JPS588109B2 - Nenryyou Denchi - Google Patents

Nenryyou Denchi

Info

Publication number
JPS588109B2
JPS588109B2 JP48133853A JP13385373A JPS588109B2 JP S588109 B2 JPS588109 B2 JP S588109B2 JP 48133853 A JP48133853 A JP 48133853A JP 13385373 A JP13385373 A JP 13385373A JP S588109 B2 JPS588109 B2 JP S588109B2
Authority
JP
Japan
Prior art keywords
electrolyte
fuel
fuel cell
gas
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48133853A
Other languages
Japanese (ja)
Other versions
JPS5082540A (en
Inventor
沢田宏一
油布宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP48133853A priority Critical patent/JPS588109B2/en
Publication of JPS5082540A publication Critical patent/JPS5082540A/ja
Publication of JPS588109B2 publication Critical patent/JPS588109B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は放電反応によってガスを発生するもの例えばヒ
ドラジン、ホルマリンなどを燃料電池に使用した場合に
発生するガスによって生じる電解液の浮力と電解液の表
面張力によって電解液な自動的に電池内から燃料電解液
タンクに排出させ、電解液を燃料電池と燃料電解液混合
タンク内とを放電々流に応じて循環するものであり、そ
の目とするところは循環に必要なポンプ及びその電力を
必要としない、長期間安定した電力の取り出せる燃料電
池を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the buoyancy of the electrolyte and the surface tension of the electrolyte caused by the gas generated when a gas is generated by a discharge reaction, such as hydrazine or formalin, in a fuel cell. This system automatically drains the electrolyte from inside the cell into the fuel electrolyte tank, and circulates the electrolyte between the fuel cell and the fuel electrolyte mixing tank according to the discharge flow. The purpose of the present invention is to provide a fuel cell that does not require a pump or its power and can provide stable power for a long period of time.

燃料電池は一般に燃料の供給、電池温度の一定化、反応
生成物の除去などのために燃料を含んだ電解液あるいは
電解液を循環して使用する必要があり、開発当初よりほ
とんどの燃料電池は発電した電力の一部を使用して、循
環用ポンプを運転し、この目的を達していた。
Generally speaking, fuel cells require the circulation of an electrolyte or electrolyte containing fuel in order to supply fuel, stabilize cell temperature, remove reaction products, etc. Since the beginning of development, most fuel cells have A portion of the generated electricity was used to operate a circulation pump to achieve this purpose.

しかしながら循環用ポンプは、たびたび発電を中止して
保守しなければならないこと及び燃料電池の出力の一部
を使用しなければならないという大きな欠点を有するも
のであった。
However, circulation pumps have major disadvantages in that power generation must be frequently stopped for maintenance and a portion of the output of the fuel cell must be used.

そこで保守の必要がなく、出力の一部を使用しなくても
、上記目的の循環が出来る方法が、いくつか提案され、
その中の一つである特公昭39−30349号公報の「
反応によってガスを発生する物質を用いる燃料電池にお
いては、反応によって発生したガスの圧力によって反応
終了の燃料を貯蔵装置に還流させる」という方法は画期
的なものであった。
Therefore, several methods have been proposed that do not require maintenance and can achieve the above-mentioned circulation without using part of the output.
One of them, Japanese Patent Publication No. 39-30349, “
In fuel cells that use substances that generate gas through reaction, the method of refluxing the fuel after the reaction to a storage device using the pressure of the gas generated through reaction was a revolutionary method.

しかしながらこの方法は発生したガスの圧力を利用する
ものであるため、電池への電解液の供給は2セル以上を
直列に行ない、しかも燃料電解液貯蔵装置からの供給配
管は、第1番目の電池の下部から供給した電解液を上部
から排出すると共に、下方に向けて流すように配管し、
第2番目の電池の下部から供給しないと還流しえないも
のであった。
However, since this method uses the pressure of the gas generated, the electrolyte is supplied to the battery by connecting two or more cells in series, and the supply piping from the fuel electrolyte storage device is connected to the first battery. The electrolyte supplied from the bottom of the tank is discharged from the top, and piping is arranged so that it flows downward.
Reflux could not occur unless it was supplied from the bottom of the second battery.

すなわち、第1番目と第2番目の電池をつなぐ下方に向
けた配管をタンクとし発生したガスの圧力で電解液を、
あたかもU字管に入れた液を、一方から下向きにガス圧
力を加えて片方に押し出すのと同じ原理によって還流す
るものであり、さらに電解液の圧力に、ガス圧力を加え
たものが電極に加わる。
In other words, the downward piping connecting the first and second batteries is used as a tank, and the electrolyte is pumped under the pressure of the gas generated.
The reflux is based on the same principle as when a liquid placed in a U-shaped tube is pushed out to one side by applying downward gas pressure from one side, and in addition, the pressure of the electrolyte plus gas pressure is applied to the electrode. .

一般にガス電極は電解液が電極活性部分を濡らすことに
よって性能が悪くなるので、好ましい還流ではなかった
In general, gas electrodes have poor performance due to electrolyte wetting the active part of the electrode, so reflux is not desirable.

しかし、この方法はガスを発生する物質を電解液に混合
しておき、電池内でガスを発生させるものであるが、電
池内でのガス発生反応は燃料電池の放電反応とは無関係
に生じる為、放電々流に応じて電解液を循環させること
はできないものであった。
However, in this method, gas-generating substances are mixed with the electrolyte and gas is generated within the battery, but the gas-generating reaction within the battery occurs independently of the fuel cell's discharge reaction. However, it was not possible to circulate the electrolytic solution according to the discharge flow.

更に、電解液を循環させる為のガス発生物質を使用する
為、エネルギーの節約には貢献しない。
Furthermore, since a gas generating substance is used to circulate the electrolyte, it does not contribute to energy savings.

一方本発明のものは、放電反応で発生するガスにより生
じる電解液の浮力と、電解液の表面張力により、発生し
たガスを排出パイプ内で、あたかも移動する弁の如く使
用して、排出パイプ内にある電解液を上昇させて燃料電
解液混合タンクへ排出させるもので、放電反応で発生す
るガスを利用する為、放電々流に応じて発生するガス量
も変化するので、循環する電解液量も自動的に変化する
On the other hand, the device of the present invention uses the buoyancy of the electrolyte generated by the gas generated by the discharge reaction and the surface tension of the electrolyte to move the generated gas inside the exhaust pipe as if it were a moving valve. This system raises the electrolyte in the fuel electrolyte mixing tank and discharges it into the fuel electrolyte mixing tank.Since the gas generated by the discharge reaction is used, the amount of gas generated changes depending on the discharge flow, so the amount of circulating electrolyte is will also change automatically.

又、発生するガスは、燃料電池より出力を取り出した時
の副産物であり、エネルギー的には何も役に立たないも
のである。
Furthermore, the gas generated is a byproduct when output is extracted from the fuel cell, and is of no use in terms of energy.

即ちこの副産物で電解液を循環することはエネルギーの
損失は全く受けないことを意味し、前記従来の方法とは
本質的に異なるものである。
Circulating the electrolyte with this by-product means that no energy is lost, which is essentially different from the conventional method.

以下本発明の一実施例を図面によって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例における液体燃料電池の説明
図で、第2図は同要部の拡大図である。
FIG. 1 is an explanatory view of a liquid fuel cell according to an embodiment of the present invention, and FIG. 2 is an enlarged view of the main parts thereof.

1は多孔性ニッケル板に白金を触媒として添加した燃刺
極でヒドラジンを還元剤として使用する。
1 is a combustion electrode made of a porous nickel plate with platinum added as a catalyst and uses hydrazine as a reducing agent.

2は陰極端子、3は多孔性炭素極よりなる空気極で空気
中の酸素を酸化剤として使用する。
2 is a cathode terminal, and 3 is an air electrode made of a porous carbon electrode, which uses oxygen in the air as an oxidizing agent.

4は陽極端子、5は合成樹脂からなる枠体、6は電解液
供給パイプ、7は単電池の電解液室、8は反応終了又は
末反応の電解液排出パイプ、9は反応終了又は末反応燃
料電解液、10は第2図に示した単位燃料電池であり、
単位燃料電池10の電解液出口10′の位置と、燃料電
解液混合タンク11の電解液面12′とは位置差hを設
けており、電解液排出パイプ8の取付け位置8´は、電
解液面12′よりも下になっている。
4 is an anode terminal, 5 is a frame made of synthetic resin, 6 is an electrolyte supply pipe, 7 is an electrolyte chamber of a cell, 8 is an electrolyte discharge pipe for the end of the reaction or the final reaction, 9 is the end of the reaction or the end of the reaction A fuel electrolyte, 10 is a unit fuel cell shown in FIG.
There is a positional difference h between the position of the electrolyte outlet 10' of the unit fuel cell 10 and the electrolyte level 12' of the fuel electrolyte mixing tank 11. It is below surface 12'.

12は30%苛性カリ溶液に4%のヒドラジンヒドラー
トを混合した電解液、13は燃料電解液混合タンク11
における排出パイプ8からの排出液入口パイプ、14は
燃料タンクで放電反応によって消費される燃料(ヒドラ
ジンヒドラート)を内蔵している。
12 is an electrolytic solution containing 30% caustic potassium solution mixed with 4% hydrazine hydrate; 13 is a fuel electrolyte mixing tank 11
The discharge liquid inlet pipe 14 from the discharge pipe 8 is a fuel tank containing fuel (hydrazine hydrate) to be consumed by the discharge reaction.

15は排気孔、16は燃料タンク14に貯蔵してある燃
料を放電反応による消費に対応させて供給するための弁
、17はコックである。
15 is an exhaust hole, 16 is a valve for supplying fuel stored in the fuel tank 14 in accordance with consumption by the discharge reaction, and 17 is a cock.

このような構成の燃料電池を、当初放電を開始する前は
、コツク17を開くと電解液12は燃料電解液混合タン
ク11から、液圧により単位燃料電池10の電M液室7
を通って排出パイプ8の下部、すなわち燃料電解液混合
タンク11内の電解液12と同じ液面にまで満される。
In a fuel cell having such a configuration, before starting discharge, when the tank 17 is opened, the electrolyte 12 is transferred from the fuel electrolyte mixing tank 11 to the electrolyte chamber 7 of the unit fuel cell 10 by hydraulic pressure.
The liquid flows through the discharge pipe 8 and is filled to the same level as the electrolyte 12 in the fuel electrolyte mixing tank 11 .

この液面を当初液面18とする。This liquid level is initially defined as liquid level 18.

次に放電を開始すると、燃料電池10内にガスが発生す
る。
Next, when discharge is started, gas is generated within the fuel cell 10.

ガスの比重は電解液比重より非常に小さく、発生したガ
スによって電池側電解液の見掛比重は電解液タンクのそ
れより小さくなり、電池側電解液は浮力を生じる。
The specific gravity of the gas is much lower than the specific gravity of the electrolyte, and the generated gas makes the apparent specific gravity of the battery-side electrolyte smaller than that of the electrolyte tank, causing the battery-side electrolyte to have buoyancy.

そこで排出パイプ8の内径を7mm以下にすると電解液
の表面張力で発生したガスがあたかも移動する弁の如き
働きをしてガスにより生じた電解液の浮力によって排出
パイプ8内の電解液9は単位燃料電池10の電解液室7
にもどることなく上昇し、燃料電解液混合タンク11に
排出される。
Therefore, if the inner diameter of the discharge pipe 8 is set to 7 mm or less, the gas generated by the surface tension of the electrolyte acts as if it were a moving valve, and the buoyancy of the electrolyte generated by the gas causes the electrolyte 9 in the discharge pipe 8 to move into units. Electrolyte chamber 7 of fuel cell 10
It rises without returning to its original state and is discharged into the fuel electrolyte mixing tank 11.

すると燃料電解液混合タンクとの液圧差により、すぐに
電解液12は電解液供給パイプ6を通って単位燃料電池
10へ供給され、排出バイプ8の当初の液面18と同じ
液面まで満たされる。
Then, due to the liquid pressure difference with the fuel electrolyte mixing tank, the electrolyte 12 is immediately supplied to the unit fuel cell 10 through the electrolyte supply pipe 6, and the discharge pipe 8 is filled to the same liquid level as the original liquid level 18. .

放電反応中は上記の如き動作が繰り返し自動的に行われ
、電解液は各単位燃料電池10内と燃料電解液タンク1
1内とを循環する。
During the discharge reaction, the above-mentioned operations are repeated and automatically carried out, and the electrolyte is poured into each unit fuel cell 10 and the fuel electrolyte tank 1.
It circulates within 1.

又、負荷に応じて発生するガス量が増減するから供給す
る電解液量を調整する必要はまったくなく自動的に調整
される。
Further, since the amount of gas generated increases or decreases depending on the load, there is no need to adjust the amount of electrolyte to be supplied, and the amount is automatically adjusted.

以上の繰返し動作を行うために重要な事項は、まず第1
に各単位燃料電池の上部に取付ける電解液排出パイプの
取付け位置きが燃料電解液混合タンク11の電解液の液
面12′よりも低い位置であり、単位燃料電池10の電
解液の液面18が電解液排出パイプ8間に位置するよう
にする。
The important things to do in order to perform the above repetitive motions are:
The installation position of the electrolyte discharge pipe attached to the top of each unit fuel cell is lower than the electrolyte level 12' of the fuel electrolyte mixing tank 11, and the electrolyte level 18 of the unit fuel cell 10 is lower than the electrolyte level 12' of the fuel electrolyte mixing tank 11. is located between the electrolyte discharge pipes 8.

つまり位置差hを設けることである。In other words, a positional difference h is provided.

もしも前記の位置差hがなく、液面12′より高いか、
同じであれば、電解液排出パイプ内には電解液がないの
で、電解液の表面張力を使った電解液移動の弁作用をさ
せることが出来ないから、発生したガスのみが電解液排
出パイプを通って排出されてしまい、電解液は排出され
ない。
If there is no positional difference h, and the liquid level is higher than 12',
If they are the same, there is no electrolyte in the electrolyte discharge pipe, so the valve action of electrolyte movement using the surface tension of the electrolyte cannot be performed, so only the generated gas flows through the electrolyte discharge pipe. The electrolyte is not discharged.

従って電解液の循環が出来ないことになる。Therefore, the electrolyte cannot be circulated.

第2に電解液排出パイプ8の内径を7mm以下にするこ
とである。
Second, the inner diameter of the electrolyte discharge pipe 8 should be 7 mm or less.

7mm以上の内径のパイプを使用すると、前記電解液の
弁作用がなくなり、発生したガスは浮力によって電解液
中を上昇するが、パイプ内で電解液と置換しガスのみが
排出されてしまう。
If a pipe with an inner diameter of 7 mm or more is used, the valve action of the electrolytic solution disappears, and the generated gas rises in the electrolytic solution due to buoyancy, but it replaces the electrolytic solution in the pipe and only the gas is exhausted.

本実施例において最適なパイプの内径は3〜5mmのも
のであった。
In this example, the optimal inner diameter of the pipe was 3 to 5 mm.

またパイプの内径が1mm位になると流路抵抗によって
若干液量が制約される。
Furthermore, when the inner diameter of the pipe is approximately 1 mm, the flow path resistance will slightly restrict the amount of liquid.

第3に多数の単位燃料電池を電気的に直列又は並列に接
続する場合でも電解液を排出するパイプは、直列に接続
しないことで、かならず第1図に示す如く並列に接続し
、各単位燃料電池10毎に電解液排出パイプ8を設けな
げれば、前記循環動作を行うことが出来ない。
Thirdly, even when a large number of unit fuel cells are electrically connected in series or parallel, the pipes for discharging the electrolyte should not be connected in series, but must be connected in parallel as shown in Figure 1, and each unit fuel Unless the electrolyte discharge pipe 8 is provided for each battery 10, the circulation operation cannot be performed.

さらに本発明は発生したガスにより生じる電解液の浮力
を利用するため電解液排出パイプ8を下向けにあるいは
横向けにすると循環動作をしなくなるので各単位燃料電
池10の電解液排出パイプ8は単位燃料電池上部から仰
角で、かならず上に向けて燃料電解液混合タンク11の
電解液面12′よりも上に取付けられた排出液入口パイ
プ13に接続しなければならない。
Further, in the present invention, since the buoyancy of the electrolyte caused by the generated gas is utilized, if the electrolyte discharge pipe 8 is turned downward or sideways, the circulation operation will not occur, so the electrolyte discharge pipe 8 of each unit fuel cell 10 is It must be connected to the exhaust liquid inlet pipe 13 which is installed above the electrolyte level 12' of the fuel electrolyte mixing tank 11 at an angle of elevation from the top of the fuel cell.

即ち、燃料電解液混合タンクの液面が燃料電池の電解液
排出パイプの両端の間に位置するように配置する。
That is, the fuel electrolyte mixing tank is arranged so that the liquid level thereof is located between both ends of the electrolyte discharge pipe of the fuel cell.

従って発生したガスの圧力を利用する方法のものは排出
パイプを横あるいは下に向けても還流させることが出来
るので、本発明のものと大きく違う一点である。
Therefore, the method that utilizes the pressure of the generated gas can cause reflux even if the exhaust pipe is turned sideways or downwards, which is a major difference from the method of the present invention.

第2図は本発明による燃料電池Aと従来の燃料電解液循
環ポンプを使用する燃料電池Bとを同時に10Aの一定
電流で連続放電した比較曲線図である。
FIG. 2 is a comparison curve diagram of a fuel cell A according to the present invention and a fuel cell B using a conventional fuel electrolyte circulation pump, which were simultaneously discharged continuously at a constant current of 10A.

本発明の燃料電池は長時間安定した出力を取り出すこと
が出来るが、従来の燃料電池Bは、燃料電解液循環ポン
プを運転するために出力の一部を使用するので取り出し
うる出力も小さく、又循環ポンプの保守が放電中にたび
たび必要とするため放電を中止しなければならない。
The fuel cell of the present invention can produce a stable output for a long time, but the conventional fuel cell B uses a part of the output to operate the fuel electrolyte circulation pump, so the output that can be extracted is small. Discharge must be stopped because maintenance of the circulation pump is frequently required during discharge.

以上の如く本発明は放電反応によって生成したガスによ
り生じる電解液の浮力と電解液の表面張力によって燃料
電解液を簡単に循環出来るものであり、電解液の循環の
ためのエネルギーを全く必要とせず、工業的価値は大で
ある。
As described above, in the present invention, the fuel electrolyte can be easily circulated using the buoyancy of the electrolyte generated by the gas generated by the discharge reaction and the surface tension of the electrolyte, and no energy is required for circulating the electrolyte. , the industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における液体燃料電池の説明
図、第2図は単位燃料電池本体の拡大図、第3図は本発
明電池と従来電池の性能比較曲線図である。 7は電解液室、8は排出パイプ、9,12は電解液、1
0は単位燃料電池、11は燃料電解液混合タンク。
FIG. 1 is an explanatory diagram of a liquid fuel cell according to an embodiment of the present invention, FIG. 2 is an enlarged view of a unit fuel cell main body, and FIG. 3 is a performance comparison curve diagram of a battery of the present invention and a conventional battery. 7 is an electrolyte chamber, 8 is a discharge pipe, 9 and 12 are electrolytes, 1
0 is a unit fuel cell, and 11 is a fuel electrolyte mixing tank.

Claims (1)

【特許請求の範囲】[Claims] 1 放電反応によってガスを発生する燃料、例えばヒド
ラジンを用いる燃料電池において、単位燃料電池毎に設
けた内径7mm以下の電解液排出パイプを単位燃料電池
上部から仰角で燃料電解液タンクに接続し、燃料電解液
混合タンクの液面が燃料電池の電解液排出パイプの両端
の間に位置するように配置して、放電反応によって生成
するガスとガスにより生じる電解液の浮力と電解液の表
面張力とによって、電解液を自動的に電池内から燃料電
解液混合タンクに排出させ、電解液を燃料電池と燃料電
解液混合タンク内とを放電々流に応じて循環させること
を特徴とする燃料電池。
1. In a fuel cell that uses a fuel that generates gas by a discharge reaction, such as hydrazine, the electrolyte discharge pipe with an inner diameter of 7 mm or less provided for each unit fuel cell is connected to the fuel electrolyte tank at an elevation angle from the top of the unit fuel cell, and the fuel The liquid level of the electrolyte mixing tank is positioned between both ends of the electrolyte discharge pipe of the fuel cell, and the buoyancy of the electrolyte generated by the gas and the surface tension of the electrolyte are A fuel cell characterized in that an electrolyte is automatically discharged from inside the cell to a fuel electrolyte mixing tank, and the electrolyte is circulated between the fuel cell and the fuel electrolyte mixing tank according to a discharge flow.
JP48133853A 1973-11-27 1973-11-27 Nenryyou Denchi Expired JPS588109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48133853A JPS588109B2 (en) 1973-11-27 1973-11-27 Nenryyou Denchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48133853A JPS588109B2 (en) 1973-11-27 1973-11-27 Nenryyou Denchi

Publications (2)

Publication Number Publication Date
JPS5082540A JPS5082540A (en) 1975-07-04
JPS588109B2 true JPS588109B2 (en) 1983-02-14

Family

ID=15114550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48133853A Expired JPS588109B2 (en) 1973-11-27 1973-11-27 Nenryyou Denchi

Country Status (1)

Country Link
JP (1) JPS588109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297523A (en) * 1985-10-22 1987-05-07 勝 健一 Scale for endoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266936A (en) * 1975-11-29 1977-06-02 Shin Kobe Electric Machinery Liquid fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825579A (en) * 1971-08-04 1973-04-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825579A (en) * 1971-08-04 1973-04-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297523A (en) * 1985-10-22 1987-05-07 勝 健一 Scale for endoscope

Also Published As

Publication number Publication date
JPS5082540A (en) 1975-07-04

Similar Documents

Publication Publication Date Title
US4956244A (en) Apparatus and method for regenerating electrolyte of a redox flow battery
CN1551393B (en) Chemically generation
CN1966777B (en) Water electrolysis device with proton exchange membrane
KR101809332B1 (en) Regenerating module for electrolyte of flow battery and regenerating method for electrolyte of flow battery using the same
CN108183287B (en) Metal fuel cell system with hydrogen elimination function
CN109841876A (en) Fuel cell antipole electric current suppressing method, device, computer equipment and storage medium
JP4697380B2 (en) FUEL CELL DEVICE AND FUEL CELL FUEL SUPPLY METHOD
US20080124586A1 (en) Fuel cell system
JP2939978B2 (en) Alcohol fuel cell and method of operating the same
JP2021105194A (en) Hydrogen generation system, hydrogen generation system control device and hydrogen generation system control method
JP2007103115A (en) Fuel cell system
CN116014160B (en) Flow battery repair system and repair method
WO2021054255A1 (en) Hydrogen generation system control method, and hydrogen generation system
US7255960B1 (en) Bi-liquid phase replenishment electrolyte management system
CN113061903A (en) Water electrolysis system and control method thereof
US20130084512A1 (en) Fuel battery system
US3843410A (en) Fuel cell power station
JPS588109B2 (en) Nenryyou Denchi
CN109638309B (en) Gas-phase countercurrent diaphragm-free metal-oxygen-containing gas flow battery
US6942939B2 (en) System and method for controlling methanol concentration in a fuel cell
JP3685136B2 (en) Polymer electrolyte fuel cell
CN100442587C (en) Direct liquid feed fuel cell system having double fuel storage
JPS61269865A (en) Operation method of fuel cell
JP2020522842A (en) Redox flow battery and method for operating redox flow battery
US3540932A (en) Method of supplying gas in liquid electrolyte to electrochemical cell