JPS5883180A - Air ejector for condenser - Google Patents

Air ejector for condenser

Info

Publication number
JPS5883180A
JPS5883180A JP18212681A JP18212681A JPS5883180A JP S5883180 A JPS5883180 A JP S5883180A JP 18212681 A JP18212681 A JP 18212681A JP 18212681 A JP18212681 A JP 18212681A JP S5883180 A JPS5883180 A JP S5883180A
Authority
JP
Japan
Prior art keywords
condenser
air
gas
load
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18212681A
Other languages
Japanese (ja)
Inventor
Chiaki Hoshida
星田 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18212681A priority Critical patent/JPS5883180A/en
Publication of JPS5883180A publication Critical patent/JPS5883180A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To enable to effectively prevent a high vacuum condition from being generated in a condenser, by providing a load-adjusting mechanism which adjust the load on an ejecting mechanism by recirculating gases ejected from the condenser from the discharging side of the ejecting mechanism to the ejecting side of the ejecting mechanism. CONSTITUTION:An ejecting mechanism 4 is provided which ejects noncondensing gases from the interior of the condenser 2 for a steam turbin 1 to maintain the interior of the condenser 2 at a required degree of vacuum and discharges the ejected noncondensing gases to the atmosphere by compressing the gases to a pressure of not lower than the atmospheric pressure. In the air ejector, the load-adjusting mechanism 14 is provided which adjusts the load on the mechanism 4 by recirculating the gases ejected from the condenser 2 from the discharging side of the mechanism 4 to the ejection side of the mechanism 4. Accordingly, a high vacuum condition is prevented from being generated in the condenser, without requiring any special device for taking the outside air into the vacuum region.

Description

【発明の詳細な説明】 本発明は蒸気タービン復水器における空気抽出装置に係
り、特にへ〕水器の冷却水温度の低下に伴ない復水器内
が高真空になりすき゛るのを防止す拌のに好適な復水器
の空気抽出装置に関すZ)。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air extraction device for a steam turbine condenser, and more particularly, to a system for preventing the inside of the condenser from becoming a high vacuum due to a decrease in the temperature of cooling water in the water heater. Z) regarding condenser air extraction equipment suitable for agitation.

一般に、蒸気タービン復水器においては、年間平均冷却
水温度(例えば国内では20℃”俣n¥ )でit画真
空度が得られるように設計−J乙のが通例である○ ところで、この種の冷却水諒としては、海水。
In general, steam turbine condensers are usually designed so that the degree of vacuum can be obtained at the annual average cooling water temperature (for example, 20℃ in Japan). Sea water is used as cooling water.

河川水、あるいは冷却塔で冷却した工業用水等が使用さ
れることが多い。このfr ’l)、冬季等冷ノ:II
水温度や夕1気温度が低下する季節においてit:、4
%j水器内の真空度が高くなることが多く、捷たこのよ
うなる節に蒸気タービンを低負荷l1lj li云した
用台には735mmHii’以上の高真空となることが
ある。、セしてこのような高真空域で蒸気タービンをド
朋運転すると、排気蒸気中の浸り度力珪;“1加して動
翼に侵食が生じたり、あるいはアライメン1、の変化ニ
よって振動を隋発する′15′それがある。
River water or industrial water cooled by a cooling tower is often used. This fr'l), winter isocooling: II
In the season when water temperature and evening air temperature drop, it:,4
%j The degree of vacuum in the water container is often high, and when the steam turbine is operated at a low load at such a point of time, the vacuum may be as high as 735 mm Hii' or more. If a steam turbine is operated at full speed in such a high vacuum region, erosion may occur on the rotor blades due to the immersion force in the exhaust steam, or vibration may occur due to changes in the alignment. There is a '15' that originates from Sui.

このため従来は復水器内に直接、あるいに空気抽出装置
の吸込側に外気を吸引さ(tて復水器内が高真空となる
ことを防止している。
For this reason, in the past, outside air was sucked directly into the condenser or into the suction side of an air extractor (to prevent the inside of the condenser from becoming a high vacuum).

第1図1性、この種の従来の空気抽出装置を示すもので
、以下これについてl!(?明する0図にセいて1は、
蒸気タービンで夛り、この蒸気タービン1からの排気は
復水器2で1嵜縮さり、、その凝縮水は排水ポンプ3 
V(よって図示しないボイラに送水される。一方排気中
に含まれるアンモニアガス等のガス類は、不凝縮性であ
るためイリ水器2内に蓄積され、蒸気エゼクタ4に1つ
て伊水器2内の一部の湿り飽和蒸気とともにガス抽気管
5を介して吸引さγ1.る、っ吸引されたカスと飽和蒸
気との混合気体は、エセクタ中間冷肩?56で飽和蒸気
のみが芒らに凝縮さね5、ガスはカス放出弁7を有する
カス排出管8にrつで犬気放mさrl、 ;’。
Figure 1 shows a conventional air extraction device of this type, which will be described below. (?1 is placed in the 0 figure to clarify,
The exhaust gas from the steam turbine 1 is condensed by a condenser 2, and the condensed water is sent to a drainage pump 3.
V (Therefore, water is sent to a boiler (not shown). On the other hand, gases such as ammonia gas contained in the exhaust gas are non-condensable, so they are accumulated in the water tank 2, and one in the steam ejector 4 is sent to the water tank 2. The mixed gas of the sucked residue and saturated steam is sucked through the gas bleed pipe 5 along with some wet saturated steam from the ejector, and only the saturated steam is removed from the ejector by the intermediate cold shoulder 56. After the condensation spigot 5, the gas is released into a waste discharge pipe 8 having a waste discharge valve 7.

そして蒸気エゼクタ4によ・つてイシ水器2から連続的
に不んFmガスを吸引111.除することにより、復水
器2内が所些の真空度に維持これZ−、Iヅにおいて9
けエゼクタ作動蒸気管でちる。
Then, the steam ejector 4 continuously sucks in Fm gas from the water tank 2 (111). By removing the vacuum, the inside of the condenser 2 is maintained at a certain degree of vacuum.
Dry the ejector with the steam pipe.

以上の構成において、前記不屑縮カスけ、タービン排気
中に含まね、るアンモニアカスやり水器内等のX¥域に
外部力ら菊池して〈乙空気等が主成分であるが、中でも
通常は空気の址がその大部分を占めてち・す、この空気
量の大小によって少水器2内の真空度は大きな影響を受
けZ。したかつて真空域への漏洩空気皐が微少で、しか
も冬季等復水器2の冷):I+水温度が[氏上する等の
l′Il! rh Tエゼクタ4への吸引空気量がその
設計吸込空気瞬より少々〈々つてエゼクタ4の吸込谷1
11に余裕が生じた場合には、そのときの冷却水温度に
1−1合う真空度より高くなってυiX空となることが
十+ l)o lF1トに怜却水謳度が低い状態におい
て幻、蒸気ター[でン1(7) (fi負荷庫転中K 
735+tt□:: it ’/l′−L上の;t;+
; 直空となりこれを避けることけ容易て“tい02゛
1でどの」:うな晶真空の状爬で蒸気タービン1を1・
2時間1’1iji 1ヒすると、前述のように高真空
域に伴なう1非気中の湿りrνの増力的/(よってター
ビンI L=′11′、φ終段B(il(jゼに侵食が
発生したり、あるいiJタービン軸アライメントが排気
温度の変化によって影響゛・を受rjて壁幼が発生する
おそれがある。
In the above configuration, the ammonia scum contained in the turbine exhaust gas, which is contained in the turbine exhaust, is exposed to an external force in the X area of the water dispenser, etc. Most of this is made up of air, and the degree of vacuum inside the water reducer 2 is greatly affected by the amount of air. In the past, the leakage of air into the vacuum area was very small, and the temperature of the condenser 2 was very low (such as during winter) when the temperature of I + water was [l'Il! rh The amount of suction air to the T ejector 4 is a little more than its design suction air flow.
If there is a margin in 11, the degree of vacuum may become higher than the one that matches the cooling water temperature at that time and become υiX empty. Phantom, steam turbine [den 1 (7) (fi load warehouse transfer K)
735+tt□:: it'/l'-;t;+ on L
; It is easy to avoid this because it becomes a straight sky and it is easy to avoid this.
After 2 hours 1'1iji 1 h, as mentioned above, the moisture rν in the non-air atmosphere associated with the high vacuum region increases / (therefore, the turbine I L = '11', φ final stage B (il (j There is a risk that erosion may occur on the iJ turbine shaft alignment, or that the iJ turbine shaft alignment may be affected by changes in exhaust temperature, resulting in wall cracking.

矛とで、従来は、第1図に96線と句と6p七で示寸よ
うに、ストレーナ、<、−゛機能を兼ねた空気吸込マフ
ラ101空気吸込管11.この空気吸込管]1に設けた
空気調整弁12.むよびこの弁12を作動さぜる圧力検
出およびりゝ換器13からなる空無流入心1w装置を復
水器2の本体あZ、いけガス抽気管5の途中に設けてい
る。ぞしで、高東空1攻運転が予想される払胛において
、ゆ水器2内またはガス抽気゛θ5内に外部から空気を
梢:入してコーゼクタ4の吸込空気隈を増加ネぜ 几ゼ
〃り4の過負荷・半転V?−よりその性能を低下させて
イピ水器2内が高鉦空とろ・ることを防止し、ている。
Conventionally, an air suction muffler 101 and an air suction pipe 11. which also served as a strainer, <, -'' function, as shown in Figure 1 by lines 96 and 6p7. This air suction pipe] 1 has an air regulating valve 12. An airless inlet core 1w device consisting of a pressure detector and a exchanger 13 for operating the valve 12 is provided in the main body AZ of the condenser 2, midway along the gas bleed pipe 5. Therefore, in the case of a aircraft where a first attack operation is expected in the high-speed sky, the intake air space of the cosector 4 can be increased by introducing air from the outside into the water boiler 2 or the gas bleeder θ5. Overload/half turn V of Zeri 4? - The performance is further reduced to prevent the inside of the water dispenser 2 from becoming too hot.

しかしながら、4水器内にIK接外気金害入する」場合
にに 種水器内の純度の高いタービン排気の凝動水に吸
引外気を面接接触さぜ7・ことになり、そのために凝縮
水中の溶存酸素量が垢加して復水ポンプ川口での肝容溶
存酸素廿の制限値を鯵えてしまい、純度の悪化した復水
をその捷ま復水ポンプでボイラ等に送水しりり合には、
ボイラナユーブの騙蝕等が発生するおそれがち2、。
However, if the IK outside air gets into the water tank, the suction outside air will come into contact with the highly pure turbine exhaust condensate water in the seed water tank, and as a result, the condensed water will The amount of dissolved oxygen in the water increases and exceeds the limit value of dissolved oxygen in the liver at the condensate pump estuary, and the condensate with deteriorated purity is removed and sent to the boiler etc. by the condensate pump. teeth,
2. There is a risk that Boilana Yub's fraud may occur.

これに対してカス抽気管の途中f(外気全両人する場合
には、復水器内の凝縮水と夕1気とが直接接触すること
はないので復水の純度が悪化するおそれはない。と・二
ろが、空気を周整弁の口径は小口径であるのが通例であ
るため、空気の吸引1:、・よび弁の調整動作によって
激しい(騒音が発生し、捷を階期使用の間に空気吸引ス
ピードによって空気調整弁の下流側にエロージョンが発
生する等の問題がある。な3、このエロージョンの発生
は空気流入調整装置fつ水器の本体に設置した場合にも
間i線となる。
On the other hand, in the middle of the waste air bleed pipe (if all outside air is used), there is no direct contact between the condensed water in the condenser and the evening air, so there is no risk of the purity of the condensate deteriorating. Since the diameter of the air regulating valve is usually small, the air suction 1:... During use, there are problems such as erosion occurring on the downstream side of the air adjustment valve depending on the air suction speed. 3. This erosion occurs quickly even when the air inflow adjustment device is installed in the water dispenser body. This becomes the i-line.

本発明は、かかる従来の問題点治−解決するtめになさ
れたもので、その目的とすると(ろに、ボr別な空気流
入調整装置を設けることなく、孔(水器内が高真空とな
ることを有効に防止することができる復水器の空気抽出
装置を提供するにあZ10本発6明け、復水器から抽出
機構&Cより抽出して大気放出する不凝縮ガスを負荷鯛
整磯構により抽出(機構の大気放出側から抽出側に[I
−目IK 4Hさせて一時点に抽出機構を過負荷運転さ
せ、抽出1%借の負荷を調整して使用できるようにした
ことを特徴とする。
The present invention has been made to solve these conventional problems. In order to provide an air extraction device for a condenser that can effectively prevent Extraction by rock formation (from the atmospheric release side of the mechanism to the extraction side [I
-The feature is that the extraction mechanism is overloaded at one point by setting IK 4H, and the extraction 1% load can be adjusted and used.

以下本発明を第21ツ1に示す一実権例に基づいて説明
する。
Hereinafter, the present invention will be explained based on an example of practical rights shown in Section 21, Section 1.

図において1は蒸気ターぜ−ンであり、この蒸気タービ
ン1からの排気は復水器2で凝縮さね1、その凝縮水は
復水ポンプ3によって図示しないボイラに送水されるよ
うになっている□一方排気中に含まれるアンモニアガス
等のガス額は、不凝縮性であるため前記nJ水器2内に
蓄積さ君1、エゼクタ作動蒸気管9からの作動蒸気によ
り作動する蒸気エゼクタ4によって復水器2内の一部の
湿り飽和蒸気とともにカス抽気管5を介して吸引さハる
ようになってい石、・この吸引されたカスと飽和蒸気と
の混合気体は、エゼクタ中間冷却器6において飽和蒸気
のみがさらに凝縮され、カスはガス放出弁7を有するカ
ス排出g8を介して大気放出されるようになっている。
In the figure, 1 is a steam turbine, and the exhaust gas from the steam turbine 1 is condensed in a condenser 2, and the condensed water is sent to a boiler (not shown) by a condensate pump 3. □On the other hand, since the amount of gas such as ammonia gas contained in the exhaust gas is non-condensable, it is accumulated in the nJ water tank 2. The stone is sucked together with some wet saturated steam in the condenser 2 through the scum bleed pipe 5. This mixed gas of the scum and saturated steam is drawn into the ejector intercooler 6. Only the saturated steam is further condensed in the step, and the scum is discharged into the atmosphere via a scum discharge g8 having a gas discharge valve 7.

・ヒして、蒸気エゼクタ4によって復水器2から連続的
に不凝縮カスを吸引排除することにより、掬水器2内が
所要の真空度に維持されるようになってい乙。
・The inside of the water scooper 2 is maintained at the required degree of vacuum by continuously suctioning and removing non-condensable scum from the condenser 2 using the steam ejector 4.

以上までの構成は基本的には従来の空気抽出装置と同一
であり、本実糊例ではさらに以下の機構が追設されてい
矛、。
The configuration described above is basically the same as the conventional air extraction device, and the following mechanisms are additionally added in this example.

すなわち、前記ガス排出管8のカス放出弁7人側位置に
は、第2図に示すようにガス再fl鹸i#管14の一端
が接ρ穿亡れてむり、このガス再を盾環管14の他端は
、前記蒸気エセク〃4の吸込側に位置するカス抽気管5
に接続されている。そしてこのガス再循fJ’l14に
は、全111と全閉との二位置をとる仕切弁15が設け
らtしており、この仕切fp15の全開により前記ガス
排出管8から大気放出される排出カスの一部が蒸気エゼ
クタ4の吸込側に戻されるようになってい/。
That is, as shown in FIG. 2, one end of the gas refill pipe 14 is connected to the position of the gas discharge pipe 8 on the side of the waste discharge valve 7, and a ring is used to shield this gas reflow. The other end of the pipe 14 is connected to a waste bleed pipe 5 located on the suction side of the steam extractor 4.
It is connected to the. This gas recirculation fJ'l14 is provided with a gate valve 15 that takes two positions, fully closed and fully closed. A part of the waste is returned to the suction side of the steam ejector 4.

次に作用について睦明する。Next, let's talk about the effect.

復水器2内が高真空状態ではない4ム)合にに15、仕
切弁15は全閉となっており し左がって抽出さ7′シ
たガスは、その全量がガス排出′A8から連続的に大気
中へ放出さrLる。
When the inside of the condenser 2 is not in a high vacuum state (15), the gate valve 15 is fully closed, and the entire amount of the extracted gas is discharged. is continuously released into the atmosphere.

一方、冬準等蒸気ターどン1が低負荷運転〒復水器2内
の圧力が高真空となっ一#場合には、仕切弁15を全開
V(するとともにガス放出弁7を絞り、大気放出される
ガスの一部をカス再f1^墳@14′fr−介して蒸気
エゼクタ4の吸込側に戻す。すると、蒸気エゼクタ4の
吸込側は大気放出側に対して低圧となっているので、ガ
ス再循環管14からのガスはガス抽気骨5に再循環する
。この再循環カスfl′は高真空の度合によって調整さ
れるが、この調整はガス放出弁7の弁開度調節により行
なうことができる○ L5かして、蒸気コーゼクタ4は、前記再?Iri墳ガ
スにより再循環運転時間に伴ない七の吸込ガス教が冷加
してjI%負荷運転となり、性能が一時的に低下する。
On the other hand, when the steam turbine 1 is operated under low load during winter, etc., and the pressure inside the condenser 2 becomes high vacuum, the gate valve 15 is fully opened (and the gas release valve 7 is throttled to release the air to the atmosphere). A part of the released gas is returned to the suction side of the steam ejector 4 through the waste refill f1^@14'fr-.Then, since the suction side of the steam ejector 4 has a lower pressure than the atmospheric release side, , the gas from the gas recirculation pipe 14 is recirculated to the gas bleed pipe 5. This recirculation waste fl' is adjusted by the degree of high vacuum, and this adjustment is performed by adjusting the valve opening of the gas release valve 7. ○ L5 As a result, the steam cosector 4 is cooled by the recirculation gas during the recirculation operation time and becomes jI% load operation, resulting in a temporary decrease in performance. do.

第3図はこの状卵を示す4・、ので、例えば蒸気エゼク
タ4等の空気抽出装着が1吸込空気[50−に訃いてそ
の吸込真空度が虞aで示す735咽1(7の値が得られ
るように設計きれfc亀のであれば、この設計点以上の
吸込空気量にすることによって吸込真空度は曲線Cのよ
うに低下し、設計点の1.6倍の回込空気量では点aの
735 wm Htから点すの695mI(fオで吸込
*空席が低下する。そしてこれにより復水器2内のに空
席もこの吸込真空度に近いwt寸で低下さぜることがで
き2゜第4図は本発明の他の実施例を示すもので、前記
実施例における蒸気エゼクタ4に代えて機械回転式の真
空ポンプ24を用い、かつガス放出弁7および仕切弁1
5の弁操作を圧力検出および変換器J6からの電気信号
によって自lυ1的に行なうようにしtものである。
Figure 3 shows this type of egg 4. Therefore, for example, if the air extraction equipment such as the steam ejector 4 is set to 1 suction air [50-, the suction vacuum degree is 735 1 (the value of 7 is If the design is insufficient to obtain fc, the suction vacuum degree will decrease as shown by curve C by increasing the amount of suction air above the design point, and if the amount of air drawn in is 1.6 times the design point, the degree of suction vacuum will decrease as shown by curve C. From 735 wm of a to 695 mI of Ht (the suction*vacancy decreases at fo.As a result, the vacant seats in the condenser 2 can also be reduced to a wt dimension close to this suction vacuum level).゜ Fig. 4 shows another embodiment of the present invention, in which a mechanical rotary vacuum pump 24 is used in place of the steam ejector 4 in the previous embodiment, and the gas discharge valve 7 and the gate valve 1 are
The valve operation No. 5 is automatically performed by pressure detection and an electric signal from the transducer J6.

すなわち、蒸気タービン1からの1ヲト気け′復水器2
で凝縮ζ(j5、その凝イイl’水(・よ復水ポンプ3
によって図示しないボイラに送水されるようになってい
る。一方排気中に含筐れるカス頚は、不凝縮性でちるた
め復“水器2内に蓄積され、機]ノ1駿回転、(の1空
ポンプ24にrつてガス抽気・n5を介して吸引さn、
さらにσス放出t′P′lを翁するガスを非出管8を介
して大気放出される↓う1・(なっている。このガス排
出管8の前記ガス放出弁7人側位置には、仕切弁15を
有するガス再循環管14の一端が接続され、ガス再循環
管14の他端は前f!i−!*、空ポンプ潤の吸込側に
位置するカス抽気管5に接続されている。そしてガス放
出弁7および仕切弁15は、ガス抽気管5内の吸込宜空
廟を検出する圧力検出および変換器]6からの電気信号
により自動的に弁1〜・作゛がなされるようになってい
る○ 以上説、明したように真空ポンプを用いても前記実施例
と同様の効果が期待でき、゛また弁操作の自動化により
操作が容易となるとともに誤操作がない。
In other words, 1 point from the steam turbine 1 to the condenser 2
The condensation ζ (j5, the condensation l' water (・yo condensate pump 3
The water is sent to a boiler (not shown). On the other hand, the sludge contained in the exhaust air is non-condensable and will accumulate in the condenser 2. sucked n,
Furthermore, the gas emitting σ gas t'P'l is released into the atmosphere through the non-exit pipe 8. , one end of a gas recirculation pipe 14 having a gate valve 15 is connected, and the other end of the gas recirculation pipe 14 is connected to the waste extraction pipe 5 located on the suction side of the front f!i-!* empty pump. The gas release valve 7 and the gate valve 15 are automatically operated by the electric signal from the pressure detection and transducer 6 which detects the suction pressure inside the gas bleed pipe 5. As explained above, even if a vacuum pump is used, the same effects as those of the above embodiment can be expected, and the automation of valve operation facilitates operation and eliminates erroneous operation.

以上のように本発明は、往水器から抽出したカスを抽出
機構の大気放出側から抽出側に杓循壌格ぜて抽出機構の
負荷を調整する負荷調整(幾欅lを1曲えているので、
外気を真空域に重大れるための特別な装置を必髪とする
ことなく復水器内の高14.空状態を有効に防止するこ
とができる。また復水器内の復水に直接外気が接触する
ことがないので、往水の純度が悪化するおそれがない。
As described above, the present invention has a load adjustment system that adjusts the load of the extraction mechanism by circulating the waste extracted from the water pump from the atmospheric discharge side of the extraction mechanism to the extraction side. So,
The height of 14mm inside the condenser can be reduced without requiring any special equipment to bring outside air into the vacuum area. Empty conditions can be effectively prevented. Furthermore, since the outside air does not come into direct contact with the condensate in the condenser, there is no risk that the purity of the incoming water will deteriorate.

またガス再循環用として全開、全開で使用さf′1゜る
仕切弁を用いれば、エロージョンの発生全有効に防止す
ることができる。
Further, by using a gate valve f'1° that is fully open and fully open for gas recirculation, erosion can be completely prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す系統図、第2図は本発明の一実施
例を示す系統(シ1、第3図は空気抽出装置の性能特性
を示すグラフ、第4図は本発明の他の実施例を示す系統
図である。 1・・・蒸気タービン、2・・・復水器、4・・・蒸気
エゼクタ、5・・・ガス抽気管、6・・・エゼクタ中間
冷I41器、7・ガス放出管、8・・・カス刊+111
看、14・・・ガス再循環管、]5・・・仕切弁、10
・・・圧力検出および変換器、詞・真空ポンプ。 出願人代即人  猪  股     清第3図 (mmHg) 第4図
Fig. 1 is a system diagram showing a conventional example, Fig. 2 is a system diagram showing an embodiment of the present invention (Fig. It is a system diagram showing an example of 1... Steam turbine, 2... Condenser, 4... Steam ejector, 5... Gas bleed pipe, 6... Ejector intermediate cooling I41 unit, 7. Gas release pipe, 8...Kasu publication +111
14...Gas recirculation pipe, ]5...Gate valve, 10
...Pressure detection and transducer, vacuum pump. Applicant Kiyoshi Inomata Figure 3 (mmHg) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンゆ水器内の不凝縮ガスを抽出して復水器内
を所要の真空度に維持するとともに、抽出し斤不凝縮ガ
スを大気圧以上に圧縮して大気放出する抽出機構を1萌
えた空気抽出装置において前記復水器から抽出したガス
を抽出機構の大気放出側から抽出側に再循環させて抽出
機構のf]荷を調整する負荷調整機111を設けたこと
を特徴とする復水器の空気抽出装置・
An extraction mechanism that extracts the non-condensable gas in the steam turbine water boiler and maintains the required degree of vacuum in the condenser, compresses the extracted non-condensable gas to above atmospheric pressure, and releases it into the atmosphere. The air extraction device is characterized in that a load regulator 111 is provided for adjusting the load of the extraction mechanism by recirculating the gas extracted from the condenser from the atmosphere discharge side to the extraction side of the extraction mechanism. Water container air extraction device
JP18212681A 1981-11-13 1981-11-13 Air ejector for condenser Pending JPS5883180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18212681A JPS5883180A (en) 1981-11-13 1981-11-13 Air ejector for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18212681A JPS5883180A (en) 1981-11-13 1981-11-13 Air ejector for condenser

Publications (1)

Publication Number Publication Date
JPS5883180A true JPS5883180A (en) 1983-05-18

Family

ID=16112777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18212681A Pending JPS5883180A (en) 1981-11-13 1981-11-13 Air ejector for condenser

Country Status (1)

Country Link
JP (1) JPS5883180A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633474B2 (en) * 1973-11-16 1981-08-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633474B2 (en) * 1973-11-16 1981-08-04

Similar Documents

Publication Publication Date Title
DE69623283T2 (en) VENTILATION OF A BLOCK STEAM SYSTEM
US4296802A (en) Steam condensing apparatus
CZ48894A3 (en) Cooling of a low-pressure steam turbine during ventilation operation
EP0486726B1 (en) Liquid ring pump
JPS5883180A (en) Air ejector for condenser
GB1053515A (en)
CN114857948A (en) Low-pressure waste steam treatment system without cooling white steam and control method thereof
US2168902A (en) Surface condenser
CN207196461U (en) Back-heating type vacuum dust cather
CN107238072A (en) Back-heating type vacuum dust cather
JPS55836A (en) Condenser
CN211288276U (en) Steam vacuum pump with high waste gas absorption efficiency
US1890318A (en) Vacuum condensation pump
JPH02112605A (en) Adjusting method for condenser in its degree of vacuum
CN217303653U (en) Low-pressure waste steam treatment device without cooling white steam
CN209639555U (en) A kind of mechanical vacuum energy-saving device of condenser auxiliary for power plant Air-Cooling Island
JPS57207785A (en) Apparatus for controlling internal pressure of condenser
US2343105A (en) Steam power plant
CN114635762A (en) Emergency shutdown system of negative-pressure steam-admission condensing steam turbine
RU9259U1 (en) TURBO INSTALLATION STEAM-GAS MIXTURE SYSTEM
SU1068602A1 (en) System for receiving waste steam of auxiliary turbo-machines of marine power plant
JPS5853197B2 (en) geothermal turbine equipment
DD228865A1 (en) ARRANGEMENT FOR HEAT AND CONDENSATE RECOVERY FROM STEAM, ELECTRICITY AND CONDENSATE LOSSES
JPS6029680Y2 (en) vacuum pump equipment
US1380373A (en) Dbier-heatihg system