JPS587882A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS587882A
JPS587882A JP10588481A JP10588481A JPS587882A JP S587882 A JPS587882 A JP S587882A JP 10588481 A JP10588481 A JP 10588481A JP 10588481 A JP10588481 A JP 10588481A JP S587882 A JPS587882 A JP S587882A
Authority
JP
Japan
Prior art keywords
substrate
drain
source
single crystal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10588481A
Other languages
Japanese (ja)
Inventor
Yukinori Kuroki
黒木 幸令
Nobuhiro Endo
遠藤 伸裕
Yukinobu Tanno
丹野 幸悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10588481A priority Critical patent/JPS587882A/en
Priority to US06/395,110 priority patent/US4637127A/en
Priority to DE19823225398 priority patent/DE3225398A1/en
Publication of JPS587882A publication Critical patent/JPS587882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable high speed operation by isolating a drain or a source from a substrate via an insulator, thereby reducing a floating capacity. CONSTITUTION:Part of a single crystal layer 32 including an impurity to become a gate is formed in contact with a substrate single crystal on a silicon substrate 30. A single crystal layer 33 including an imputrity to become at least either one of a drain or a source is formed through an amorphous insulator 31 on the substrate.

Description

【発明の詳細な説明】 本発明は半導体装置、特にシリコン基板を用いた集積回
路、詳しくは接合型電界効果トランジスタ及びこれを含
んだ集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, particularly an integrated circuit using a silicon substrate, and more particularly to a junction field effect transistor and an integrated circuit device including the same.

シリコン基板を用いた集積回路はいわゆるプレーナ技術
を使ったバイポーラ派、シリコン表面を用いたhK)8
 (Metal 8i1icon−dioxide f
iemiconductor)型の集積回路が、特にM
Oa型はその高集積化し鳥い点から極めて多くの集積回
路に使用され、lチップマイクロコンビーータ等にみら
れる様に驚くべき機能を持たせることができるまでにな
っている。このように現在はバイポーラ型あるいはM)
8型が多用されているわけであるが、これは他の接合型
の電界効果トランジスタの如く、トランジスタ間の分離
方法が困難でありかつ大面積を占有するため高集積化が
困難となること、また低電圧で駆動させるには不純物濃
度プロファイルの急峻でかつ薄いエピタキシャル層が必
要であったからである。しかしながら減圧エピタキシャ
ル装置、イオン注入装置の利用により、仁の制限は除々
に解除されつつある。
Integrated circuits using silicon substrates are bipolar, which uses so-called planar technology, and hK), which uses silicon surfaces.8
(Metal 8i1icon-dioxide f
iemiconductor) type integrated circuits, especially M
The Oa type is used in an extremely large number of integrated circuits due to its high degree of integration and unique features, and has reached the point where it can be provided with surprising functions, as seen in l-chip microcombinators and the like. In this way, it is currently bipolar type or M)
8-type transistors are often used, but unlike other junction-type field effect transistors, it is difficult to separate the transistors and occupies a large area, making it difficult to achieve high integration. Further, driving at a low voltage requires a thin epitaxial layer with a steep impurity concentration profile. However, with the use of reduced pressure epitaxial equipment and ion implantation equipment, these restrictions are being gradually lifted.

第1図は従来から多用されているプレーナー型の接合型
電界効果型トランジスタの断面を示すものである。pm
の不純物を高濃度含むシリコン基板1上にnfJ、のエ
ピタキシャルWX2を形成し、n型の高濃度不純物を含
むソース3及びドレイン4を拡散形成し、さらKp型の
高濃度不純物層によりゲート5を又同じく素子間分離部
6を形成してあり平面構造のため集積化し易い特徴があ
る。しかしながらp−n8合による分離のため、分離に
必要な面積が大きく又浮遊キャパシタンスが大きくなる
という欠点を有する。
FIG. 1 shows a cross section of a planar junction field effect transistor that has been widely used in the past. pm
An epitaxial WX2 of nfJ is formed on a silicon substrate 1 containing a high concentration of impurity of n-type, a source 3 and a drain 4 containing high concentration of n-type impurity are formed by diffusion, and a gate 5 is further formed with a high concentration of Kp-type impurity layer. Also, since the element separation section 6 is similarly formed and the planar structure is easy to integrate. However, since the isolation is based on the p-n 8 coupling, there are disadvantages in that the area required for isolation is large and the stray capacitance becomes large.

N2図はアイOイー・イー幸ジャーナル・オブ・ソリマ
ドステートサーキット (IlaB JOURNALO
F 80LID−8TATE CI[TJIT8)rI
PP(ME 5C−15−8第4号656〜660  
ページに記数されたオサム・ミナト他6名による論文に
述べられた埋め込み型接合電界効果トランジスタの例で
ある。この素子はnw基板10 中にコンプリメタリ−
MOSでp−ウェルと呼ばれているp型の拡散層と同時
に形成されたゲートとなる2m領域11  を峡け、さ
らにドレイン12  及びソース13  となるn1j
1の領域を設けそれぞれに電極を設けたものであり、こ
の論文の例では、この接合型電界効果トランジスタを負
荷にし電源を基板から取り、かつゲート領t!I/、]
】はコンプリメンタリCMO8(D p−ウェルとして
いるため、接合層電界効果トランジスタのドレインゲー
トの基板嵌置への取り出しは集積回路全体でスタはソー
ス電極だけそれぞれ取り出せばよいこととなり集積度を
上げることに大きく寄与している。しかしながらこの構
造ではベース領域をp−ウェルと同時に製作するため、
その基板に対するいわゆる接合深さは4ミクロンとなり
、横方向の拡散ひろがりにより、おのずとその大きさは
制限されることとなり、高密変集積化する上で1〜2ミ
クロン程度のパターンにすると大きな障害となる。また
この接合型電界効果トランジスタは特殊な使用例で、一
般にこの型のトランジスタを基本とする集積回路ではさ
らにゲート領域へのオーミヲク接合及びトランジスタ間
の分離を必要とするので、一般的なソース、ゲート、ド
レインを認意の電位で用いる集積回路の基本素子とはな
り得ないO 本発明の目的は従来困難であうた一般的な使用に耐え得
、しかも超高密度化に非常に適した構造の半導体装置を
提供することにある。
Diagram N2 is from the Journal of Solimado State Circuit (IlaB JOURNALO).
F 80LID-8TATE CI[TJIT8)rI
PP (ME 5C-15-8 No. 4 656-660
This is an example of a buried junction field effect transistor described in a paper by Minato Osamu and six others listed on the page. This element is a complementary element in the NW board 10.
It passes through the 2m region 11 which becomes the gate formed at the same time as the p-type diffusion layer called p-well in MOS, and further forms the drain 12 and source 13.
In the example of this paper, this junction field effect transistor is used as a load, the power source is taken from the substrate, and the gate region t! I/,]
] is a complementary CMO8 (D p-well), so the drain gate of the junction layer field effect transistor can be taken out to the substrate by taking out the entire integrated circuit, and the star only has to take out the source electrode, which increases the degree of integration. However, in this structure, the base region is fabricated at the same time as the p-well, so
The so-called bonding depth to the substrate is 4 microns, and its size is naturally limited due to lateral diffusion and expansion, and creating a pattern of about 1 to 2 microns will be a major obstacle for high-density integration. . Additionally, this junction field effect transistor is a special use case, as integrated circuits based on this type of transistor typically require an additional ohmic junction to the gate region and isolation between the transistors; The object of the present invention is to create a semiconductor with a structure that can withstand general use, which was previously difficult, and that is highly suitable for ultra-high density. The goal is to provide equipment.

本発明によれば、シリコン基板上に形成され、そのゲー
ト部となる単結基層の一部が基板単結晶に接し、ドレイ
ン部あるいはソース部の少くともいずれか一方となる不
純物を含む単結晶層が非晶質の絶縁物を介して基板上に
設置された構造を含むことを特徴とする半導体装置を得
られる。
According to the present invention, a monocrystalline layer containing impurities is formed on a silicon substrate, a part of the single base layer that becomes the gate part is in contact with the single crystal substrate, and the monocrystalline layer contains impurities and becomes at least one of the drain part and the source part. It is possible to obtain a semiconductor device characterized in that it includes a structure in which the semiconductor device is placed on a substrate via an amorphous insulator.

#配本発明によればドレインまた必要とあればソースを
基板から絶縁物で分離できるので浮遊容量を小さくでき
、高速動作の可能な集積回路を得ることができる。また
絶に膜分離を使用しているのでnチャンネル・pチャン
ネルの混成も同一基板上で可能であり、コンプリメンタ
リ−の回路構成をとることが可能である。又対向するゲ
ート間距離と不純物一度分布を適切に選択すると、エン
ハンスメント聾あるいはディプリーシ膨ン型の両型のト
ランジスタを得ることができる。
#Distribution According to the present invention, since the drain and, if necessary, the source can be separated from the substrate by an insulating material, stray capacitance can be reduced and an integrated circuit capable of high-speed operation can be obtained. Furthermore, since membrane separation is always used, a hybrid of n-channel and p-channel is possible on the same substrate, and a complementary circuit configuration is possible. Further, by appropriately selecting the distance between opposing gates and the impurity distribution, it is possible to obtain both enhancement deaf and depletion expansion type transistors.

また絶縁膜上のシリコン層が単結晶であるから、この単
結晶膜上に各種の能動あるいは受動素子を同一基板上に
集積化することが可能となる。
Furthermore, since the silicon layer on the insulating film is single crystal, it is possible to integrate various active or passive elements on the same substrate on this single crystal film.

第3図は本発明の第1の実施例をとして接合型電界効果
トランジスタを製作する工程とその構造を示すものであ
る。まずシリコン基板萄 を熱酸化等により表面にシリ
コン酸化膜あるいは窒化膜等の絶縁膜31を形成する。
FIG. 3 shows the steps and structure of manufacturing a junction field effect transistor according to the first embodiment of the present invention. First, an insulating film 31 such as a silicon oxide film or a nitride film is formed on the surface of a silicon substrate by thermal oxidation or the like.

これを写真蝕刻工程によりゲートを形成する部分を開口
しシリコン基板を露出させる。続いて水素希釈の8x鵬
C1,塩酸混合ガスを用いて基板温度〜1080℃程度
でf3QTorrの減圧下でシリコンをエピタキシャル
成長するこのとき第1の1ステツプでp型の伝導性を与
えるためボロン(ロ)等゛の不純物をドープし第2のス
テ・プではn聾の伝導性を与えるためリン[F]あるい
はヒ素(As)をドープすることによりそれぞれ32.
33のエピタキシャル・シリコン層を得ると第3図(1
)の状態になる。続いて40〜100 nm 9度の下
敷きシリコン酸化膜34と100〜200 nm程度の
気相成長法によるシリコン窒化膜部 を付着し写真蝕刻
法によりトランジスタ頭載となる部分を残し、続いてこ
のシリコン窒化膜をマスクにして、マスクしていない部
分Kp型となるボロン(B)等を拡散し続いて熱酸化す
ると(b)図の如き構造となる。こうするとチャンネル
側面でのリーク電流を見金にaさえることができる。次
に表面側のゲート領域を形成する場所に写真蝕刻法によ
り窒化膜39  と下敷き酸化膜葛を残す、続いてn型
の不純物を拡散し続いて熱酸化により比較的厚い酸化膜
Cで覆われたソース旬 及びドレイン41  領域を得
ることができる。これらの工程によりはじめに埋め込ん
で形成されたベース領域32 は43  に示す如くや
や上下に拡がった形状となる。最後にt化膜を取り除き
イオン注入等による比較的洩い不純物導入法により表面
側のゲート領穢4 を形成すると第3図(e)の如く横
型の接合型電界効果トランジスタを得る。これ等の工程
で使用された不純物ドープ法上述の方法選択以外にも熱
拡散法、イオン注入法等種々の方法がマスク材の材質膜
厚を適切に選択することにより利用できることはいうま
でもない。
This is then subjected to a photolithography process to open a portion where a gate will be formed and expose the silicon substrate. Next, silicon is epitaxially grown using hydrogen-diluted 8x C1 and hydrochloric acid mixed gas at a substrate temperature of about 1080°C and a reduced pressure of f3QTorr. At this time, boron (Ro) is added in the first step to give p-type conductivity. ), and in the second step, doping with phosphorus [F] or arsenic (As) to give conductivity of 32.
When 33 epitaxial silicon layers are obtained, Figure 3 (1
). Subsequently, a 40 to 100 nm 9 degree silicon oxide film 34 and a silicon nitride film of about 100 to 200 nm are deposited by vapor phase growth, leaving a portion where the transistor will be mounted by photolithography, and then this silicon is deposited. Using the nitride film as a mask, the unmasked portions are diffused with boron (B), which becomes Kp type, and then thermally oxidized, resulting in a structure as shown in FIG. 3(b). In this way, the leakage current at the side surface of the channel can be suppressed. Next, a nitride film 39 and an underlying oxide film are left by photolithography at the location where the gate region on the front side is to be formed.N-type impurities are then diffused and then covered with a relatively thick oxide film C by thermal oxidation. A total of 41 source and drain regions can be obtained. Through these steps, the base region 32, which is initially formed by filling, has a shape that is slightly expanded upward and downward, as shown at 43. Finally, the t-oxide film is removed and a gate region 4 on the surface side is formed by a relatively leaky impurity introduction method such as ion implantation to obtain a lateral junction field effect transistor as shown in FIG. 3(e). It goes without saying that in addition to the impurity doping methods used in these processes, various methods such as thermal diffusion and ion implantation can be used by appropriately selecting the thickness of the mask material. .

本発明の第1の実施例では、ソース及びドレインが絶縁
膜により基板及び周囲の素子から電気的に分離されてい
るので、極めて高速に動作させることができる。素子間
の分離はソース及びドレインが基板から分離されている
ので、成長したエピタキシャル層を写真蝕刻法により除
去してもかまわない。また分離すべき素子間距離が充分
ある場合には、前述の8sH2CI□を用いたエピタキ
シャル法によれば、シリコン酸化膜あるいは窒化膜等の
非晶買絶鍬膜上には、その絶縁物開口部下の単結晶シリ
コンを種として成長させその開口面から横方向に拡がっ
て成長したシリコン単結晶がその開口部周囲にしか存在
しないようにすることができる。
In the first embodiment of the present invention, since the source and drain are electrically isolated from the substrate and surrounding elements by the insulating film, extremely high speed operation is possible. Since the source and drain are separated from the substrate, the grown epitaxial layer may be removed by photolithography. Furthermore, if there is a sufficient distance between the elements to be separated, the above-mentioned epitaxial method using 8sH2CI□ can be used to form an amorphous film such as a silicon oxide film or a nitride film under the opening of the insulator. It is possible to grow the single crystal silicon as a seed and to spread the silicon single crystal laterally from the opening surface so that the silicon single crystal grows only around the opening.

従ってこO開口部に形成された接合型電界効果トランジ
スタとまわりの素子間は自然発生的に分離された構造と
なり得るので、特に前2記の手法はとらずさも集積回路
を同一基板上に形成できる。
Therefore, since the junction field effect transistor formed in the O opening and the surrounding elements can be naturally separated, it is possible to form an integrated circuit on the same substrate without using the above two methods. can.

第4図は本発明の[20実施例で、ソース又はドレイン
団、ゲート51部はp −fl接合により電気的に分離
されており、基板から特別絶I/#膜により分離されて
いるということはない。しかしドレイン又はソース52
 は酸化I!453  により基板から分離されている
ので、多くの場合、IIglの実施例と同様に負荷容量
を@滅でき高速動作を可能とする。
FIG. 4 shows a twenty embodiment of the present invention, in which the source or drain group and the gate 51 are electrically isolated by a p-fl junction and separated from the substrate by a special isolation I/# film. There isn't. However, the drain or source 52
is oxidation I! Since it is separated from the substrate by 453, load capacitance can be eliminated in many cases, similar to the IIgl embodiment, and high-speed operation is possible.

第2の実施例は第1の実施例の製造工程を示す第3図(
1)のゲート埋め込み層をつくる際の絶縁物開口部をそ
の後ソース又はドレイン部を形成する領域まで形成する
ことKより、第1の実施例と同じ工程で作れる。
The second embodiment is shown in FIG. 3 (
Since the insulator opening in 1) is formed up to the region where the source or drain portion is to be formed later, the gate buried layer can be formed in the same process as the first embodiment.

以上の実施例ではnチャンネル塑素子について述べたが
、pチャンネル構造のものが作れることは半導体関連技
術者ならずとも容易に類推できることであり、実際に製
作は容易に出来る。
In the above embodiments, an n-channel plastic element has been described, but even those who are not semiconductor-related engineers can easily infer that a p-channel structure can be manufactured, and it is actually easy to manufacture the element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来から使用されて来ている接合分離型の横型
接合型電界効果トランジスタの断面を示す模式図である
。1は基板、2はエピタキシャル層、3はソース、4は
ドレイン、5はゲート、6は素子分離のための拡散層を
示す。第2図は集積回路に使用され高密度化に役立って
いる素子の例で11  は基板、12  はソース、1
3  はドレイン、14  はゲートを示す。第3図は
本発明の第1の実施例とその製造工程を説明するための
図であり、萄 は基板、31は絶縁物、32.&3はそ
れぞれゲート及びチャネル部となるエピタキシャル層、
Uはシリコン酸化膜、弱はシリコン窒化膜、あはリーク
防止用の拡散層、37 は素子間分離用の絶縁膜、38
.39はシリコン酸化膜及び窒化膜、旬はソース、41
  はドレイン、々 はシリコン酸化膜、43  は埋
め込みのゲート層、4441dMMゲート層である。第
4図は本発明の@2の実施例で(資)はソース又はドレ
イン、51  は埋め込みゲート層、52 はドレイン
又はソース、団は52を基板から電気的に絶縁している
絶縁膜である。
FIG. 1 is a schematic diagram showing a cross section of a conventionally used junction-separated lateral junction field effect transistor. 1 is a substrate, 2 is an epitaxial layer, 3 is a source, 4 is a drain, 5 is a gate, and 6 is a diffusion layer for element isolation. Figure 2 shows an example of elements used in integrated circuits that are useful for increasing density. 11 is the substrate, 12 is the source, 1
3 indicates the drain, and 14 indicates the gate. FIG. 3 is a diagram for explaining the first embodiment of the present invention and its manufacturing process, in which numeral 31 is a substrate, 31 is an insulator, 32. &3 are epitaxial layers that become gate and channel parts, respectively;
U is a silicon oxide film, weak is a silicon nitride film, A is a diffusion layer for leak prevention, 37 is an insulating film for isolation between elements, 38
.. 39 is silicon oxide film and nitride film, season is source, 41
is a drain, 4 is a silicon oxide film, 43 is a buried gate layer, and 4441dMM gate layer. FIG. 4 shows an example of @2 of the present invention, where 51 is a source or drain, 51 is a buried gate layer, 52 is a drain or source, and 52 is an insulating film electrically insulating it from the substrate. .

Claims (1)

【特許請求の範囲】[Claims] シリコン基板上に形成され、そのゲート部となる不純物
を含む単結晶層の一部が基板単結晶に接し、ドレイン部
あるいはソース部の少くともいずれか一方となる不純物
を含む単結晶層が非晶質の絶縁物を介して基板上に設置
された構造を含むことを特徴とする半導体装置。
A part of the single crystal layer containing impurities formed on a silicon substrate, which will become the gate part, is in contact with the single crystal substrate, and the single crystal layer containing impurities, which will become at least either the drain part or the source part, is amorphous. 1. A semiconductor device comprising a structure installed on a substrate via a high-quality insulator.
JP10588481A 1981-07-07 1981-07-07 Semiconductor device Pending JPS587882A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10588481A JPS587882A (en) 1981-07-07 1981-07-07 Semiconductor device
US06/395,110 US4637127A (en) 1981-07-07 1982-07-06 Method for manufacturing a semiconductor device
DE19823225398 DE3225398A1 (en) 1981-07-07 1982-07-07 SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10588481A JPS587882A (en) 1981-07-07 1981-07-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS587882A true JPS587882A (en) 1983-01-17

Family

ID=14419352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10588481A Pending JPS587882A (en) 1981-07-07 1981-07-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS587882A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137677A (en) * 1977-05-07 1978-12-01 Matsushita Electric Ind Co Ltd Junction type field effect transistor and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137677A (en) * 1977-05-07 1978-12-01 Matsushita Electric Ind Co Ltd Junction type field effect transistor and its manufacture

Similar Documents

Publication Publication Date Title
US5356821A (en) Method for manufacturing semiconductor integrated circuit device
US7598128B2 (en) Thin silicon-on-insulator double-diffused metal oxide semiconductor transistor
JPS6080267A (en) Semiconductor ic device and manufacture thereof
JPS6159853A (en) Structure of silicon crystalline body
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
KR890003827B1 (en) Process adapted to the manufacture of bicmos
US5389561A (en) Method for making SOI type bipolar transistor
EP0118102B1 (en) Method for manufacturing a semiconductor device
JPS63192266A (en) Cmos integrated circuit and manufacture thereof
JPS587882A (en) Semiconductor device
JPS60144949A (en) Manufacture of semiconductor device
JPH09115998A (en) Element separation structure of semiconductor integrated circuit and element separation thereof
JPS59168675A (en) Manufacture of semiconductor device
KR100216510B1 (en) Fabrication method of the collector for a bipolar transistor using a trench
JPS60117755A (en) Manufacture of semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPH04312927A (en) Semiconductor device and its manufacture
JPH06112481A (en) Manufacture of mos transistor
JPS587883A (en) Semiconductor device
JP3279515B2 (en) Semiconductor device and manufacturing method thereof
JPH05218187A (en) Fabrication of semiconductor substrate
JPH03188665A (en) Mos type semiconductor device and its manufacture
JPH11307541A (en) Semiconductor device and producing method therefor
JPH02253655A (en) Manufacture of semiconductor device
JPH03126254A (en) Semiconductor device and manufacture thereof