメサストラ
イプ以外の部分に電流プロ、り層が形成されてなシ、前
記フォトダイオードが2本の溝によりて分割されたキャ
リア発生領域を有してなることを特像とする半導体レー
ザ・フォトダイオード光集積化系子。
A semiconductor laser is a semiconductor laser in which a buried heterostructure semiconductor laser and a photodiode are integrated on the same semiconductor substrate, in which the active layer is surrounded by a semiconductor material with a high energy gap, a large metal layer, and a low refractive index. In the photodiode optical integrated device, the buried heterostructure semiconductor laser has one mesa stripe sandwiched between two grooves and containing an active layer for light-emitting coupling, and a portion other than the mesa stripe is provided with a current. 1. A semiconductor laser/photodiode optical integrated system, characterized in that the photodiode has a carrier generation region divided by two grooves, and no protective layer is formed thereon.
JP56181618A 1981-08-18 1981-11-12 Semiconductor laser-photodiode beam integrating element Granted JPS5884484A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56181618A JPS5884484A (en) 1981-11-12 1981-11-12 Semiconductor laser-photodiode beam integrating element
US06/408,302 US4470143A (en) 1981-08-18 1982-08-16 Semiconductor laser having an etched mirror and a narrow stripe width, with an integrated photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181618A JPS5884484A (en) 1981-11-12 1981-11-12 Semiconductor laser-photodiode beam integrating element

Publications (2)

Publication Number Publication Date
JPS5884484A true JPS5884484A (en) 1983-05-20
JPS6358391B2 JPS6358391B2 (en) 1988-11-15

Family

ID=16103939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181618A Granted JPS5884484A (en) 1981-08-18 1981-11-12 Semiconductor laser-photodiode beam integrating element

Country Status (1)

Country Link
JP (1) JPS5884484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958202A (en) * 1986-09-12 1990-09-18 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548991A (en) * 1978-09-21 1980-04-08 Nec Corp Semiconductor joining laser forming method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548991A (en) * 1978-09-21 1980-04-08 Nec Corp Semiconductor joining laser forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4958202A (en) * 1986-09-12 1990-09-18 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6358391B2 (en) 1988-11-15

Similar Documents

Publication Publication Date Title
US5790737A (en) Optical semiconductor device
US4908830A (en) Buried type semiconductor laser device
JPS5884484A (en) Semiconductor laser-photodiode beam integrating element
US5949808A (en) Semiconductor laser and method for producing the same
JPH0426233B2 (en)
JPS5879791A (en) Two wave-length buried hetero-structure semiconductor laser
JPS5875879A (en) Photointegrated element
JPS6320398B2 (en)
JPS6342874B2 (en)
JPS5880887A (en) Semiconductor laser photodiode photointegrated element
JPS5840881A (en) Manufacture of buried hetero-structure semiconductor laser-photodiode beam integrating element
JPS6358388B2 (en)
JPS60123083A (en) Semiconductor device
JPS5886788A (en) Semiconductor laser and photodiode photointegrated element
JPS61242091A (en) Semiconductor light-emitting element
JPS5831593A (en) Light integrating element
JP2000101186A (en) Semiconductor optical element
KR920002201B1 (en) Semiconductor laser chip and manufacture method
KR100263932B1 (en) Semiconductor laser diode and its manufacturing method
JPS596588A (en) Semiconductor laser
JPS6356983A (en) Semiconductor laser device
JPS6230390A (en) Semiconductor laser device
JPH0283990A (en) Manufacture of semiconductor light emitting device
JPS61166192A (en) Semiconductor laser and manufacture thereof
JPH11135823A (en) Manufacture of semiconductor photodetector