JPS5884407A - Manufacture of magnetic fine grain - Google Patents

Manufacture of magnetic fine grain

Info

Publication number
JPS5884407A
JPS5884407A JP56182443A JP18244381A JPS5884407A JP S5884407 A JPS5884407 A JP S5884407A JP 56182443 A JP56182443 A JP 56182443A JP 18244381 A JP18244381 A JP 18244381A JP S5884407 A JPS5884407 A JP S5884407A
Authority
JP
Japan
Prior art keywords
ferric
group
gamma
oxyhydroxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56182443A
Other languages
Japanese (ja)
Inventor
Kazuo Okamura
和夫 岡村
Koji Tamura
公司 田村
Shigeo Daimon
大門 茂男
Yoshiyuki Shibuya
吉之 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP56182443A priority Critical patent/JPS5884407A/en
Publication of JPS5884407A publication Critical patent/JPS5884407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles

Abstract

PURPOSE:To form ferromagnetic gamma-ferric oxide particles with excellent dispersi- bility and high magnetic coersive force by a method wherein a coating process is performed on the surface of the particles of gamma-ferric oxyhydroxide using a specific compound, and the above is transformed into gamma-ferric oxide. CONSTITUTION:The surface of the particles of the gamma-ferric oxyhydroxide is coated by the silane compound indicated by the formula [where, R indicates the functional atom which was selected from a chloric atom, an amino group, a mercaptan group and the like, or an alkyl group or vinyl group of carbon numbers of 1-10 having the group, R<1> and R<2> indicate a chloric atom, a hydroxyl group, an alkoxy group of carbon numbers of 1-10 and the like respectively, and y indicates an integral number of 0, 1 or 2.]. The quantity of silane coupling agent used for the above coating differs depending on the type of material used, but generally speaking, 0.05-2.0wt% is used based on the wt% of gamma-ferric oxyhydroxide. The particles of the gamma-ferric oxyhydroxide having a coated layer on the surface obtained as above, are turned into alpha-ferric hydroxide by heating them up at 500-650 deg.C in an air or nitrogenous atmosphere, and then the above is transformed into ferromagnetic gamma-ferric hydroxide by performing reduction and oxidation.

Description

【発明の詳細な説明】 本発明は磁性微粒子の製造法、特に分散性が良好で高い
保磁力を示す強磁性γ−酸化第2鉄粒子の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic fine particles, and particularly to a method for producing ferromagnetic γ-ferric oxide particles that have good dispersibility and exhibit a high coercive force.

磁気記録用磁性材料として用いられているr−酸化第2
鉄(γ−Fe2O3)は、通常、α−オキシ水酸化第2
鉄(α−F e OOH)、γ−オキシ水酸化第2鉄(
γ−F e OOH)などの針状オキシ水酸化第2鉄微
粒子を出発物質とし、その針状形態を保ちつ!−加熱脱
水→還元→酸化または還元→酸化することによりこれを
製造している。こ\に得られた針状r−酸化第2鉄の微
粒子は、バインダー樹脂と混練塗料化された後、テープ
、ディヌクカードなどのべ一ヌ上に塗布され、さらには
多くの場合記録再生特性向上のため記録方向に磁湯配回
処理を施してヒヌテリシ7曲線の角型比を高めたうえ、
磁気記録用磁性媒体として広く用いられている。
r-oxidized secondary material used as a magnetic material for magnetic recording
Iron (γ-Fe2O3) is usually converted into α-oxyhydroxide secondary
Iron (α-F e OOH), γ-ferric oxyhydroxide (
Using acicular ferric oxyhydroxide fine particles such as γ-F e OOH) as a starting material, it maintains its acicular shape while maintaining its acicular shape. - It is produced by heating dehydration → reduction → oxidation or reduction → oxidation. The acicular r-ferric oxide fine particles obtained in this way are mixed with a binder resin and made into a paint, which is then applied onto a substrate such as tape or Dinuku card, and is often used to improve recording and playback characteristics. Therefore, the squareness ratio of the Hinuterishi 7 curve was increased by applying porcelain distribution treatment in the recording direction, and
It is widely used as a magnetic medium for magnetic recording.

これらの磁性塗・膜の品質上の優劣を左右するものは磁
性体の磁気特性もさることながら、磁性塗料中における
磁性体の分散性によるものが大きく、塗膜の残留磁束密
度、角型比、磁性体含有率、薄膜度、表面平滑度などに
影響を与える。
What determines the quality of these magnetic coatings and films is not only the magnetic properties of the magnetic material, but also the dispersibility of the magnetic material in the magnetic paint, and the residual magnetic flux density and squareness ratio of the coating film. , affects the magnetic material content, film thinness, surface smoothness, etc.

ところで、r−オキシ水酸化第2鉄は一般にα−オキシ
水酸化第2鉄に比べて枝分れが少なく、これから調製さ
れたγ−酸化第2鉄は塗料中での分散性が良好であるが
、特にγ−オキシ水酸化第2鉄を加熱脱水して得られた
γ−酸化第2鉄は磁性塗膜中で良好な分散性を示すこA
が知られている(工業化学雑誌72巻7号1461頁)
。しかしながら、か−るγ−酸化第2鉄粒子には脱水孔
が存在し、かつ−次粒子の大きさが極めて小さいために
、針状であっても角型履歴特性が悪く、保磁力が極めて
低く、磁気記録用としては適さない。
By the way, r-ferric oxyhydroxide generally has less branching than α-ferric oxyhydroxide, and γ-ferric oxide prepared from it has good dispersibility in paints. However, in particular, γ-ferric oxide obtained by heating and dehydrating γ-ferric oxyhydroxide shows good dispersibility in magnetic coatings.
is known (Industrial Chemistry Magazine Vol. 72, No. 7, p. 1461)
. However, such γ-ferric oxide particles have dehydration holes and the size of the secondary particles is extremely small, so even though they are acicular, they have poor square hysteresis characteristics and extremely low coercive force. low, making it unsuitable for magnetic recording.

この解決方法としてr−オキシ水酸化第2鉄を還元、酸
化して一次粒子を、成長させる方法が実用化されている
が未だ十分な保磁力を示すものではなく、さらに改善が
望まれている。
As a solution to this problem, a method of growing primary particles by reducing and oxidizing r-ferric oxyhydroxide has been put into practical use, but it still does not show sufficient coercive force, and further improvements are desired. .

′−゛一方、オキシ水酸化鉄を加熱してα−酸化第2鉄
とし、次いで還元、酸化してr−酸化第2鉄を製造する
方法は、オキシ水酸化鉄がα−型の場合、保磁力を増m
させるのに有効であることが知られている(を子通信学
会論文誌73/2、第56−C巻第2号)。しかし、こ
の方法は、オキシ水酸化鉄がr−型の場合にはその効果
が全くみられなイコとも知らレテイる( Bullet
in of  theChemical 5ociet
y of Japan第50 (6)巻1685〜16
36頁(1977年)。
′-゛On the other hand, the method of heating iron oxyhydroxide to form α-ferric oxide, and then reducing and oxidizing it to produce r-ferric oxide, when iron oxyhydroxide is α-type, Increase coercive force
It is known that it is effective in making the system (JSPS Transactions 73/2, Vol. 56-C, No. 2). However, this method is known to have no effect at all when the iron oxyhydroxide is in the r-type (Bullet
in of the Chemical 5ociet
y of Japan Volume 50 (6) Volume 1685-16
36 pages (1977).

従って、従来はγ−オキシ水酸化鉄を直接還元、酸化し
てγ−酸化第2鉄が製造されていた。しかし、この直接
法で得ら′れるr−酸化第2鉄の保磁力も満足すべきも
のではなかった。
Therefore, conventionally, γ-ferric oxide has been produced by directly reducing and oxidizing γ-iron oxyhydroxide. However, the coercive force of r-ferric oxide obtained by this direct method was also not satisfactory.

本発明者らは、この様な状況に鑑み、種々研究を重ねた
結果、r−オキシ水酸化第2鉄であってもその粒子表面
を特定の化合物で被覆処理すれば、上述の方法によりγ
−酸化第2鉄に変態させることができ、しかも得られた
磁性微粒子は分散性が良好であり、かつ高い保磁力を示
すことを見い出し本発明を完成するに至った。
In view of this situation, the present inventors have conducted various studies and found that even if the particle surface of r-ferric oxyhydroxide is coated with a specific compound, γ can be reduced by the method described above.
- It was discovered that the magnetic fine particles obtained can be transformed into ferric oxide, have good dispersibility, and exhibit high coercive force, and have completed the present invention.

すなわち、本発明の要旨は、γ−オキシ水酸化第2鉄か
ら強磁性γ−酸化第2鉄を製造するにあたり、該r−オ
キシ水酸化第2鉄粒子の表面をシランカップリング剤で
処理した後、これを加熱してα−酸化第2鉄とし、次い
で還元、酸化して強磁性γ−酸化第2鉄に変態せしめる
ことを特徴とする磁性微粒子の製造法に存する。
That is, the gist of the present invention is that in producing ferromagnetic γ-ferric oxide from γ-ferric oxyhydroxide, the surface of the r-ferric oxyhydroxide particles is treated with a silane coupling agent. Thereafter, this is heated to form α-ferric oxide, and then reduced and oxidized to transform into ferromagnetic γ-ferric oxide.

本発明方法で出発物質として使用するγ−オキシ水酸化
第2鉄としては、種々の方法で製造したものがあるが、
特に塩化第1鉄溶液を湿式酸化して製造したγ−オキシ
水酸化第2鉄の使用が好ましい。γ−オキシ水酸化第2
鉄の粒子は、通常、長さ0.3〜2.0μ、長さと巾の
比6以上の針状の形態を有するものであるものが望まし
い。
The γ-ferric oxyhydroxide used as a starting material in the method of the present invention can be produced by various methods.
In particular, it is preferable to use γ-ferric oxyhydroxide produced by wet oxidation of a ferrous chloride solution. γ-oxyhydroxide secondary
It is desirable that the iron particles usually have a needle-like shape with a length of 0.3 to 2.0 μm and a length-to-width ratio of 6 or more.

γ−オキシ水酸化第2鉄の粒子の表面に被覆すべき化合
物としては、一般式: %式%(1) C式中、Rは塩素原子、アミノ基、アミノアルキル基、
ウレイド基、グリシドオキシ基、エポキシシクロヘキシ
ル基、アクリロイルオキシ基、メタクリロイルオキシ基
、メルカプト基およびビニル基から選ばれた少なくとも
1種の官能性原子または基をもった炭素数1〜10のア
ルキル基またはビニル基、RおよびR2はそれぞれ塩素
原子、水酸基、炭素数1〜10のアルコキシ基、炭素数
2〜15のアルコキシ置換アルコキシ基、炭素数2〜4
のヒドロキシアルキルオキシ基および炭素数2〜15の
アシルオキシ基から選ばれた原子または基、yは0.1
または2の整数を示す。〕で表わされるシラン化合物が
挙げられる。シラン化合物〔■〕において、kは官能性
をもったアルキル基であって、その好適な例を挙げると
、β−アミノエチル基、r−アミノプロピル基、N−(
β−アミノエチル)−γ−アミノプロピル基、r−ウレ
イドプロビル基、γ−グリシドオキシプロビル基、β−
(8,4−エポキシシクロヘキシル)エチル基、γ−ア
クリロイルオキシプロピル基、γ−メタクリロイルオキ
シプロピル基、γ−メルカプトプロピル基、β−久・ロ
ロエチル基、γ−クロロプロピル基、γ−ビニルグロビ
ル基などがある。またRはビニ兎基であってもよい。
The compound to be coated on the surface of the particles of γ-ferric oxyhydroxide has the following general formula: %Formula%(1)C In the formula, R is a chlorine atom, an amino group, an aminoalkyl group,
C1-C10 alkyl group or vinyl group having at least one functional atom or group selected from ureido group, glycidoxy group, epoxycyclohexyl group, acryloyloxy group, methacryloyloxy group, mercapto group, and vinyl group , R and R2 are each a chlorine atom, a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, an alkoxy-substituted alkoxy group having 2 to 15 carbon atoms, and a 2 to 4 carbon atoms
an atom or group selected from hydroxyalkyloxy groups and acyloxy groups having 2 to 15 carbon atoms, y is 0.1
Or indicates an integer of 2. ] Examples include silane compounds represented by the following. In the silane compound [■], k is a functional alkyl group, and preferable examples include β-aminoethyl group, r-aminopropyl group, N-(
β-aminoethyl)-γ-aminopropyl group, r-ureidopropyl group, γ-glycidoxypropyl group, β-
(8,4-epoxycyclohexyl)ethyl group, γ-acryloyloxypropyl group, γ-methacryloyloxypropyl group, γ-mercaptopropyl group, β-kuroethyl group, γ-chloropropyl group, γ-vinylglobyl group, etc. be. Further, R may be a vinyl group.

好適に用いられるシラン化合物CI)の具体例を挙げれ
ば、次のとおりである:γ−アミノデロビルトリエトキ
シシフン、N−(β−アミノエチル)−γ−アミノプロ
ピルトリメトキシシラン、γ−ウレイドプロピルトリエ
トキシシクン、γ−グリシドキシプロビルトリメトキシ
シラン、β−(8,4−エポキシシクロヘキシル)エチ
ルトリメチルシラン、γ−メタクリロイルオキシプロピ
ルトリメトキシシラン、γ−メルカプトプロピルトリメ
トキシシラン、γ−クロロプロピルトリメトキシシラン
、ビニルトリ(β−メトキシエトキシ)シラン、ビニル
トリエトキシシラン、ビニルトリクロロシラン、ビニル
トリアセトオキシシランなど。
Specific examples of the silane compound CI) that are preferably used are as follows: γ-aminoderobyltriethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, γ- ureidopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β-(8,4-epoxycyclohexyl)ethyltrimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ -chloropropyltrimethoxysilane, vinyltri(β-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrichlorosilane, vinyltriacetoxysilane, etc.

これら被覆すべきシランカップリング剤の被覆量はその
種類にもよるが、一般にγ−オキシ水酸化第2鉄の重量
を基準にして0.05〜2.0重量%である。この下限
より被覆量が少ない場合には満足すべき被覆効果が得ら
れない。またこの上限より被覆量が多い場合には、原因
が詳かではないが、保磁力が減少する。
Although the amount of the silane coupling agent to be coated depends on the type thereof, it is generally 0.05 to 2.0% by weight based on the weight of γ-ferric oxyhydroxide. If the coating amount is less than this lower limit, a satisfactory coating effect cannot be obtained. Furthermore, if the amount of coating is greater than this upper limit, the coercive force decreases, although the cause is not clear.

被覆処理は自体常套の方法で行なえばよい。通常は上記
被覆すべきシランカップリング剤の適宜の濃度を有する
水溶液に1−オキシ水酸化第2鉄の粒子を分散せしめた
うえ、この粒子’tF取する方法が採用される。
The coating treatment may be carried out by a conventional method. Usually, a method is adopted in which particles of 1-ferric oxyhydroxide are dispersed in an aqueous solution having an appropriate concentration of the silane coupling agent to be coated, and then the particles are removed.

このようにして得られた表面に被覆層を有するr−オキ
シ水酸化第2鉄の粒子を加熱してα−酸化第2鉄とし、
次いで還元、酸化して強磁性r−一酸化第2鉄変態せし
めるのであるが、この加熱してα−酸化第2鉄にする方
法はr−オキシ水酸化第2鉄を空気または窒素雰囲気で
500〜650°Cで加熱して行なえばよい。
The thus obtained particles of r-ferric oxyhydroxide having a coating layer on the surface are heated to form α-ferric oxide,
Next, it is reduced and oxidized to transform it into ferromagnetic r-ferric monoxide.This heating method converts r-ferric oxyhydroxide into α-ferric oxide in an air or nitrogen atmosphere. This may be done by heating at ~650°C.

還元、酸化自体は常套の方法で行なえばよい。Reduction and oxidation themselves may be carried out by conventional methods.

たとえば、上記のび一酸化第2鉄の粒子を還元雰囲気(
たとえば水素気流)中で800〜430°Cに加熱して
還元を行ない、次いで酸化算囲気(たトL Id 空9
K m )中テ230〜280’CK7xJj!Ftし
て酸化を行なえばよい。
For example, in a reducing atmosphere (
For example, reduction is carried out by heating to 800 to 430°C in an oxidizing atmosphere (for example, a hydrogen stream).
K m) Middle Te 230-280'CK7xJj! Oxidation may be performed using Ft.

かくして得られた磁性r−一酸化第2鉄良好な分散性を
有し、高い保磁力を示すので優れた磁気記録用媒体とし
て使用することが可能である。
The magnetic r-ferric monoxide thus obtained has good dispersibility and exhibits high coercive force, so it can be used as an excellent magnetic recording medium.

以下に実施例を挙げて本発明を具体的に説明する。たソ
し%とあるのは重量%を示す。
The present invention will be specifically described below with reference to Examples. Tasoshi % indicates weight %.

実施例1 塩化第1鉄溶液に予めF e 2+ / OH= 1 
(モル比)になる様にアルカリを添加しておき、酸化を
開始する。pHが6以下にならない様にアルカリを添加
しなから二価の鉄イオンが検出されなくなるまで酸化を
続ける。このようにして製造されたγ−オキシ水酸化第
2鉄の針状微粒子(長軸要約1.5μm1軸比約20)
’eγ−グリシドキシプロビルトリメトキシシランの水
溶液に分散させた後、沖過分離してγ−グリシドキシプ
ロビルトリメトキシシランの被覆量が0.05. 0.
2.0.5. 1.0゜1.5および2.0%である被
覆γ−オキシ水酸化第2鉄粒子を調製した。これら粒子
を空気流中、600°Cで1時間加熱してα−酸化第2
鉄に変態した後、還元(340°Cで1時間水素気流中
にて加熱)、酸化(250′Cで1時間空気流中にて加
熱)することによジγ−酸化第2鉄を得た。得られγ−
酸化第2鉄徽粒子の磁気特性を第1表に示す。
Example 1 Fe 2+ /OH=1 in ferrous chloride solution in advance
Alkali is added so that the molar ratio becomes (molar ratio), and oxidation is started. Oxidation is continued until divalent iron ions are no longer detected without adding an alkali so that the pH does not fall below 6. Acicular fine particles of γ-ferric oxyhydroxide produced in this way (long axis summary: 1.5 μm, uniaxial ratio approximately 20)
'e After dispersing in an aqueous solution of γ-glycidoxypropyltrimethoxysilane, the coating amount of γ-glycidoxypropyltrimethoxysilane was 0.05. 0.
2.0.5. Coated γ-ferric oxyhydroxide particles were prepared that were 1.0° 1.5 and 2.0%. These particles were heated at 600°C in a stream of air for 1 hour to obtain α-oxidized secondary
After transformation to iron, di-γ-ferric oxide was obtained by reduction (heating at 340 °C for 1 hour in a hydrogen stream) and oxidation (heating at 250 °C for 1 hour in an air stream). Ta. Obtained γ−
The magnetic properties of the ferric oxide particles are shown in Table 1.

なお、保磁力はホール素子を用いたガウスメーター法で
測定した。充填率は0.2であった。
Note that the coercive force was measured by the Gaussmeter method using a Hall element. The filling rate was 0.2.

第1表 実施例2 α−酸化第2鉄に変態する際の温度を850″C140
0℃、450℃、500℃、600℃および700°C
とし、シランカッリング剤の被覆量ヲ0゜5%とする以
外は実施例1と同様の手順を繰り返して磁性γ−酸化第
2鉄を調製した。保磁力を第2表に示す。
Table 1 Example 2 The temperature during transformation to α-ferric oxide was 850″C140
0℃, 450℃, 500℃, 600℃ and 700℃
Magnetic γ-ferric oxide was prepared by repeating the same procedure as in Example 1 except that the amount of silane cutting agent coated was 0.5%. The coercive force is shown in Table 2.

第2表 比較例1 実施例1で合成したγ−オキシ水酸化第2鉄をシランカ
ップリング剤で被覆せずに実施例1と同様の還元、酸化
条件で直接還元、酸化してγ−酸化第2鉄を調製したと
ころ保磁力は8860eであった。
Table 2 Comparative Example 1 The γ-ferric oxyhydroxide synthesized in Example 1 was directly reduced and oxidized under the same reduction and oxidation conditions as in Example 1 without being coated with a silane coupling agent, and then γ-oxidized. When ferric iron was prepared, the coercive force was 8860e.

特許出願人 ダイキン工業株式会社Patent applicant: Daikin Industries, Ltd.

Claims (1)

【特許請求の範囲】 16  γ−オキシ水酸化第2鉄から強磁性γ−酸化第
2鉄を製造するにあたり、該γ−オキシ水酸化第2鉄粒
子の表面をシランカップリング剤で被覆処理した後、こ
れを71111熱してα−酸化第2鉄とし、次いで還元
、酸化して強磁性γ−酸化第2鉄に変態せしめることを
特徴とする磁性微粒子の製造法0 2、処理されるr−オキシ水酸化第2鉄が、長さ0.8
〜2.0μおよび長さと幅の比6以上の針状粒子である
特許請求の範囲第1項記載の製造法。 8、加熱を500〜650℃、還元を300〜430℃
および酸化を280〜280℃で行なう特許請求の範囲
第1項記載の製造法。 4、 シランカップリング剤の被覆量がr−オキシ水酸
化第2鉄の重量に対して0.05〜2.0重量%である
特許請求の範囲第1準記載の製造法。
[Claims] 16 In producing ferromagnetic γ-ferric oxide from γ-ferric oxyhydroxide, the surface of the γ-ferric oxyhydroxide particles is coated with a silane coupling agent. Thereafter, this is heated to form α-ferric oxide, and then reduced and oxidized to transform into ferromagnetic γ-ferric oxide. Ferric oxyhydroxide has a length of 0.8
2.0μ and a length-to-width ratio of 6 or more. 8. Heating at 500-650℃, reduction at 300-430℃
and oxidation at 280 to 280°C. 4. The manufacturing method according to claim 1, wherein the coating amount of the silane coupling agent is 0.05 to 2.0% by weight based on the weight of the r-ferric oxyhydroxide.
JP56182443A 1981-11-13 1981-11-13 Manufacture of magnetic fine grain Pending JPS5884407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56182443A JPS5884407A (en) 1981-11-13 1981-11-13 Manufacture of magnetic fine grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56182443A JPS5884407A (en) 1981-11-13 1981-11-13 Manufacture of magnetic fine grain

Publications (1)

Publication Number Publication Date
JPS5884407A true JPS5884407A (en) 1983-05-20

Family

ID=16118351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56182443A Pending JPS5884407A (en) 1981-11-13 1981-11-13 Manufacture of magnetic fine grain

Country Status (1)

Country Link
JP (1) JPS5884407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609789A (en) * 1992-12-29 1997-03-11 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing magnetic iron oxide and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609789A (en) * 1992-12-29 1997-03-11 Ishihara Sangyo Kaisha, Ltd. Cobalt-containing magnetic iron oxide and process for producing the same

Similar Documents

Publication Publication Date Title
US4271234A (en) Iron oxide magnetic pigments for the production of magnetic coatings
JPS59130407A (en) Acicular ferry magnetic iron oxide particle for recording magnetic signal
US4169912A (en) Iron oxide magnetic pigments for the production of magnetic coatings
US5064687A (en) Method for making magnetic recording media
US4347291A (en) Magnetic recording medium and preparation thereof
JPS5884407A (en) Manufacture of magnetic fine grain
US4177317A (en) Stabilization of chromium dioxide magnetic pigments
JPS59107924A (en) Manufacture of magnetic iron oxide powder containing cobalt
JPH059922B2 (en)
CA1079057A (en) Stabilization of chromium dioxide magnetic pigments
JPH0121089B2 (en)
JPS6217364B2 (en)
JPS5874529A (en) Manufacture of magnetic fine particle
EP0076462B2 (en) Method of production of magnetic particles
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JP3169105B2 (en) Needle-like alloy magnetic fine particle powder containing iron as a main component and method for producing the same
JPS60121514A (en) Magnetic recording medium
JP2995741B2 (en) Magnetic recording media
JP2594837B2 (en) Needle crystal magnetic fine particles containing iron as a main component and method for producing the same
JPS6132259B2 (en)
JP2594838B2 (en) Needle crystal magnetic fine particles containing iron as a main component and method for producing the same
JPS59169937A (en) Production of magnetic powder
JP2691782B2 (en) Manufacturing method of acicular magnetic iron oxide particles
JP3194577B2 (en) Method for producing needle-like magnetic metal particles containing iron as a main component
KR940005273B1 (en) Method of manufacturing magnetic iron oxide powder