JPS5880870A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5880870A
JPS5880870A JP56180099A JP18009981A JPS5880870A JP S5880870 A JPS5880870 A JP S5880870A JP 56180099 A JP56180099 A JP 56180099A JP 18009981 A JP18009981 A JP 18009981A JP S5880870 A JPS5880870 A JP S5880870A
Authority
JP
Japan
Prior art keywords
film
oxide film
polysilicon film
polysilicon
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56180099A
Other languages
Japanese (ja)
Other versions
JPS6312388B2 (en
Inventor
Hirokazu Miyoshi
三好 寛和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56180099A priority Critical patent/JPS5880870A/en
Publication of JPS5880870A publication Critical patent/JPS5880870A/en
Publication of JPS6312388B2 publication Critical patent/JPS6312388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To improve the reliability of memory holding characteristics by forming an oxidized film for improving the pattern shape of a double gate made of the first and second polysilicon film and interlayer oxidized film after patterning of the double gate structure and before forming source and drain. CONSTITUTION:A sequential patterning is performed in the prescribed pattern shape, and a resist mask 6 is removed by an oxygen plasma. An oxidation is performed, thereby forming an oxidized film 11 on the second polysilicon film 5 and the end of the exposed first polysilicon film 3, and a recess 12 between the first and second films 3 and 5 is filled substantially with the film 11, thereby improving the pattern shape of the gate 13. A phosphorus film does not almost enter between the first and second films 3 and 5, and the withstand voltage of an interlayer insulating film 4 is raised from 65V of the conventional one to 85V, with the result that the reliability of charge holding characteristic can be largely improved.

Description

【発明の詳細な説明】 この発明は、半導体装置の製造方法に関し、特に二重シ
リコンゲート構造電界効果型の不揮発性半導体装置にお
ける記憶保持特性等め信頼性の向上を図るため、ゲート
とソース、ドレインとのセルフアライメント工程の改良
を行った半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular, to improve reliability such as memory retention characteristics in a double silicon gate field-effect nonvolatile semiconductor device. The present invention relates to a method for manufacturing a semiconductor device in which a self-alignment process with a drain is improved.

従来、不揮発性半導体装置の製造においては、ポリシリ
コンの二層ゲートとソース、ドレインとのセルフアライ
メント工程が一般的に用いられている。即ち、第1図は
それぞれ従来方法による二重シリコンゲート構造電界効
果型の不揮発性半導体装置の製造各工程での状態を示す
。従来の方法では、まずシリコン基板(1)上にゲート
酸化膜(2)、第1のゲートとしてのポリシリコン膜(
3)、層間酸化膜(4)及び第2のゲートとしてのポリ
シリコン膜(5)を順次形成した後、$2のポリシリコ
ン膜(2)上にレジストマスク(61を形成し、素子を
第1図+111に示すような構造にする。次に第2のポ
リシリコン膜(5)を通常CF4ガスを用いたドライエ
ツチングにより、その下側の層間酸化膜(4)をフッ酸
系エツチングDi用いた湿式エツチングにより順次パタ
ーニングし、次にその下側の第1ポリシリコン膜(3)
をCF4ガスを用いたドライエツチングにより、さらに
その下側のゲート酸化膜(2)を再度フッ酸系エツチン
グ液を用いた湿式エツチングにより順次パターニングし
、二重ゲート部u3を第1図(b)に示すような構造に
形成する。そしてレジストマスク(6)を除去し、イオ
ン注入法あるいはリン拡散法によって基板(1)にソー
スm (71及びドレイン部(8)を形成する。その後
ソース部(7)及びドレイン部(8)上に酸化膜(9)
を被覆形成し、こ−の素子をさらにリンガラス膜(1ω
で覆う。このようにして第1図(C)#こ示す構造の半
導体装置か形成される。
Conventionally, in the manufacture of nonvolatile semiconductor devices, a self-alignment process between a two-layer polysilicon gate, a source, and a drain is generally used. That is, FIG. 1 shows the state at each step of manufacturing a double silicon gate field effect type nonvolatile semiconductor device by the conventional method. In the conventional method, a gate oxide film (2) is first formed on a silicon substrate (1), and a polysilicon film (
3) After sequentially forming an interlayer oxide film (4) and a polysilicon film (5) as a second gate, a resist mask (61) is formed on the $2 polysilicon film (2) and the device is Create a structure as shown in Figure 1+111.Next, the second polysilicon film (5) is normally dry etched using CF4 gas, and the interlayer oxide film (4) below it is etched using hydrofluoric acid-based etching Di. The first polysilicon film (3) below is patterned sequentially by wet etching.
is dry etched using CF4 gas, and the gate oxide film (2) below it is sequentially patterned again by wet etching using a hydrofluoric acid etching solution to form the double gate portion U3 as shown in FIG. 1(b). Form it into the structure shown in . Then, the resist mask (6) is removed, and a source m (71) and a drain part (8) are formed on the substrate (1) by an ion implantation method or a phosphorus diffusion method. oxide film (9)
This element is further coated with a phosphor glass film (1ω
cover with In this way, a semiconductor device having the structure shown in FIG. 1(C) is formed.

しかるにこのような従来方法では、例えばダイナミック
RAM、スタティックRAM等の製造に用いられる通常
の一層ポリシリコン膜ゲートとソース、ドレインとのセ
ルフアライメント方法とは違った信頼性上の問題を有す
る。即ち、不揮発性半導体装置においては、2層のポリ
シリコン膜(3)(5)をゲートとして必要とし、第1
鳩目のポリシリコン膜(3)に電荷を記憶保持させるこ
とが特徴であることから、薯1層と第2層のポリシリコ
ン膜(3)(5)間のj−1絶縁膜(4)が質的に極め
て事要であるか、従来方法では、各層+21 +31 
+41 +51を順次違ったエツチング方法でパターニ
ングするため、でき上かった二重ゲート部α3の構造は
第1図(d)に示すようにその層間酸化膜(4)のパタ
ーン端がポリシリコン膜(3)(5)のパターン端より
内方に後退している。その結果、両ポリシリコン膜+3
1 +51間は後工程の酸化膜(9)で少しおおわれる
が、該両膜f31 +51間にはリンガラス膜f11か
侵入し、このことは二重ゲート+31 +51間の絶縁
特性を劣悪化さ−せ、第1のポリシリコン膜(3)の電
荷保持特性を劣悪なものとし、素子の品質を低下させる
However, such a conventional method has reliability problems that are different from the usual self-alignment method of a single-layer polysilicon film gate, source, and drain used for manufacturing dynamic RAM, static RAM, etc., for example. That is, in a nonvolatile semiconductor device, two layers of polysilicon films (3) and (5) are required as gates, and the first
Since the eyelet polysilicon film (3) is characterized by storing and retaining charges, the j-1 insulating film (4) between the first and second polysilicon films (3) and (5) is It is qualitatively extremely important, or in the conventional method, each layer +21 +31
Since +41 and +51 are sequentially patterned using different etching methods, the resulting structure of the double gate part α3 is as shown in FIG. 3) It is retreating inward from the pattern end in (5). As a result, both polysilicon films +3
1 +51 is slightly covered with the oxide film (9) in the subsequent process, but the phosphor glass film f11 invades between both films f31 and +51, which deteriorates the insulation properties between the double gate +31 and +51. - This also impairs the charge retention characteristics of the first polysilicon film (3) and degrades the quality of the device.

この発明は以上のような従来の間鎗点に鑑みてなされた
もので、二重シリコンゲート構造電界効果型の不揮発性
半導体装置の製造方法において、二重ゲート構造のパタ
ーニング後でかつソース。
The present invention has been made in view of the above-mentioned drawbacks of the conventional art, and includes a method for manufacturing a field-effect nonvolatile semiconductor device with a double silicon gate structure.

レレイン形成前に、第1.第2のポリシリコン膜及び層
間酸化膜からなる二重ゲート部のパターン形状を改良す
るための酸化膜を形成することにより、記憶保持特性等
の信頼性の向上を図れるようにした半導体装置の製造方
法を提供することを目的としている。
Before the formation of lerain, the first step. Manufacture of a semiconductor device in which reliability such as memory retention characteristics can be improved by forming an oxide film to improve the pattern shape of the double gate portion consisting of a second polysilicon film and an interlayer oxide film. The purpose is to provide a method.

以下本発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例方法による二重シリコンゲー
ト構造電界効果型の不揮発性半導体装置の製造各工程で
の状態を示す。この製造方法では、まずシリコン基板(
1)上に各層+21 +31 +41 (51を形成す
る。
FIG. 2 shows the state at each step of manufacturing a double silicon gate field effect type nonvolatile semiconductor device according to an embodiment of the present invention. In this manufacturing method, first the silicon substrate (
1) Form each layer +21 +31 +41 (51) on top.

即ちシリコン基板(1)上に熱酸化法により膜厚600
又のゲート酸化膜(2)を形成し、このゲート酸化膜(
2)上に630℃におけるシラン(S i H4)とフ
オスヒン(PHs)との熱分解を利用した減圧CVD法
により膜厚3500 X、の第1のポリシリコン膜(3
)を形成する。そしてこの第1のポリシリコン膜(3)
上に熱酸化法により膜厚800久の層間酸化膜(4)を
形成し、この層間酸化膜(4)上に上述の減圧CVD法
によ゛り膜厚4000 Aの第2のポリシリコン膜(5
)を形成する。
That is, a film with a thickness of 600 mm was formed on a silicon substrate (1) by thermal oxidation.
Another gate oxide film (2) is formed, and this gate oxide film (
2) A first polysilicon film (3500x thick) was formed on top by a low pressure CVD method using thermal decomposition of silane (S i H4) and phosphin (PHs) at 630°C.
) to form. And this first polysilicon film (3)
An interlayer oxide film (4) with a thickness of 800 Å is formed thereon by thermal oxidation, and a second polysilicon film with a thickness of 4000 Å is formed on this interlayer oxide film (4) by the above-mentioned low pressure CVD method. (5
) to form.

次にこのようにして形成した各層(31+41151を
第2図(alに示すような所定のパターン形状に順次パ
ターニングする。即ち、まず第2のポリシリコン膜te
l上にレジストマスク(6)を形成し、この第2のポリ
シリコン膜(5)をCF、ガスプラズマを用いたドライ
エツチングによってパターニングし、次にその下側の層
間酸化膜(4)を比率6:1のフッ酸系水溶液を用いた
湿式エツチングによってパターニングし、さらに層間酸
化膜(4)の下側の第1のポリシリコン膜(3)を上記
ドライエツチングによってパターニングした後、上記レ
ジストマスク(6)を酸素プラズマによって除去する。
Next, each layer (31+41151) formed in this way is sequentially patterned into a predetermined pattern shape as shown in FIG.
A resist mask (6) is formed on the second polysilicon film (5), and the second polysilicon film (5) is patterned by dry etching using CF and gas plasma. After patterning by wet etching using a 6:1 hydrofluoric acid aqueous solution and further patterning the first polysilicon film (3) under the interlayer oxide film (4) by the dry etching, the resist mask ( 6) is removed by oxygen plasma.

そしてレジストマスク(6)を除去した素子を1100
℃、 HCl2 %の乾燥酸素雰囲気中に20分間装い
て酸化を行なう。これによって第2のポリシリコン膜(
5)上及び露出した第1のポリシリコン膜(3)の端部
上には膜厚的10001の第1の酸化膜011が形成さ
れ、第1と第2のポリシリコン膜+31151間の凹部
(lりはこの酸化膜OBによってほぼ充填されて二重ゲ
ート部a腸のパターン形状は改良されるが、基板(1)
上のゲート酸化膜(3)は約700又にしか増加しない
Then, the element with the resist mask (6) removed is 1100
Oxidation is carried out in a dry oxygen atmosphere of 2% HCl at 20°C for 20 minutes. This causes the second polysilicon film (
5) A first oxide film 011 with a thickness of 10001 is formed on the top and exposed end of the first polysilicon film (3), and the recess ( 1 is almost filled with this oxide film OB, and the pattern shape of the double gate part a is improved, but the substrate (1)
The upper gate oxide (3) only increases by about 700 steps.

その後、基板fit ic 160 KeV、−イオン
数4×1♂2 cm  のヒ素イオン注入を行ない(第2図1dl参照
)。
Thereafter, arsenic ions were implanted with a substrate fit of 160 KeV and a number of negative ions of 4×1♂2 cm (see FIG. 2, 1dl).

それを1050℃の窒素雰囲内に2時間置き、窒素中処
理を行なって基板(1)にソース部(7)とドレイン部
(8)とを形成する。そして最後に従来方法と同様の方
法により、基板(1)上にソース部(7)、ドレイン部
(8)及び第lの酸化膜(1υを被覆して第2の酸化膜
(9)及びリンガラス膜11ωを形成する。このように
すれは第2図(C)に示す構造の半導体装置を製造する
ことかできる。
It is placed in a nitrogen atmosphere at 1050° C. for 2 hours and treated in nitrogen to form a source portion (7) and a drain portion (8) on the substrate (1). Finally, by the same method as the conventional method, the source part (7), the drain part (8), and the lth oxide film (1υ) are coated on the substrate (1), and the second oxide film (9) and the phosphor layer are coated on the substrate (1). A glass film 11ω is formed.In this way, a semiconductor device having the structure shown in FIG. 2(C) can be manufactured.

以上のような本実施例の製造方法では、第2のポリシリ
コン膜(51,1−間酸化膜(4)及び第1のポリシリ
コン膜(3)のパターニングを行なった後、酸化M (
11) +形成して二重ゲート部α3のパターン形状の
改良を行なうようにしたので、リンガラス膜i11は第
2図1dlに示す形状となり、第1.第2のポリシリコ
ン膜+31 +51間にはほとんど侵入しない。このこ
とは走査型電子顕微鏡(SEM)による新曲形状観察に
よって確かめられている。従って第1.第2のポリシリ
コン膜f3) 151間の階間絶縁膜(4)の耐比は従
来品の65Vから85Vに上昇し、その結果、電荷保持
特性等の信頼性は大きく改善され、32にビット不揮発
性メモリへの適用では良好な結果を示した。
In the manufacturing method of this embodiment as described above, after patterning the second polysilicon film (51, 1-interoxide oxide film (4) and first polysilicon film (3), oxide M (
11) Since the pattern shape of the double gate portion α3 was improved by forming +, the phosphor glass film i11 has the shape shown in FIG. Almost no penetration occurs between the second polysilicon films +31 and +51. This has been confirmed by observing the new curve shape using a scanning electron microscope (SEM). Therefore, the first. The withstand ratio of the interstory insulating film (4) between the second polysilicon film f3) 151 has increased from 65 V of the conventional product to 85 V, and as a result, reliability such as charge retention characteristics has been greatly improved, and the Good results were shown when applied to non-volatile memory.

なお本党明は上記実施例に限疋されるものではなく、例
えばゲート酸化膜(2)は二組ゲートのパターニング時
にエツチングを行なうようにしてもよく、又パターン形
状改良のための熱酸化後にエツ≠ングそ行なうようにし
てもよい。
The present invention is not limited to the above embodiment; for example, the gate oxide film (2) may be etched during patterning of two sets of gates, or may be etched after thermal oxidation to improve pattern shape. You may also do so.

以上のように本発明に係る単導体装置の製造方法によれ
ば、二重シリコンゲート構造電界効果型の不揮発性半導
体装置の製造方法において、二車ゲート構造のパターニ
ング後でかつソース、ドレイン形成前に、第1.第2の
ポリシリコン膜及び)−間酸化膜から二重ゲート部のパ
ターン形状を改良するための酸化膜を形成するようにし
たので、記憶保持特性等の信頼性を大きく向上できる効
果がある。
As described above, according to the method for manufacturing a single conductor device according to the present invention, in the method for manufacturing a double silicon gate field effect type non-volatile semiconductor device, after patterning the two-wheel gate structure and before forming the source and drain. 1st. Since the oxide film for improving the pattern shape of the double gate portion is formed from the second polysilicon film and the inter-oxide film, reliability such as memory retention characteristics can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

実施例方法による半導体装置の製造各工程での断圓図で
ある。 は)・・・シリコン基板、(2)・・・ゲート酸化膜、
(3)・・・第1のポリシリコン膜、(4)・・・層間
酸化膜、(5)・・・第2のポリシリコン膜、(7)・
・・ソース部、(8)・・・ドレイン部、(9)・・・
第2の酸化膜、II・・・リンガラス族、0ト・・第1
の酸化膜、0ト・・二重ゲート部。 なお図中、同一符号は同−又は相当部分を示す。 代理人 為野信− 第1図 第1図 第2図
FIG. 4 is a cross-sectional view of each step of manufacturing a semiconductor device according to an embodiment method. )...Silicon substrate, (2)...Gate oxide film,
(3)...first polysilicon film, (4)...interlayer oxide film, (5)...second polysilicon film, (7)...
...Source section, (8)...Drain section, (9)...
Second oxide film, II... phosphorus group, 0th... first
Oxide film, 0...double gate part. In the drawings, the same reference numerals indicate the same or equivalent parts. Agent Shin Tameno - Figure 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)二重シリコンゲート構造電界効果型の不揮発性の
半導体装置の製造方法であって、シリコン基板上にゲー
ト酸化膜、第1のポリシリコン膜1層間酸化膜及び18
2のポリシリコン膜を形成する工程と、上記第2のポリ
シリコン膜9層間酸化膜及び第1のポリシリコン膜を所
定のパターン形状に形成する工程と、上記第1.!+1
2のポリシリコン膜及び層間酸化膜からなる二重ゲート
部のパターン形状を改良するため上記層間酸化膜の側面
を覆って*iの酸化膜を形成する工程と、上記シリコン
基板にソース部とドレイン部と゛を形成する工程と、上
記シリコン基板上に上記二重ゲート部、ソース部及びド
レイン部を覆って第2の酸化膜及びリンガラス膜を形成
する工程とからなる特徴とする半導体装置の製造方法。
(1) A method for manufacturing a field-effect nonvolatile semiconductor device with a double silicon gate structure, comprising: a gate oxide film, a first polysilicon film, an interlayer oxide film, and a first polysilicon film;
a step of forming the second polysilicon film 9 interlayer oxide film and the first polysilicon film in a predetermined pattern shape; ! +1
A step of forming an oxide film *i covering the side surface of the interlayer oxide film in order to improve the pattern shape of the double gate portion consisting of the polysilicon film and the interlayer oxide film (No. 2), and forming a source and drain layer on the silicon substrate. and a step of forming a second oxide film and a phosphor glass film on the silicon substrate to cover the double gate part, the source part, and the drain part. Method.
JP56180099A 1981-11-09 1981-11-09 Manufacture of semiconductor device Granted JPS5880870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180099A JPS5880870A (en) 1981-11-09 1981-11-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180099A JPS5880870A (en) 1981-11-09 1981-11-09 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5880870A true JPS5880870A (en) 1983-05-16
JPS6312388B2 JPS6312388B2 (en) 1988-03-18

Family

ID=16077408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180099A Granted JPS5880870A (en) 1981-11-09 1981-11-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5880870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670951A1 (en) * 1990-12-21 1992-06-26 Samsung Electronics Co Ltd NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND MANUFACTURING METHOD THEREOF.
US5491100A (en) * 1992-11-23 1996-02-13 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having a contact window structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670951A1 (en) * 1990-12-21 1992-06-26 Samsung Electronics Co Ltd NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND MANUFACTURING METHOD THEREOF.
US5491100A (en) * 1992-11-23 1996-02-13 Samsung Electronics Co., Ltd. Method for manufacturing a semiconductor device having a contact window structure
US5751048A (en) * 1992-11-23 1998-05-12 Samsung Electronics Co., Ltd. Semiconductor device having a contact window structure

Also Published As

Publication number Publication date
JPS6312388B2 (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JP3911043B2 (en) Nonvolatile memory device and manufacturing method thereof
GB2128807A (en) Improvements in or relating to a method for fabricating an MOS device
JPS6260817B2 (en)
KR940007654B1 (en) Method of fabricating a nonvolatile semiconductor memory device
US5328867A (en) Peroxide clean before buried contact polysilicon deposition
JPH0272672A (en) Semiconductor device and manufacture thereof
KR950011029B1 (en) Making method of non-volatile semiconductor memory device
JPS5880870A (en) Manufacture of semiconductor device
JP2000315768A (en) Fabrication of semiconductor device
JPH03270174A (en) Manufacture of nonvolatile semiconductor memory device
JP3100759B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2750159B2 (en) Method for manufacturing semiconductor device
KR920001640B1 (en) Nonvolatile semiconductor device
KR100280551B1 (en) Fabrication method of capacitor having high capacitance
US7074679B2 (en) Methods of fabricating self-aligned source of flash memory device
KR100340867B1 (en) Method for forming gate electrode of semiconductor device
KR100406590B1 (en) Gate electrode formation method of semiconductor device
JPS58121682A (en) Manufacture of double gate semiconductor element
JP3378776B2 (en) Manufacturing method of nonvolatile semiconductor memory device
DE10101270A1 (en) Process for the production of embedded non-volatile semiconductor memory cells
KR0166845B1 (en) Manufacturing method of semiconductor device
US7259070B2 (en) Semiconductor devices and methods for fabricating the same
KR0147875B1 (en) Fabrication method for capacitor
KR100271792B1 (en) Method of fabricating capacitor
KR20020095691A (en) Method for fabricating flash memory device