JPS587886B2 - liquid fuel combustion equipment - Google Patents

liquid fuel combustion equipment

Info

Publication number
JPS587886B2
JPS587886B2 JP8921181A JP8921181A JPS587886B2 JP S587886 B2 JPS587886 B2 JP S587886B2 JP 8921181 A JP8921181 A JP 8921181A JP 8921181 A JP8921181 A JP 8921181A JP S587886 B2 JPS587886 B2 JP S587886B2
Authority
JP
Japan
Prior art keywords
flame
burner
port
plate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8921181A
Other languages
Japanese (ja)
Other versions
JPS5741513A (en
Inventor
横家尚士
吉野昌孝
森崎隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8921181A priority Critical patent/JPS587886B2/en
Publication of JPS5741513A publication Critical patent/JPS5741513A/en
Publication of JPS587886B2 publication Critical patent/JPS587886B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Description

【発明の詳細な説明】 本発明は超音波振動子の液体燃料微粒化作用を利用した
超音波霧化装置を備えてなる液体燃料の燃焼方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid fuel combustion method comprising an ultrasonic atomizer that utilizes the liquid fuel atomization effect of an ultrasonic vibrator.

超音波振動子の液体微粒化作用はよく知られている。The liquid atomization effect of ultrasonic transducers is well known.

かかる超音波振動子を利用した超音波霧化装置により微
粒化された液体燃料の粒子径は電歪形のもので10μ程
度と比較的小さく、燃焼させるに充分なる大きさである
The particle diameter of the electrostrictive liquid fuel atomized by the ultrasonic atomization device using such an ultrasonic vibrator is relatively small, about 10 μm, and is large enough to be combusted.

ところが、この微粒化粒子がバーナーの炎口を通過する
時、炎口及びその周辺に衝突して捕促され、これらが集
合して液滴を形成し易く、局部的に液体燃焼の領域を形
成する場合が発生し、燃焼を悪くした。
However, when these atomized particles pass through the flame nozzle of the burner, they collide with and are captured by the flame nozzle and its surroundings, and these particles tend to aggregate and form droplets, forming local areas of liquid combustion. This caused combustion to deteriorate.

又、上記の如き粒子径が10μ程度といってもばらつき
があり、5μから25μ或は30μ程度の大きさのもの
が分布するから、粒子径が犬である程、上記炎口周辺に
付着し易く、燃焼性の悪化をひきおこした。
In addition, even though the particle size as mentioned above is about 10μ, there is variation, and particles with sizes ranging from 5μ to 25μ or 30μ are distributed, so the larger the particle size, the more likely it will adhere to the area around the flame opening. This caused deterioration of flammability.

本発明は従来のものの上記欠点を解消し、火炎分布が均
一でかつ気体燃焼と同等の良好な燃焼性を得ることがで
きるような燃焼方法を得ることを目的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks of the conventional methods and to provide a combustion method that provides uniform flame distribution and good combustibility equivalent to that of gaseous combustion.

ところで燃料粒子が炎口板の炎口を通過する時に付着し
ても瞬時に気化すれば前記液体燃焼状態を回避できる。
By the way, even if fuel particles adhere to the flame port when passing through the flame port of the flame port plate, if they are instantaneously vaporized, the liquid combustion state can be avoided.

このためには炎口板の温度を高い値にしておけばよい。For this purpose, the temperature of the burner port plate should be set to a high value.

しかし、炎口板の温度が高過ぎることは、それだけ燃料
の燃焼熱が炎口板に吸収されることになり、熱効率とし
ては良くなく、又、炎口板の耐熱、耐久性からみても好
ましくない。
However, if the temperature of the burner plate is too high, the combustion heat of the fuel will be absorbed by the burner plate, which is not good for thermal efficiency and is also undesirable from the viewpoint of heat resistance and durability of the burner plate. do not have.

そこで本発明者等は実験によってかかる炎口板の最適温
度範囲が約400〜600℃であればよいことを知った
The inventors of the present invention have found through experiments that the optimum temperature range for such a flame port plate is approximately 400 to 600°C.

一方、炎口板の加熱は燃料の燃焼熱を利用するものであ
るから、炎口板の温度を上記範囲内に継持するためには
、燃料発熱量の一部を炎口板に供給しなければならない
On the other hand, since the combustion heat of the fuel is used to heat the burner plate, in order to maintain the temperature of the burner plate within the above range, a portion of the fuel calorific value must be supplied to the burner plate. There must be.

この関係を示すために炎口負荷率即ち炎a板の有効面積
をその炎口板全体の燃焼発熱量(燃焼量)で除したもの
、言いかえれば単位有効面積当りの燃料の発熱量と炎口
板の温度との関係の実験結果を第1図に示す、図により
明らかなように炎口板温度を約400〜600℃にする
には炎口負荷率が約3.0〜0.5koal/mm2・
hrの範囲内にあることが条件となる。
In order to show this relationship, the flame port load factor, that is, the effective area of the flame a plate divided by the combustion calorific value (combustion amount) of the entire flame port plate, in other words, the calorific value of the fuel per unit effective area and the flame The experimental results of the relationship with the temperature of the mouth plate are shown in Figure 1.As is clear from the figure, in order to make the temperature of the mouth plate about 400 to 600°C, the mouth load rate must be about 3.0 to 0.5 koal. /mm2・
The condition is that it is within the range of hr.

なおこメで炎口板の上記有効面積とは炎口板の各炎口面
積の合計をいうのではなく、炎が形成されている部分の
炎口板の面積をいい、各炎口面積の合計よりも大きいこ
とは当然である。
Note that the above effective area of the flame port plate does not refer to the total area of each flame port area of the flame port plate, but refers to the area of the flame port plate where the flame is formed, and the total area of each flame port area. It is natural that it is larger than .

又、炎口板の厚さ即ち炎口の深さは、炎口を通る燃料微
粒子を周囲から加熱気化する上で重要−な要素である。
Further, the thickness of the burner port plate, that is, the depth of the burner port, is an important factor in heating and vaporizing the fuel particles passing through the burner port from the surroundings.

つまり炎の根本が炎口面に近づいて燃焼するいわゆるバ
ックファイヤ気味の燃焼等に炎口板が火炎の放射熱によ
ってよく加熱されるから、炎口板を高温に保つためには
炎口の深さがある程度深いのが良い。
In other words, during so-called backfire-like combustion, where the base of the flame approaches the burner surface, the burner plate is often heated by the radiant heat of the flame, so in order to keep the burner plate at a high temperature, the depth of the burner hole must be It's good to have some depth.

勿論炎口板の厚さが厚過ぎると炎口板の熱吸収量が多き
に失する。
Of course, if the thickness of the burner port plate is too thick, a large amount of heat absorption by the burner port plate will be lost.

炎口を通る燃料微粒子径もまたその気化に至るまでの吸
収熱量の多少から炎口内の吸熱時間即ちある一定範囲の
炎口の深さを必要とする。
The diameter of the fuel particles passing through the flame nozzle also requires heat absorption time within the flame nozzle, that is, the depth of the flame nozzle within a certain range, depending on the amount of heat absorbed until vaporization.

なお炎口板の炎口の口径については、一般には液体燃料
の消炎距離は1期であると言われておりこの口径以下で
あれば炎口を介してバックファイヤーが起こらないと言
われているので1mm以下に設定することを必要とする
Regarding the diameter of the flame port of the flame port plate, it is generally said that the extinguishing distance of liquid fuel is 1 stage, and it is said that if the diameter is less than this, backfire will not occur through the flame port. Therefore, it is necessary to set it to 1 mm or less.

かかる観点において炎口の深さと炎口の通過初期の燃料
粒子径と炎口板温度との実験をした結果、第2図のよう
に燃料粒子径が5〜30μ、炎口板温度が400〜60
0℃の範囲にあるには前記炎口負荷率の他に炎口深さが
0.2〜3mmの範囲にあることが必要であることがわ
かった。
From this point of view, as a result of experiments on the depth of the flame nozzle, the fuel particle diameter at the initial stage of passage through the flame nozzle, and the flame mouth plate temperature, as shown in Fig. 2, the fuel particle diameter was 5 to 30μ, and the flame mouth plate temperature was 400 to 400μ. 60
It has been found that in order to be in the range of 0°C, in addition to the above-mentioned burner port load factor, it is necessary that the burner port depth is in the range of 0.2 to 3 mm.

このようにして本発明においては炎口板の炎口を深さと
炎口負荷率から特定することにより、炎口板温度を適正
値に維持し、燃料微粒子を液滴にすることがなく可及的
に気化させた状態で良好な燃焼性を得るものである。
In this way, in the present invention, by specifying the flame port of the flame port plate from the depth and the flame port load factor, the temperature of the flame port plate can be maintained at an appropriate value, and the fuel particles can be kept as low as possible without turning into droplets. It provides good combustibility when vaporized.

以下に本発明の実施例を第3図以下に基づいて説明する
Embodiments of the present invention will be described below with reference to FIG. 3 and subsequent figures.

ただし以下の実施例において、炎口負荷率を約3koa
l/mm^・hr とし炎口深さを3.0mmとした。
However, in the following examples, the flame outlet load rate is approximately 3 koa.
l/mm^・hr and the depth of the flame mouth was 3.0 mm.

第3図において1は燃料タンク、2は定油面調節器、3
は油槽で定油面調節器により燃料タンク1から供給され
た燃料の油面が一定制御される。
In Fig. 3, 1 is a fuel tank, 2 is a constant oil level regulator, and 3 is a fuel tank.
In the oil tank, the oil level of the fuel supplied from the fuel tank 1 is controlled to be constant by a constant oil level regulator.

4は超音波振動子を内蔵した超音波霧化装置で、油槽3
の底部に配設され、超音波振動子の微粒化作用により油
槽3内の液体燃料を微粒子状にする。
4 is an ultrasonic atomizer with a built-in ultrasonic vibrator, and oil tank 3
The liquid fuel in the oil tank 3 is disposed at the bottom of the oil tank 3, and the liquid fuel in the oil tank 3 is turned into fine particles by the atomization effect of the ultrasonic vibrator.

5は送風機、6は油槽3内に発生した微粒子熱料と送風
機5から送られる空気の一部とを予混合した混合気の案
内筒、7はバーナーであって8の炎口板の下流側に9の
燃焼室が形成される。
5 is a blower, 6 is a guide tube for a mixture of premixed particulate heating material generated in the oil tank 3 and a part of the air sent from the blower 5, and 7 is a burner downstream of the burner port plate 8. Nine combustion chambers are formed.

8aは炎口板8に設けたスリット状の複慾の炎口である
Reference numeral 8a denotes a slit-shaped multi-hole nozzle provided on the nozzle plate 8.

この炎口8aの諸条件は上述の如き決定される。The conditions of this flame port 8a are determined as described above.

10はバーナー7壁部に設けられ送風機5から供給され
る空気め残部を燃焼室9に二次空気として導入する空気
孔である。
Reference numeral 10 denotes an air hole provided in the wall of the burner 7, through which the residual air supplied from the blower 5 is introduced into the combustion chamber 9 as secondary air.

従って、燃料タンク1から供給された燃料は油槽3にお
いて超音波霧化装置4により微粒子化され、送風機5よ
りの空気と混合して炎口板8の炎口8aから燃焼室9内
に導かれる。
Therefore, the fuel supplied from the fuel tank 1 is atomized by the ultrasonic atomizer 4 in the oil tank 3, mixed with air from the blower 5, and guided into the combustion chamber 9 through the flame port 8a of the flame port plate 8. .

このとき図示しない点火装置によって該混合気が燃焼さ
れ、空気孔10から導入された二次空気によって該燃焼
が促進される。
At this time, the air-fuel mixture is combusted by an ignition device (not shown), and the combustion is promoted by secondary air introduced from the air hole 10.

点火後は炎口8aから連続的に燃焼火炎が吹き出て連続
燃焼する。
After ignition, combustion flame continuously blows out from the flame port 8a, resulting in continuous combustion.

炎口8aは上記の如く、炎口負荷率約3koal/mm
^・hr、炎口深さlを3.0mmとしたから、第1図
から炎口板8の温度が約400℃に保たれ、炎口8a周
辺の炎口板8に燃料粒子が衝突しても液滴状に付着する
ことがなく気化することがわかり、第2図から、炎口8
aを流通する燃料粒子が約23μ程度の大径のものであ
っても炎口8a内周面からの放射熱を受けて充分に気化
することがわかり、結局、気体燃焼の如く良い燃焼性を
示すことがわかる。
As mentioned above, the flame port 8a has a flame port load rate of approximately 3 koal/mm.
Since the flame outlet depth l is set to 3.0 mm, the temperature of the flame outlet plate 8 is maintained at approximately 400°C from Fig. 1, and the fuel particles collide with the flame outlet plate 8 around the flame outlet 8a. However, from Figure 2, it can be seen that the flame outlet 8
It has been found that even if the fuel particles flowing through a have a large diameter of about 23μ, they are sufficiently vaporized by receiving radiant heat from the inner circumferential surface of the flame port 8a. I understand what is shown.

このときの炎の根本は炎口8a面に近づき炎口8a内周
面から剥離し、炎口8aを放射熱により加熱していた。
At this time, the root of the flame approached the surface of the flame outlet 8a and separated from the inner circumferential surface of the flame outlet 8a, heating the flame outlet 8a with radiant heat.

第4図及び第5図は本発明に係る炎口形状の変形態様を
示し、第4図は2枚の炎口板11a,1Ib間にメッシ
ュ状の炎口網11cを挟んだ場合であり、第5図は炎口
板12をパンチングして多数の炎口13を形成した場合
である。
FIGS. 4 and 5 show modifications of the flame outlet shape according to the present invention, and FIG. 4 shows a case where a mesh-like flame outlet net 11c is sandwiched between two flame outlet plates 11a and 1Ib, FIG. 5 shows a case where a large number of burner ports 13 are formed by punching the burner port plate 12.

これらはすべて炎口深さ及び炎口負荷率が先の実施例と
同様に決定されていてその効果も同様である。
In all of these cases, the depth of the burner port and the load rate of the burner port are determined in the same manner as in the previous embodiment, and the effects are also the same.

以上説明したように本発明によると、炎口周辺に衝突し
た燃料粒子は火炎から充分に熱回収した炎口板に加熱さ
れて気化し、又炎口を流通する燃料粒子も炎口内が高温
雰囲気に維持され、かつ適当な深さを有していて、充分
に気化されるため、燃焼は気体燃焼と同等の良好な性状
となり、かつ火炎分布が均一となる。
As explained above, according to the present invention, the fuel particles colliding around the flame nozzle are heated and vaporized by the flame nozzle plate which sufficiently recovers heat from the flame, and the fuel particles flowing through the flame nozzle are also exposed to the high temperature atmosphere inside the flame nozzle. Since the gas is maintained at an appropriate depth and is sufficiently vaporized, the combustion has good properties equivalent to gaseous combustion and the flame distribution is uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炎口板温度と炎口負荷率との関係を示すグラフ
、第2図は炎口深さ、炎口板温度及び燃料粒径との関係
を示すグラフ、第3図は本発明の一実施例を示す概略構
成図、第4図及び第5図は本発明に係る炎口及び炎口板
の変形態様を示す断面図である。 4・・・・・・超音波霧化装置、7・・・・・・バーナ
ー、8,11a〜11c,12・・・・・・炎口板、8
a,13・・・・・・炎口。
Fig. 1 is a graph showing the relationship between the burner port temperature and the burner port load factor, Fig. 2 is a graph showing the relationship between the burner port depth, the burner port temperature, and the fuel particle size, and Fig. 3 is a graph showing the relationship between the burner port depth, the burner port temperature, and the fuel particle size. FIGS. 4 and 5 are schematic configuration diagrams showing one embodiment of the present invention, and are cross-sectional views showing modifications of the burner port and the burner port plate according to the present invention. 4... Ultrasonic atomization device, 7... Burner, 8, 11a to 11c, 12... Flame mouth plate, 8
a, 13... Flame mouth.

Claims (1)

【特許請求の範囲】[Claims] 1 超音波振動子を利用して液体燃料を微粒化しバーナ
ー7で燃焼させる液体燃料燃焼方法において、前記バー
ナー7の炎口板8を、その炎口8aの口径が1mm以下
でかつ炎口8aの深さが0.2〜3.0mmの範囲にな
るように形成すると共に該バーナー7における燃料発熱
量と前記炎口板8の有効面積との関係が炎口負荷率0.
5〜3koal/mm2.hrの範囲となるように設定
したことを特徴とする液体燃料燃焼方法。
1. In a liquid fuel combustion method in which liquid fuel is atomized using an ultrasonic vibrator and combusted in a burner 7, the burner port plate 8 of the burner 7 has a diameter of 1 mm or less and the burner port 8a has a diameter of 1 mm or less. The depth is in the range of 0.2 to 3.0 mm, and the relationship between the fuel calorific value in the burner 7 and the effective area of the burner port plate 8 is such that the burner port load factor is 0.
5-3 koal/mm2. A liquid fuel combustion method characterized in that the liquid fuel combustion method is set to fall within a range of hr.
JP8921181A 1981-06-10 1981-06-10 liquid fuel combustion equipment Expired JPS587886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8921181A JPS587886B2 (en) 1981-06-10 1981-06-10 liquid fuel combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8921181A JPS587886B2 (en) 1981-06-10 1981-06-10 liquid fuel combustion equipment

Publications (2)

Publication Number Publication Date
JPS5741513A JPS5741513A (en) 1982-03-08
JPS587886B2 true JPS587886B2 (en) 1983-02-12

Family

ID=13964376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8921181A Expired JPS587886B2 (en) 1981-06-10 1981-06-10 liquid fuel combustion equipment

Country Status (1)

Country Link
JP (1) JPS587886B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155753A (en) * 1984-01-19 1985-08-15 リユテイーテ ストラケ ビー.ブイ. Method and mechanism for operating loom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155753A (en) * 1984-01-19 1985-08-15 リユテイーテ ストラケ ビー.ブイ. Method and mechanism for operating loom

Also Published As

Publication number Publication date
JPS5741513A (en) 1982-03-08

Similar Documents

Publication Publication Date Title
US4628890A (en) Fuel atomizer
US4013396A (en) Fuel aerosolization apparatus and method
JPH0634119A (en) Atomization type petroleum burner
JPS587886B2 (en) liquid fuel combustion equipment
JPS6335219Y2 (en)
JPH07293849A (en) Atomizing burner for burning fuel such as waste oil and the like
JP2805976B2 (en) Oil burning equipment
JP3376585B2 (en) Oil burning equipment
JP2861398B2 (en) Oil burning equipment
JPS589070Y2 (en) flame detection device
JPS63251709A (en) Vaporizer
JP2924160B2 (en) Oil burning equipment
JPS6314184Y2 (en)
JP2893809B2 (en) Oil burning equipment
JP2979673B2 (en) Oil burning equipment
JPS584018Y2 (en) liquid fuel combustion equipment
JPS6324370Y2 (en)
JPH0344980Y2 (en)
JP2755511B2 (en) Method and apparatus for burning liquid fuel
JP3081317B2 (en) Liquid fuel combustion device
JPH0137643B2 (en)
JPS6026208A (en) Evaporating device
JPS60221610A (en) Liquid fuel combustion apparatus
JPS63254309A (en) Petroleum burner
JPH06265113A (en) Liquid fuel combustion device