JPH02112605A - Adjusting method for condenser in its degree of vacuum - Google Patents

Adjusting method for condenser in its degree of vacuum

Info

Publication number
JPH02112605A
JPH02112605A JP23706089A JP23706089A JPH02112605A JP H02112605 A JPH02112605 A JP H02112605A JP 23706089 A JP23706089 A JP 23706089A JP 23706089 A JP23706089 A JP 23706089A JP H02112605 A JPH02112605 A JP H02112605A
Authority
JP
Japan
Prior art keywords
condenser
vacuum
valve
degree
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23706089A
Other languages
Japanese (ja)
Inventor
Junichi Akatsu
赤津 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23706089A priority Critical patent/JPH02112605A/en
Publication of JPH02112605A publication Critical patent/JPH02112605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent vibration of a turbine by a high vacuum by providing a small valve, so as to bypass a nozzle inlet valve, halfway an air extraction pipe between a condensor and a gas extraction device, for extracting noncondensable gas in the condenser, and using the small valve performing gas extraction in unsteady time. CONSTITUTION:In a condenser, exhaust steam from a steam turbine 1 is collected into a condenser barrel 2, cooled and condensed by cooling water supplied by a circulating water pump 4. Noncondensable gas in the condenser barrel 2 is successively extracted and released to an exhaust gas processing system 21 by the first and second stage nozzles 11, 12 with drive steam introduced from each steam supply pipes 13, 14. Here, an air extraction bypass pipe 31 of small capacity branches from an air extraction pipe 9 so as to bypass the first stage nozzle inlet valve 10, and the first stage nozzle inlet small valve 32 is provided interposing halfway the pipe 31. When the condenser improves a degree of its vacuum better than the designed degree of vacuum, the small valve 32 is throttled and adjusted so as to obtain the designed degree of vacuum by fully closing the inlet valve 10 and fully opening the small valve 32.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントで使用する復水器の運転に係り、
特に発電プラント周辺の環境に何ら影響する事なく、復
水器真空度を調整可能とする事を特徴とする復水器真空
度の調整装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the operation of a condenser used in a power generation plant,
In particular, the present invention relates to a condenser vacuum adjustment device that is capable of adjusting the condenser vacuum without affecting the environment around the power plant.

〔発明の背景〕[Background of the invention]

第2図は従来技術の系統図を示す。 FIG. 2 shows a system diagram of the prior art.

蒸気発生装置(図示せず)より発生した蒸気により駆動
されたタービン1の排気蒸気は復水器胴2に回収され、
循環水ポンプ4により冷却水供給管5を通じて復水器水
室3へ送水された冷却水と熱交換し、復水化する。この
冷却水により復水器胴2内の真空度も確保する。
Exhaust steam from the turbine 1 driven by steam generated from a steam generator (not shown) is collected in the condenser shell 2,
The circulating water pump 4 exchanges heat with the cooling water sent to the condenser water chamber 3 through the cooling water supply pipe 5 and condenses the water. The degree of vacuum within the condenser body 2 is also ensured by this cooling water.

冷却水は冷却水出口弁6を経由し冷却水排出管7により
排出される。
The cooling water is discharged through a cooling water discharge pipe 7 via a cooling water outlet valve 6.

一方復水器胴2内の不凝縮性ガスは、空気抽出器の第1
段ノズル11へ接続された第1段蒸発供給管13.弁1
5を通じて供給される駆動蒸気により空気抽出管9.弁
10を通って吸引され、第1段ノズル出口管17から駆
動蒸気と一緒にインタークーラ19へ排出し駆動蒸気は
冷却され復水となる。
On the other hand, the non-condensable gas in the condenser shell 2 is
A first stage evaporation supply pipe 13 connected to the stage nozzle 11. Valve 1
Air extraction tube 9. by driving steam supplied through 5. It is sucked through the valve 10 and discharged from the first stage nozzle outlet pipe 17 to the intercooler 19 together with the driving steam, where the driving steam is cooled and becomes condensed water.

不凝縮性ガスは再度第2段ノズル12で抽出され、第2
段蒸気供給管14.弁16を通じて供給された駆動蒸気
と一緒になり第2段ノズル出口管20を経由して排ガス
処理系21で処理された後、排気筒22より大気中へ放
出される。
The non-condensable gas is again extracted by the second stage nozzle 12 and
Stage steam supply pipe 14. Together with the driving steam supplied through the valve 16, it passes through the second stage nozzle outlet pipe 20, is treated in the exhaust gas treatment system 21, and is then discharged into the atmosphere from the exhaust stack 22.

復水器特性は第3図に示す如く冷却水温度が高温T1よ
り低温T2になる程復水器真空度はPlよりP2に高真
空度となり、同一冷却水温度T1の場合冷却水量を少な
くする程真空度が悪くなる。
As shown in Figure 3, the condenser characteristics are as follows: As the cooling water temperature goes from high temperature T1 to low temperature T2, the degree of vacuum in the condenser becomes higher at P2 than Pl, and when the cooling water temperature T1 is the same, the lower the amount of cooling water, the lower the vacuum. It gets worse.

又第1段ノズル11.第2段ノズル12の特性は第4図
に示す如く抽出不凝縮性ガス量を増加させる点復水器真
空度は悪くなる。
Also, the first stage nozzle 11. As shown in FIG. 4, the characteristics of the second stage nozzle 12 are such that the degree of vacuum in the condenser deteriorates as the amount of extracted non-condensable gas increases.

又復水器胴2内に不凝縮性ガスが滞溜すると滞溜ガスの
増加と共に復水器真空度は悪くなる。
Furthermore, when non-condensable gas accumulates in the condenser shell 2, the degree of vacuum in the condenser deteriorates as the accumulated gas increases.

プラントの通常運転中に変化する要因は外気温度に左右
される冷却水温度のみであり、特に冬場は冷却水温度低
下により復水器真空度は設計真空度に対し10mmHg
以上の高真空度となる。
The only factor that changes during normal plant operation is the cooling water temperature, which is affected by the outside air temperature.Especially in winter, the cooling water temperature drops and the condenser vacuum level is 10mmHg compared to the design vacuum level.
This results in a high degree of vacuum.

この高真空度によりタービン1内のロータ(図示せず)
の不安定による振動及び復水器室3内のチューブ(図示
せず)外を流れる高速排気蒸気によるチューブ振動を誘
発する可能性があり復水器真空度を調整し、設計真空度
まで悪くする運転法を取る必要性が出て来る。
Due to this high degree of vacuum, the rotor inside the turbine 1 (not shown)
There is a possibility of inducing vibration due to instability of the condenser chamber 3 and tube vibration due to high-speed exhaust steam flowing outside the tube (not shown) in the condenser room 3. Adjust the condenser vacuum level and lower it to the design vacuum level. There will be a need to take driving law.

従来この真空度低下法として、復水器特性を利用して冷
却水出口弁6絞りにより冷却水量減少させる第1の方法
、第1段ノズル11.第2段ノズル12の特性を利用し
て空気吸込弁8を微開の上人気中の空気を復水器胴2へ
注入し不凝縮性ガス量を増加する第2の方法と、復水器
胴2内に不凝縮性ガス滞溜を増加させる為第1段ノズル
人口弁]0を絞り第1段ノズル11への抽出量を制限す
る第3の方法がある。以上の3つの方法はおのおの下記
欠点がある。
Conventionally, as a method for reducing the degree of vacuum, the first method utilizes the condenser characteristics to reduce the amount of cooling water by restricting the cooling water outlet valve 6, and the first stage nozzle 11. A second method uses the characteristics of the second stage nozzle 12 to slightly open the air suction valve 8 and injects the air into the condenser shell 2 to increase the amount of noncondensable gas; In order to increase the non-condensable gas accumulation in the shell 2, there is a third method of restricting the amount extracted to the first stage nozzle 11 by throttling the first stage nozzle artificial valve]0. Each of the above three methods has the following drawbacks.

(1)第1の方法では冷却水量を減少させる事により冷
却水の温度上昇が設計値より大となり環境への影響慶大
及び規制値を守れない。
(1) In the first method, by reducing the amount of cooling water, the temperature rise of the cooling water becomes larger than the designed value, which has an impact on the environment and does not comply with Keio University and regulatory values.

(2)第2の方法では不凝縮性ガス量増大により特に原
子カプラントの場合大気中への放出放射能増加となる。
(2) In the second method, an increase in the amount of noncondensable gas results in an increase in radioactivity released into the atmosphere, especially in the case of an atomic couplant.

(3)第3の方法では第1段ノズル人口弁10が大口径
(1100MWeクラスで口径750A)の為、規定の
機能を満足させるには弁開度を2〜3%まで絞る必要が
あり運用上非常に困難である。
(3) In the third method, since the first stage nozzle artificial valve 10 has a large diameter (750A diameter for 1100MWe class), it is necessary to reduce the valve opening to 2 to 3% in order to satisfy the specified function. The above is extremely difficult.

なお、この種の技術として関連するものには。In addition, related to this type of technology.

例えば、特公昭52−26320号がある。For example, there is Japanese Patent Publication No. 52-26320.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術における復水器真空度調整手段
による環境規制の制限、弁操作の複雑化といった欠点を
バイパス小弁設置により改善する装置を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus which improves the drawbacks of the conventional condenser vacuum adjustment means, such as restrictions on environmental regulations and complication of valve operation, by installing a small bypass valve.

本発明は復水器真空度が復水器内で不凝縮性ガスの増加
により低下する事に着目し、空気抽出器への抽出量を絞
るが、通常運転中のラインと別に専用のバイパスライン
を設置し、運用法の簡便さを優先された事にある。
The present invention focuses on the fact that the degree of vacuum in the condenser decreases due to an increase in non-condensable gas within the condenser, and reduces the amount of air extracted to the air extractor. This is because priority was given to simplicity of operation.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の系統図を示す。 FIG. 1 shows a system diagram of the present invention.

第2図と同一部分は同一符号で示す。The same parts as in FIG. 2 are indicated by the same reference numerals.

空気抽出管9より小容量の空気抽出バイパス管31を分
岐し、その配管の途中に第1段ノズル入口小弁32を設
置する。
An air extraction bypass pipe 31 having a smaller capacity is branched from the air extraction pipe 9, and a first stage nozzle inlet small valve 32 is installed in the middle of the pipe.

第1段ノズル入口小弁32には絞り運転時の開度監視用
として開度計33を設ける。
The first stage nozzle inlet small valve 32 is provided with an opening gauge 33 for monitoring the opening during throttling operation.

通常運転中復水器真空度が設計真空度より悪い場合は第
1段ノズル入口弁10開、第1段ノズル入口小弁閉(又
は開でも良い)とし、冷却水温度に相当する復水器真空
度で運転する。
During normal operation, if the condenser vacuum degree is worse than the design vacuum degree, the first stage nozzle inlet valve 10 is opened, the first stage nozzle inlet small valve is closed (or it may be opened), and the condenser corresponding to the cooling water temperature is Operate at vacuum level.

復水器真空度が設計真空度より良くなった場合第1段ノ
ズル入口小弁32全開、第1段ノズル入口弁10を全閉
する。この状態で復水器真空度が設計真空度より高真空
度の場合設計真空度になる様第1段ノズル入口小弁を絞
り操作し調整する。
When the condenser vacuum level becomes better than the design vacuum level, the first stage nozzle inlet small valve 32 is fully opened and the first stage nozzle inlet valve 10 is fully closed. In this state, if the condenser vacuum level is higher than the design vacuum level, adjust the first stage nozzle inlet small valve by throttling it so that it reaches the design vacuum level.

本小弁32設置により第1段ノズル入口弁10での絞り
開度2〜3%に対し小弁開度は50%以上となり、微少
開度調整が可能となり運用上の便が大幅に改善される。
With the installation of this small valve 32, the opening of the small valve becomes 50% or more, compared to the throttle opening of 2 to 3% in the first stage nozzle inlet valve 10, making it possible to finely adjust the opening and greatly improving operational convenience. Ru.

又復水器真空度はプラント負荷に左右され、低負荷にな
る程高真空となりこの場合も調整する必要があるが、第
1段ノズル入口弁10のみの場合はとんど全開状態にす
る必要があり対応上不可能に近い。
Also, the degree of vacuum in the condenser depends on the plant load, and the lower the load, the higher the vacuum, and in this case, it also needs to be adjusted, but if only the first stage nozzle inlet valve 10 is used, it is necessary to keep it fully open. It is almost impossible to deal with it.

本ライン追加により従来技術の欠点である。The addition of this line overcomes the drawbacks of the prior art.

(1)冷却水温度上昇による環境規制 (2)大気中への放出放射能の増大 (3)第1段ノズル人口弁10のみによる操作上の対応
制限 が回避される。
(1) Environmental regulations due to an increase in cooling water temperature (2) Increase in radioactivity released into the atmosphere (3) Operational restrictions imposed only by the first stage nozzle artificial valve 10 are avoided.

今後日負荷追従運転採用により日々調整運転が必要とな
るので、従来技術の欠点は増長される。
In the future, with the adoption of load-following operation, daily adjustment operation will be required, and the drawbacks of the prior art will be exacerbated.

本日負荷追従運転への対応策として、復水器真空度を検
出し、第1段ノズル人口弁10及び第1段ノズル入口小
弁32へ操作信号を入れ、自動調整運転も可能である。
As a countermeasure for today's load following operation, it is also possible to detect the condenser vacuum level and input operation signals to the first-stage nozzle population valve 10 and the first-stage nozzle inlet small valve 32 to automatically adjust the operation.

〔発明の効果〕〔Effect of the invention〕

本発明により下記効果がある。 The present invention has the following effects.

1、復水器真空度を容易に調整可能であり、高真空度に
よりタービンの振動、復水器チューブ振動防止運転が計
れる。
1. The degree of vacuum in the condenser can be easily adjusted, and the high degree of vacuum allows operation to prevent turbine vibration and condenser tube vibration.

2、操作性が簡単となり復水器真空度の自動調整運転が
対応可能となる。
2. It is easy to operate and can automatically adjust the vacuum level of the condenser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は従来技術
の系統図、第3図は復水器の特性図、第4図は空気抽出
装置の特性図である。 1・・・タービン、2・・・復水器胴、3・・・復水器
氷室、4・・・循環水ポンプ、5・・・冷却水供給管、
6・・・冷却水出口弁、19・・・インタークーラ、2
o・・・第2段早 ■ 4幻・K量 (’/−) 早 #3血f凝市≧を主力−カ量(%)
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram of the prior art, FIG. 3 is a characteristic diagram of a condenser, and FIG. 4 is a characteristic diagram of an air extraction device. 1... Turbine, 2... Condenser body, 3... Condenser ice chamber, 4... Circulating water pump, 5... Cooling water supply pipe,
6... Cooling water outlet valve, 19... Intercooler, 2
o... 2nd stage early ■ 4 phantom K amount ('/-) early #3 blood f coagulation ≧ main force - K amount (%)

Claims (1)

【特許請求の範囲】[Claims] 1、発電プラントの蒸気発生装置にて発生する蒸気にて
駆動されるタービンの排気を冷却し、真空度を維持する
復水器、復水器に連通し復水器内の不凝縮性ガスを抽出
するガス抽出装置、ガス抽出装置と復水器間に設けられ
た通常運転用の大弁とそれをバイパスする小弁とを含み
、プラント連続運転中であつて復水器内真空度が定常時
に大弁、非定常時に小弁を使用してガス抽出することを
特徴とする復水器真空度の調整装置。
1. A condenser that cools the exhaust gas of the turbine driven by the steam generated by the steam generator of the power plant and maintains the degree of vacuum. A condenser is connected to the condenser to remove non-condensable gas in the condenser. It includes a gas extraction device to extract, a large valve for normal operation installed between the gas extraction device and the condenser, and a small valve to bypass it, and the vacuum level inside the condenser is steady during continuous plant operation. A condenser vacuum adjustment device that extracts gas using a large valve at times and a small valve at unsteady times.
JP23706089A 1989-09-14 1989-09-14 Adjusting method for condenser in its degree of vacuum Pending JPH02112605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23706089A JPH02112605A (en) 1989-09-14 1989-09-14 Adjusting method for condenser in its degree of vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23706089A JPH02112605A (en) 1989-09-14 1989-09-14 Adjusting method for condenser in its degree of vacuum

Publications (1)

Publication Number Publication Date
JPH02112605A true JPH02112605A (en) 1990-04-25

Family

ID=17009825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23706089A Pending JPH02112605A (en) 1989-09-14 1989-09-14 Adjusting method for condenser in its degree of vacuum

Country Status (1)

Country Link
JP (1) JPH02112605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280910A (en) * 1997-04-07 1998-10-20 Hitachi Zosen Corp Steam turbine device
JP2007255198A (en) * 2006-03-20 2007-10-04 Toshiba Corp Optimal operation system, method and program of energy plant
JP2008057943A (en) * 2006-09-04 2008-03-13 Hitachi Ltd Noncondensable gas exhaust device for condenser, and noncondensable gas exhaust control method for condenser
JP2008267688A (en) * 2007-04-19 2008-11-06 Nippon Steel Corp Condenser vacuum control system and power plant equipped with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226320A (en) * 1975-08-23 1977-02-26 Nippon Steel Corp Method of preventing slag from being drained during molten metal supply
JPS57202490A (en) * 1981-06-08 1982-12-11 Toshiba Corp Gas extracting equipment
JPS5885309A (en) * 1981-11-13 1983-05-21 Hitachi Ltd Power plant equipped with plural sets of steam turbine group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226320A (en) * 1975-08-23 1977-02-26 Nippon Steel Corp Method of preventing slag from being drained during molten metal supply
JPS57202490A (en) * 1981-06-08 1982-12-11 Toshiba Corp Gas extracting equipment
JPS5885309A (en) * 1981-11-13 1983-05-21 Hitachi Ltd Power plant equipped with plural sets of steam turbine group

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280910A (en) * 1997-04-07 1998-10-20 Hitachi Zosen Corp Steam turbine device
JP2007255198A (en) * 2006-03-20 2007-10-04 Toshiba Corp Optimal operation system, method and program of energy plant
JP4664842B2 (en) * 2006-03-20 2011-04-06 株式会社東芝 Energy plant optimal operation system and method, and program
JP2008057943A (en) * 2006-09-04 2008-03-13 Hitachi Ltd Noncondensable gas exhaust device for condenser, and noncondensable gas exhaust control method for condenser
JP4589279B2 (en) * 2006-09-04 2010-12-01 株式会社日立製作所 Non-condensable gas discharge device for condenser and non-condensable gas discharge control method for condenser
JP2008267688A (en) * 2007-04-19 2008-11-06 Nippon Steel Corp Condenser vacuum control system and power plant equipped with the same

Similar Documents

Publication Publication Date Title
US6145317A (en) Steam turbine, steam turbine plant and method for cooling a steam turbine
US5819436A (en) Method and an apparatus for vacuum drying of a material
JPH02112605A (en) Adjusting method for condenser in its degree of vacuum
JP3161072B2 (en) Condenser and its operation method, and condenser system and its operation method
CN2600590Y (en) Closed tube with bypass small butterfly valve device
JPH10299418A (en) Air discharging system
JPH0198895A (en) Vacuum control device for condenser
JP3777527B2 (en) Air extraction equipment
JP2812751B2 (en) Steam turbine equipment and its steam supply method
JP3117358B2 (en) Automatic bypass valve warming device
JP3662035B2 (en) Cooler drain discharge device
JPH10141013A (en) Extra steam collecting device
JPH03267690A (en) Vacuum adjusting device of condenser
JPS6280492A (en) Condensate recirculating device
CN212716778U (en) Back pressure steam turbine and to air exhaust system
JPS5952193A (en) Vacuum control device of condenser
JP2677740B2 (en) Geothermal power plant gas extractor
JPS58110986A (en) Condenser system
JPS6248798B2 (en)
RU2163671C1 (en) Combined-cycle plant
RU1815336C (en) Load control method for multicylinder regenerative-extraction steam turbine
JPS6126776Y2 (en)
JP2510981B2 (en) Drain system of moisture separation heater
JPS60224980A (en) Geothermal engine
JPH073163B2 (en) Steam turbine plant