JPS587877A - Insulated gate static induction transistor - Google Patents

Insulated gate static induction transistor

Info

Publication number
JPS587877A
JPS587877A JP10517981A JP10517981A JPS587877A JP S587877 A JPS587877 A JP S587877A JP 10517981 A JP10517981 A JP 10517981A JP 10517981 A JP10517981 A JP 10517981A JP S587877 A JPS587877 A JP S587877A
Authority
JP
Japan
Prior art keywords
region
main electrode
insulated gate
impurity density
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10517981A
Other languages
Japanese (ja)
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP10517981A priority Critical patent/JPS587877A/en
Publication of JPS587877A publication Critical patent/JPS587877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To improve the integrating density of a transistor by displacing the position of the second n<+> type main electrode region in a P type region and providing a distribution in the impurity density in the P type region, thereby reducing reactive current. CONSTITUTION:A conductive type first main electrode region 11 and a reverse conductive type region 13 are formed in space in a conductive type low impurity density semiconductor region 10. A conductive type second main electrode region 12 is formed in the region 13, and an insulating gate electrode 3 is formed on the region 13 between the first and the second main electrode regions. The distance W1 between the second junction 22 between the second region 12 and the region 13, and the first junction 21 between a low impurity density region 10 and the region 13 is formed in the shortest length. For example, the surface impurity densith at the region 13 side of the second junction 22 is, for example, preferably reduced to the lowest at the side W1 confronting the first main electrode region.

Description

【発明の詳細な説明】 本発明は、特性の改曽された絶縁ゲート蓋静電誘導トラ
ンジスタ(MIS・SIT)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate lid static induction transistor (MIS/SIT) with improved characteristics.

Mlg−111?特にMo1t−11Tは、半導体研究
第15巻168頁乃至171頁(1978年工業調査金
)に開示されている如く、従来のMOB・1m丁に比べ
て高速性に優れ、また論理回路として用いたときには低
消費電力である特徴を有している。MOB・extの構
造には種々あるが、第111(@)には従来例の1つを
断面図で示す、例えば%l1li基板10に相隔てて形
成された第り%十主電極領域11、Psf域15とyl
l領域13の内部の蔦十第2主電極領域12から成り、
絶縁膜(主に酸化膜)4とゲート電極3から成るM工S
(またはMOS)ゲート電極はP型頭域13の表面上で
第1.第2主電極領域11.12の間に形成されている
。このMOS−8工Tは、第1.第2主電極1.2をそ
れぞれドレイン書ソースとしたときゲート電圧及びドレ
イン電圧によって制御される電位障壁が、ソース前面主
にP型頭域13のゲート電極5下部に生じ、ソースから
のキャリア注入量を制御する伝導機構でドレイン電流が
流れる不飽和特性を示す特徴を有し、主にエンハンスメ
ントモードで用いられる。主動作領域の少なく共一部で
、第1.第2主電極領域11.1!の間の%型基板領域
10とP型領域15は空乏層化される程度の低不純物密
度なので、接合容量は極めて低く、不飽和特性と相まり
て高速、低消費電力動作が可能となる。しかしこの構造
では、第2主電極領域には、P型領域15の中央に対称
的に形成されているため、特に低ゲー)X圧のときには
第2主電極領域12から電子が全方向に流れ出し、いわ
ゆるオフ状態でのドレイン電流(リーク電流)が多くな
ってしまう欠点を有す。
Mlg-111? In particular, as disclosed in Semiconductor Research Vol. 15, pp. 168-171 (Industrial Research Fund, 1978), Mo1t-11T has superior high-speed performance compared to the conventional MOB 1mt, and can be used as a logic circuit. Sometimes they are characterized by low power consumption. There are various structures of MOB ext, and No. 111 (@) shows a cross-sectional view of one of the conventional examples. For example, No. 11 main electrode regions 11 formed at intervals on a Psf area 15 and yl
Consisting of a second main electrode region 12 inside a region 13,
M engineering S consisting of an insulating film (mainly an oxide film) 4 and a gate electrode 3
(or MOS) gate electrode is placed on the surface of the P-type head region 13 at the first. It is formed between the second main electrode regions 11.12. This MOS-8 engineering T is the 1st. When the second main electrodes 1 and 2 are respectively used as drain and source, a potential barrier controlled by the gate voltage and the drain voltage is generated in the front surface of the source mainly under the gate electrode 5 in the P-type head region 13, and carrier injection from the source is caused. It has the characteristic of exhibiting unsaturated characteristics in which the drain current flows through a conduction mechanism that controls the amount, and is mainly used in enhancement mode. At least in common parts of the main operating area, the first. Second main electrode area 11.1! Since the impurity density between the % type substrate region 10 and the P type region 15 is low enough to form a depletion layer, the junction capacitance is extremely low, and together with the unsaturated characteristics, high speed and low power consumption operation is possible. However, in this structure, since the second main electrode region is formed symmetrically to the center of the P-type region 15, electrons flow out from the second main electrode region 12 in all directions especially when the pressure is low (G). However, it has the disadvantage that the drain current (leakage current) increases in the so-called off state.

これは、P型頭域1Sが低不純物密度であるMOS・8
1丁で顕著な現象である。また、IO内部で2つのMO
S−3工T  Trl とTr2が隣りあった第1図(
b)の様な構造例では、Trlの第1電極101とTr
2の第2を極202との間に電位差があるとき、′I′
r2の第2電極202からTrl側へ電流が流れてしま
い、S工T相互の分離が充分でなくなってしまう。これ
を防ぐため2つの81Tの間の距離を充分拡げてしまえ
ば、逆に集積密度が低下してしまう逆効果が生じる。
This is a MOS-8 in which the P-type head region 1S has a low impurity density.
This is a noticeable phenomenon with one gun. In addition, there are two MOs inside the IO.
S-3 engineering T Trl and Tr2 are located next to each other in Figure 1 (
In a structure example like b), the first electrode 101 of Trl and Tr
When there is a potential difference between the second of 2 and the pole 202, 'I'
A current flows from the second electrode 202 of r2 to the Trl side, and the S and T are not sufficiently separated from each other. If the distance between the two 81Ts is sufficiently widened to prevent this, the opposite effect will occur in that the integration density will decrease.

本発明は第1図(g)と(b)に示される従来のMOS
−BITの1構造例の欠点を改善すべくなされたもので
ある。第1の目的は、寄生効果による電流を減らし、リ
ーク電流を少なくして、オフ特性を向上させることにあ
る。第2の目的は、2つ以上のBITの分離が充分で、
しかも集積密   ′度が向上する構造を提供すること
である。以下に図面を参照しながら、本発明について詳
述する。
The present invention is based on the conventional MOS shown in FIGS. 1(g) and (b).
- This was made to improve the drawbacks of one structural example of BIT. The first purpose is to reduce current due to parasitic effects, reduce leakage current, and improve off-state characteristics. The second purpose is that the separation of two or more BITs is sufficient;
Moreover, the purpose is to provide a structure that improves the integration density. The present invention will be described in detail below with reference to the drawings.

第2図(6)には、本発明によるM工8・BITの断面
図が第1図(α)の従来例と対応して示されている0本
発明では、P型頭域13の内部の第2鴇1主電極領域1
2は、路十第1主電極領域11側に偏って形成され、第
1接合21(P型頭域13と絡型基板10の間)と第2
接合22(第2主電極領域12とP型頭域13の間)の
距離が、第1主電極11側で最も短くなりでいる。P型
頭域13に零バイアス(ゲート電圧;ドレイン電圧WO
W)状態で中性領域が残りているときは、第1.第2接
合21.22間の最も短い距離W。
FIG. 2 (6) shows a cross-sectional view of the M-work 8/BIT according to the present invention, corresponding to the conventional example shown in FIG. 1 (α). 2nd electrode 1 main electrode area 1
2 is formed biased toward the first main electrode region 11 side, and connects the first junction 21 (between the P-type head region 13 and the cross-shaped substrate 10) and the second
The distance of the junction 22 (between the second main electrode region 12 and the P-shaped head region 13) is the shortest on the first main electrode 11 side. Zero bias (gate voltage; drain voltage WO
W) When the neutral region remains in state 1. The shortest distance W between the second junctions 21.22.

は他の部分の距離W、に対し、 −・」≧2 ム重  Wl (ム8.ム、は距1ilIW、それぞれW、の第1.第
2接合間距離をもつ有効接合面積)の関係にあれば、距
@V、の部分から流れ出す1rニク電流は他の部分のほ
ぼ半分以上、つまり無効電流50%以下と0次近似され
る。第2主電極領域12を立方体と仮定し、その−面か
らキャリアを有効に流し出そうとすれば、 ’/A1m
  /4であるので、W、 7. ≧〜8が望ましい。
is the distance W of the other part, and the relationship is -・''≧2 mu weight Wl (effective bonding area with the distance 1ilIW, the distance between the first and second bonding of W, respectively). If there is, the 1r current flowing out from the portion of the distance @V is approximately half or more of the other portions, that is, the reactive current is 50% or less, and is approximated to zero order. Assuming that the second main electrode region 12 is a cube, if we want to effectively flow out carriers from the - plane, '/A1m
/4, so W, 7. ≧~8 is desirable.

BITが、第2図(! α)の断面方向に充分長く、第2主電極領域12の底面
及び長さ方向端部を無視すれば、W */、、≧〜2と
近似される。また、V、、V、の幅のP型頭域13が空
乏化し、そこにできる電位障壁の高さをvl 、vlと
すれば、電位障壁上のキャリア数はそれぞれ asp(−什>  t  axp<−)に比例するとq
v冨 r「 近似できる。無効電流をIQ%以下にするためには  
 人、asp(−p)   ム*  ’”F (−仲 
)  ≧ 10と近似される。簡単のため、A1 #A
@とすればv、−v、≧〜[L06vであり、V、を拡
散電位vAi(W、の中央にほぼ中性領域が残っている
)とすると、v1≦vbt−CLo6(v) となる。
If BIT is sufficiently long in the cross-sectional direction of FIG. 2 (!α) and the bottom surface and longitudinal ends of the second main electrode region 12 are ignored, it can be approximated as W*/, ≧˜2. Furthermore, if the P-type head region 13 with a width of V, ,V is depleted and the heights of potential barriers formed there are vl and vl, the number of carriers on the potential barrier is asp(-t > t axp <-) is proportional to q
vtomi can be approximated.In order to make the reactive current less than IQ%
person, asp (-p) mu* '”F (-naka
) ≧ 10. For simplicity, A1 #A
If @, then v, -v, ≧ ~ [L06v, and if V, is the diffusion potential vAi (an almost neutral region remains in the center of W), then v1≦vbt-CLo6(v). .

サラに簡単のため、P型頭域13と筒型基板1oの不純
物密度がほぼ等しく、筒型基板1o側への空乏層の拡が
り7をW%とすれば、y 、 / y 、 #’Y @
 # ’r h LとすればW、#2WW (W、 の
fi小のとき)なので となる、V!iに例えば、1・’61を代入すればWB
2.、≦lls 即ち、v、をt、OGfぼ3倍以上に
することにより、無効電流をIQ%以下にすることがで
きることになる0以上、Pl!領域13の不純物密度が
ほぼ均一である場合の何を述べてきたが、WB4D幅と
W、0輻をもつPWi領域1!iの不純物密度を違える
ことによって、さらに無効電流を減少できる。1型領域
15中のW、の部分の不純物密度夏ム、をW、の部分の
不純物密度Nム。
For simplicity, if the impurity densities of the P-type head region 13 and the cylindrical substrate 1o are approximately equal, and the spread 7 of the depletion layer toward the cylindrical substrate 1o is W%, then y, / y, #'Y @
If #'r h L, then W, #2WW (when W, is small), so V! For example, if you substitute 1・'61 for i, WB
2. ,≦lls That is, by making v more than three times as much as t, OGf, the reactive current can be reduced to less than IQ%.Pl! What has been described above is the case where the impurity density in region 13 is almost uniform, but PWi region 1! with WB4D width and W, 0 radiation! By changing the impurity density of i, the reactive current can be further reduced. The impurity density of the portion W in the type 1 region 15 is n, and the impurity density N of the portion W is.

より1桁低くすれば拡散電位が約106v下がり、無効
電流が約/、。になる、前述のW、をW。
If it is lowered by one order of magnitude, the diffusion potential will drop by about 106V, and the reactive current will be about /. The above W becomes W.

より狭くすることを併用すれば、約1−の無効電流にす
ることができる。
If used in conjunction with making it narrower, the reactive current can be reduced to approximately 1-.

以上のことを実現するには、PWi領域13を拡散で形
成した後、第2主電極領域に形成用開孔を前IIl拡散
開孔とずらして行ない、prtii拡散の横方向拡散領
域内に第2接合がくる様にすればよい。
To achieve the above, after forming the PWi region 13 by diffusion, the formation hole is made in the second main electrode region shifted from the previous IIl diffusion hole, and a second hole is formed in the lateral diffusion region of prtii diffusion. All you have to do is make sure that there are two junctions.

また、ゲージ酸化膜4な通して%塁不純物をイオン注入
し、W、の部分の実効P11M不純物密度直下げること
も有効である。
It is also effective to directly lower the effective P11M impurity density in the W portion by ion-implanting % base impurities through the gauge oxide film 4.

本発明によるMOi9−!i工!は無効電流が従来の1
0〜1襲以下に減少できるので、Sエテ相互の分離距離
は短くできる。そのため、同−pg領域13内に2つ以
上の異なるB工!0%十第2主電極領域112,212
.・・・・・・・・・を形成し、各襲十第2主電極領域
112,212.・・・・・・の間の距離を前述018
以上にとれば、各S工Tの分離は充分である。2つのB
IT  Trl、Tr2に適用した例を、第2図(b)
に示す。
MOi9-! according to the invention! i-engineering! The reactive current is 1 compared to the conventional
Since it can be reduced to 0 to 1 attack or less, the separation distance between S ets can be shortened. Therefore, there are two or more different B works in the same pg area 13! 0% 10th second main electrode area 112, 212
.. . . . forming second main electrode regions 112, 212. The distance between... is 018 as described above.
If the above is taken, the separation of each S-work T is sufficient. two B's
An example applied to IT Trl and Tr2 is shown in Figure 2(b).
Shown below.

本発明によるS1丁は、従来工程によって容易に実現さ
れる。第3@!(am)には、例えば1×10 ”m’
  () 絡i1J 81基板10に&aンを選択イオ
ン注入して表面密度(例えばIol・m=  )のr型
領域1sを深さ3μ鵠に拡散で形成した断面を示t* 
rm領域15 上、0810 m膜15は、他表面上の
810ヨWX5よりうすくできる。第5図(h)には、
旙+拡散用開孔を#11.第2主第1主電極1行ない、
絡+拡散(例えば深さくL12)した断簡を示す、特に
第2主電極領域に゛形成用開孔は、第1主電極領域11
に対向する側のPml領域唱墨形成用關孔と端部が重な
り、かつ小さいことが必要である。開孔端部をそろえる
ことは7オトリソグラフイ勢により±(15μ〜±a、
25μ慣程度で行なえる。會た、sio、膜5と111
0.膜1sowX厚差を利用すれば、セルフ・アライン
的に端部をそろえることができる。この場合、第1主電
極領域唱1用開孔のため、その後レジストを高温でベー
クして流動させて第2主電極領域開孔を保護した後、再
度S10.エッチを行なうことが望會しい、第5図(O
)には、ゲート酸化膜40部分、必要に応じコンタク4
部の110.を選択エッチした後、ゲー)酸化を行なり
た後の断面が示されている。ゲーF酸化J[4の厚みは
通常5oO〜20001程度である。その後、ムを等に
よって第1.第1主電極1.2及びゲート電極5や必要
な配線を行ない第3図Cd>の如く完成する。
The S1 unit according to the present invention is easily realized by conventional processes. 3rd @! (am) is, for example, 1×10 “m”
() shows a cross section where &a is selectively implanted into the substrate 10 to form an r-type region 1s with a surface density (for example, Iol·m= ) to a depth of 3μ by diffusion.
The 0810m film 15 on the rm region 15 can be made thinner than the 810m film 15 on the other surface. In Figure 5 (h),
旙+diffusion hole #11. 1 row of 2nd main 1st main electrode,
In particular, in the second main electrode region, the forming hole is formed in the first main electrode region 11, showing a cross-connected and diffused (for example, depth L12) fragment.
It is necessary that the end portion of the Pml area on the opposite side overlaps with the ink forming hole and is small. The edges of the holes can be aligned by ±(15μ~±a,
It can be done with a 25μ habit. meeting, sio, membrane 5 and 111
0. By utilizing the difference in film thickness, the ends can be aligned in a self-aligning manner. In this case, since the opening for the first main electrode area 1 is made, the resist is then baked at a high temperature and made to flow to protect the opening for the second main electrode area, and then S10. It is desirable to perform etch, as shown in Figure 5 (O
), the gate oxide film 40 part, contact 4 as necessary.
Section 110. The cross section after selective etching and oxidation is shown. The thickness of GeF oxide J[4 is usually about 500 to 20,001 mm. After that, the first . The first main electrode 1.2, gate electrode 5 and necessary wiring are completed as shown in FIG. 3Cd>.

第1Wioa文は、W、はt5μ程度で第2接合部のF
Wi表面不純物密度は2X10”a−以下になる。それ
に対し、”lは数μ以上の任意の値で選べ、第2接合部
のPIE表面不純物密直下1011♂で高くなっている
。S十拡散をもっと深くすれば%”lをもっと狭く、低
不純物密度にすることも可能である。また、ムtゲー)
MO8の場合を述べてきたが、ポリシリコンやMO等の
他の配線材料によるゲート電極*81s”all’e酸
化ムを膜、や酸化膜との多層や混合膜によるゲーF絶縁
膜も用いることが可能である。さらに、本発明は各領域
の伝導型を逆にしたPチャンネル、第1主電極1をソー
ス電極としたトランジスタにも適用できる。また基板1
0はバルクを用いた例を述べた。が、%on  s、s
Hy 、またはその逆導電製の組み合わせ、埋込み層の
あるもの、絶縁物基板上のもの等、目的に応じエピタキ
シャル層にも適用できる。
In the first Wioa sentence, W is about t5μ and F of the second junction is
The Wi surface impurity density is 2×10"a- or less. On the other hand, "l" can be selected at any value of several microns or more, and is high at 1011♂ just below the PIE surface impurity density of the second junction. If the S diffusion is made deeper, it is possible to make %"l narrower and lower the impurity density.
Although we have described the case of MO8, it is also possible to use a gate electrode made of other wiring materials such as polysilicon or MO*81s"all'e oxide film, or a gate F insulating film made of a multilayer or mixed film with an oxide film. Further, the present invention can be applied to a P-channel transistor in which the conduction type of each region is reversed, and the first main electrode 1 is used as the source electrode.
0 described an example using bulk. But, %on s, s
It can also be applied to epitaxial layers depending on the purpose, such as Hy or a combination of opposite conductivity, those with a buried layer, and those on an insulating substrate.

以上の如く、本発明はpm領域13中の算+筒2主電極
領域120位置をずらし、さらにPIilI領域中の不
純物密度に分布をもたせることによって従来より無効電
流がto−以上少ないmXTを実現し、集積化に有利な
構造を提供するもので、従来0NOTII・Xaすべて
に適用されるものである
As described above, the present invention shifts the position of the main electrode region 120 of the cylinder 2 in the pm region 13 and further distributes the impurity density in the PIilI region, thereby realizing mXT in which the reactive current is smaller than the conventional one by more than to. , which provides an advantageous structure for integration, and is applicable to all conventional 0NOT II and Xa.

【図面の簡単な説明】[Brief explanation of drawings]

第11j←1及びCb)は、それぞれ従来のVOl・謬
!!の構造例を示す断面図、第2図(@)及び(h)は
、本発明によるMol−mXTの断面構造例である。第
!1図(藝)〜(iは、本発−によるMo1−mXTの
製造工程に沿った断m*である。 1.101,201・・・・・・第1主電極!、102
,202−・・・・・第2主電極1.10iS、20!
I・・・・・・ゲート電極4.104,204−・・・
・・ゲート絶縁屓唱o−−−−−−smst基板 11.111,211・・・・・・算十第1主電極領域
1・2,112,212・・・・・壷昏十第2主電極領
域以上 ′−10
11j←1 and Cb) are respectively conventional VOl/False! ! 2 (@) and (h) are cross-sectional structural examples of Mol-mXT according to the present invention. No.! Figure 1 (art) - (i is a cross section m* along the manufacturing process of Mo1-mXT according to the present invention. 1.101, 201...First main electrode!, 102
,202-...Second main electrode 1.10iS, 20!
I...Gate electrode 4.104,204-...
・・Gate insulation cry o-----smst substrate 11, 111, 211...... Sanju 1st main electrode area 1, 2, 112, 212... Bokaku 2nd Main electrode area or more'-10

Claims (1)

【特許請求の範囲】[Claims] (1)  −導電型低不純物密度半導体領域内に互いに
離間して**された一導電型第1主電極領域と逆導電層
領域と、前記逆導電型領域内に形成されたー導電!1j
lH主電極領域と、前記j11及び第2主電欄領域OU
O前記逆導電製領域上に少なく共形成*fiた絶縁ゲー
ト電極とから成るトランジスタにおいて、前記第2主電
極領域と前記逆導電型領域owio第2接合と、前記低
不純物密度領域と前記道導電臘領域の間の第1is会と
の間の距離が、前記第1主電極領域に対向する側で最も
短かいことを特徴とする絶縁ゲート型静電誘導トツンジ
スタ。 伽) 前記館!接金の前記逆導電型領域側の表面不純物
密度が、前記第1主電極領域に対向する側で最も低いこ
とを特徴とする特許請求の範囲第1項記載の絶縁ゲート
屋静電誘導トランジスタ。 (1)  前記逆導電層領域内に複数個の前記トランジ
スタの前記第2主電極領域が形成されたことを特徴とす
る特許請求の範囲第1項または第2項記載の絶縁ゲート
型静電誘導トランジスタ。
(1) A first main electrode region of one conductivity type and an opposite conductivity layer region spaced apart from each other in a conductivity type low impurity density semiconductor region, and a -conductivity type region formed within the opposite conductivity type region. 1j
lH main electrode area, j11 and second main electric field area OU
In a transistor comprising an insulated gate electrode co-formed with a small amount *fi on the opposite conductivity region, the second main electrode region and the opposite conductivity type region owio second junction, the low impurity density region and the conductivity region An insulated gate type electrostatic induction transistor, characterized in that a distance between the first and second regions is the shortest on the side facing the first main electrode region.佽) Saikan! 2. The insulated gate static induction transistor according to claim 1, wherein the surface impurity density on the opposite conductivity type region side of the weld is lowest on the side facing the first main electrode region. (1) The insulated gate type electrostatic induction according to claim 1 or 2, wherein the second main electrode regions of the plurality of transistors are formed in the reverse conductive layer region. transistor.
JP10517981A 1981-07-06 1981-07-06 Insulated gate static induction transistor Pending JPS587877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10517981A JPS587877A (en) 1981-07-06 1981-07-06 Insulated gate static induction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10517981A JPS587877A (en) 1981-07-06 1981-07-06 Insulated gate static induction transistor

Publications (1)

Publication Number Publication Date
JPS587877A true JPS587877A (en) 1983-01-17

Family

ID=14400446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10517981A Pending JPS587877A (en) 1981-07-06 1981-07-06 Insulated gate static induction transistor

Country Status (1)

Country Link
JP (1) JPS587877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891747A (en) * 1984-06-25 1990-01-02 Texas Instruments Incorporated Lightly-doped drain transistor structure in contactless DRAM cell with buried source/drain
JPH04245717A (en) * 1990-08-22 1992-09-02 Crystal Semiconductor Corp Dc offset calibration method of d/a converter and dc offset calibration system of d/a converter
JPH05259910A (en) * 1991-11-08 1993-10-08 Crystal Semiconductor Corp D-a converter device and its calibrating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891747A (en) * 1984-06-25 1990-01-02 Texas Instruments Incorporated Lightly-doped drain transistor structure in contactless DRAM cell with buried source/drain
JPH04245717A (en) * 1990-08-22 1992-09-02 Crystal Semiconductor Corp Dc offset calibration method of d/a converter and dc offset calibration system of d/a converter
JPH05259910A (en) * 1991-11-08 1993-10-08 Crystal Semiconductor Corp D-a converter device and its calibrating method

Similar Documents

Publication Publication Date Title
KR100343288B1 (en) An SOI semiconductor integrated circuit for eliminating floating body effect in SOI MOSFETs and method of fabricating the same
US3639813A (en) Complementary enhancement and depletion mosfets with common gate and channel region, the depletion mosfet also being a jfet
US5397905A (en) Power semiconductor device having an insulated gate field effect transistor and a bipolar transistor
JPH0527267B2 (en)
JPS6234150B2 (en)
JPS587877A (en) Insulated gate static induction transistor
JPH02246264A (en) Semiconductor device and manufacture thereof
KR960006042A (en) Semiconductor device and manufacturing method
JPH09266259A (en) Semiconductor memory device and manufacturing method thereof
JPH04215473A (en) Static ram
JPS63305562A (en) Semiconductor device
JPS59228762A (en) Multigate transistor
JP4003981B2 (en) Semiconductor device
JPH0560266B2 (en)
JPH03292770A (en) Electrostatic induction thyristor
JPS6028394B2 (en) semiconductor integrated circuit
JPH02168673A (en) Mis transistor
JPH09167839A (en) Insulated gate field effect transistor and its manufacture
JPH0566031B2 (en)
JPH02201965A (en) Semiconductor device and manufacture thereof
JPH03793B2 (en)
JPS59201463A (en) Semiconductor device
JPS62291179A (en) Double diffused mosfet
JPS6041464B2 (en) memory cell
JP2001237438A (en) Semiconductor device and its manufacturing method