JPS587860A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS587860A
JPS587860A JP56104462A JP10446281A JPS587860A JP S587860 A JPS587860 A JP S587860A JP 56104462 A JP56104462 A JP 56104462A JP 10446281 A JP10446281 A JP 10446281A JP S587860 A JPS587860 A JP S587860A
Authority
JP
Japan
Prior art keywords
layer
type
memory
impurity density
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56104462A
Other languages
Japanese (ja)
Inventor
Tsuneo Ito
恒夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56104462A priority Critical patent/JPS587860A/en
Publication of JPS587860A publication Critical patent/JPS587860A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Abstract

PURPOSE:To raise alpha-ray resistance intensity of a semiconductor memory device by forming a memory cell on a low impurity density semiconductor layer formed on a high impurity density substrate, forming a reverse conductive type high impurity density buried layer at least under the memory cell, and applying the prescribed voltage thereto. CONSTITUTION:A low impurity density thin P<-> type epitaxial layer 2 is grown on a high impurity density P<+> type substrate 1, and N channel MISFETQ1- Q4 for memory cells are formed. In this RAMIC, high density N<+> type diffused regions 8, 9 passing elevationally through the layer 2 are formed at both ends of memory arrays M-ARY1-M-ARY4, and an N<+> type buried layer 10 is formed only directly under the memory arrays continuously to the diffused layers. A positive power source voltage VCC is applied from the electrode 11 to the layer 10. In this manner, alpha-ray resistance intensity is raised, thereby performing a normal memory function.

Description

【発明の詳細な説明】 本発明は半導体記憶装置、例えばMより (Met −
a1工n5u14tor 88m1oonduotor
 )型のスタティックRAM、ダイナミックRAMj/
(関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device, for example, from M (Met −
a1 engineering n5u14tor 88m1oonduotor
) type static RAM, dynamic RAMj/
(This is related to

Mf’rネルのMIS型電界効果トランジスタ(以下、
M工5IFlliTと略す)によって記憶素子(メモリ
セル)t−構成しft−RA Mにシいては、接合容量
等を下げてスイッチング速度や基板バイアス効果を改善
する几めに高比抵抗のP型シリコン基板を用いることが
ある。しかしながら、高比抵抗基板にメモリセルを設け
ると、M工81FITのドレイン領域がなすPM接合か
ら基板側へ空乏層が拡がり易くなってその接合容量が低
下するので、a避等の放射線に対して弱くなることが判
明し友。
Mf'r channel MIS field effect transistor (hereinafter referred to as
In the case of ft-RAM, the storage element (memory cell) is constructed using a high resistivity P-type to lower the junction capacitance and improve the switching speed and substrate bias effect. A silicon substrate may be used. However, when a memory cell is provided on a high resistivity substrate, the depletion layer tends to spread from the PM junction formed by the drain region of the M-81FIT to the substrate side, reducing the junction capacitance. A friend who turns out to be weak.

即ち、RAM工0のパッケージ中に含まれているウラン
やトリウム等から放射されるa@が基板内に入射すると
、七のエネルギーによって電子−ホール対が発生するが
、このうち電子は上記空乏層から容易にドレイン領域内
へ拡散してドレイン電位を低下ぜしめ、M工8FIT4
C蓄積ちれている正電荷を中和してしまう。この現象は
、基板が低不純物濃度であって上記電子のライフタイム
が長くなることによって助長される。
That is, when a@ emitted from uranium, thorium, etc. contained in the package of the RAM device 0 enters the substrate, electron-hole pairs are generated due to the energy of It easily diffuses into the drain region and lowers the drain potential.
C neutralizes the accumulated positive charge. This phenomenon is facilitated by the low impurity concentration of the substrate, which increases the lifetime of the electrons.

こうしてメモリセルの記憶機能が阻害式れ、読出し時の
出力電圧特性に悪影響を与えることくなるので、この対
策として、高不純物IIp!度のP 型シリコン基板の
表面上に成長さぜ几低不純物濃度の薄いP−型エピタキ
シャル層にNチャネルMI日FITを形成テることが考
えられる。この場合には、エピタキシャル層によって空
乏層の伸びを制限し、高濃度基板でキャリアのう・イフ
タイムを短かくしてαiIKよるキャリアQ影響を幾分
少なくはできるが、未だ充分な耐α線強度を得るには至
っていない。
In this way, the storage function of the memory cell is inhibited and the output voltage characteristics during reading are adversely affected.As a countermeasure, high impurity IIp! It is conceivable to form an N-channel MIFIT in a thin P-type epitaxial layer with a low impurity concentration that is grown on the surface of a P-type silicon substrate. In this case, the effect of carrier Q due to αiIK can be somewhat reduced by restricting the extension of the depletion layer with an epitaxial layer and by shortening the carrier lifetime with a high-concentration substrate, but it is still possible to obtain sufficient α-ray resistance. This has not yet been achieved.

従って、本発明の目的は、α耐等の放射l/IjK対し
て記憶保持機能を正常に維持できる耐放射線強度の大き
い記憶装置を提供することにある。
Therefore, it is an object of the present invention to provide a storage device with high radiation resistance that can maintain the memory retention function normally against radiation l/IjK such as α resistance.

この目的全達成する几めに、本発明によれば、特に上記
の如きエピタキシャル層を真備した半導体ウニ八におい
て、少なくとも記憶素子部下に逆導電型の高不純物濃度
の埋込み層を設け、この埋込み層に所定の電圧を印加す
るようにしている。
In order to achieve all of these objectives, according to the present invention, in a semiconductor unit equipped with an epitaxial layer as described above, a buried layer of a high impurity concentration of the opposite conductivity type is provided at least under the memory element, and the buried layer is A predetermined voltage is applied to the

即ち、放射mによプ発生し几電子−ホール対の一方Q)
’F−Vリアを上記埋込み層にトラップI、CMXHP
蔦10能動領域内へ拡散さぞないようにすると同時に、
他方のキャリアはエピタキシャル層及び半導体基体の電
源側へ吸引嘔れるようにしている。この結果、放射線に
よりキャリアが発生したとしても、メモリセルの記憶保
持機能が影響を受けることがなく、耐放射線強度を大き
くすることができる。
That is, one of the electron-hole pairs Q) is generated by the radiation m.
'Trap the F-V rear to the above buried layer I, CMXHP
At the same time as preventing the spread of ivy into the active area,
The other carrier is drawn to the epitaxial layer and the power supply side of the semiconductor substrate. As a result, even if carriers are generated by radiation, the memory retention function of the memory cell is not affected, and radiation resistance can be increased.

以下、本発明をMIS型スメスタテイックRAM用した
実施例について、図面を参照して絆細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments in which the present invention is applied to an MIS type static RAM will be described in detail with reference to the drawings.

まず第1図について、本実施例によるスタティックRA
MICのレイアウトパターンヲ説明する。
First, regarding FIG. 1, the static RA according to this embodiment
The layout pattern of the MIC will be explained.

このRAMICは、例えば1個のICチップ(半導体集
積回路装置を組込んだ半導体チップ)内でメモリプレイ
が4つに分けられた4マット方式からなっていてよく、
複数のメモリセルM−011fLで構成ちれ九4つのメ
モリプレイM−ムRY、。
This RAMIC may have a 4-mat system in which memory plays are divided into four parts within one IC chip (semiconductor chip incorporating a semiconductor integrated circuit device), for example.
94 memory plays M-RY, each consisting of a plurality of memory cells M-011fL.

M−ムRY、、M−ムRYs及びM−ムRY4は互いに
分離ちれ友状態でチップ内に配置嘔れている。
M-MURY, , M-MURYs and M-MURY4 are arranged in the chip separately from each other.

M−ムRY、及びM−ムRY、は工Cチップの一万側に
、M−ムRY、及び輩−ムftY、は−F:の他方側に
夫々記名れておシ、この2つの部分に挾まれた工Cチッ
プの中央部にM−ムRYI〜M−ムRY4のためのロウ
デコーダR−DORが設けられている。また、M−ムR
Y、とR−DORとの間、及びM−ムRY、とR−DO
Rとの間にはM−ムRYI〜M−ムItyaの友めのワ
ードドライバ” ” + 、W D @が記名れている
。M−ムRYI〜M−ムRY4の一端lIK接して、k
−ムRYl〜M−ムRY4 の友めのカラムスイッチO
−El w、% O−B Y、% C−日W、及び0−
8W4が設けられ、更に0−8W、〜0−8W4に接し
て、M−ムRY、〜M−ムRY、のためのカラムデコー
ダ0−DOR,,0−DOR鵞、0−DOR,及び0−
DOR4が設けられて込る。
M-MURY and M-MURY are written on the 10,000 side of the engineering C chip, and M-MURY and FU-MUFTY are written on the other side of -F:. A row decoder R-DOR for M-MUs RYI to M-MU RY4 is provided in the center of the C-chip sandwiched between the sections. Also, M-MuR
between Y, and R-DOR, and between M-RY, and R-DO
Between R and M-MU RYI to M-Itya's friend word driver `` '' + and WD @ are written. One end of M-MURYI to M-MURY4 is in contact with lIK, k
-MuRYl~M-MURY4's friend column switch O
-El w, % O-B Y, % C-day W, and 0-
8W4 is provided, and further adjacent to 0-8W, ~0-8W4, column decoders 0-DOR, 0-DOR, 0-DOR, and 0-DOR for M-MURY, ~M-MURY, −
DOR4 is provided.

また、これらのデコーダに接して、M−ムRYI〜M−
ムRY4の友めのセンスアンプ” 1 % 8 A1.
6ム1及び11A4が夫々配されている。8ム1〜Bム
4に近接した位置lc#i、7ドレス信号ム4〜ムl・
のためのアドレスパラファムDBs−,及びムDBI 
 、が配されている。ムDB、−sに近接してデータ出
力バッファDOBが、またADBI  、に近接して1
W信号人カバツ7アWl!−B、0B(I1号入カハツ
ファロS−B及びデータ人カバツフ了りよりが配置され
ている。更に、ICチップの一端周辺に沿って、アドレ
ス信号印加パッドP−ムS及びP−ム6、データ信号取
出しパッドp −pout。
Also, in contact with these decoders, M-MURYI~M-
MURY4’s friend sense amplifier” 1% 8 A1.
6M1 and 11A4 are arranged respectively. 8. Position lc#i close to M1 to B4, 7 dress signal M4 to M1.
address parameters for DBs-, and MUDBI
, are arranged. The data output buffer DOB is adjacent to the program DB, -s, and the data output buffer DOB is also adjacent to the ADBI, -s.
W signal person Kabatsu 7a Wl! -B, 0B (No. I1 entry type Kabatsufaro S-B and data person Kabatsufaro SB are arranged.Furthermore, along the periphery of one end of the IC chip, address signal application pads P-mu S and P-mu 6, Data signal extraction pad p-pout.

WT!A信号印加パッドP−Wl、アース電位接続パッ
ドP−GliD、08信号印加パッドP−08゜データ
信号入力パツドP−D1n、アドレス信号印加パッドP
−A、、P−ム邸及びP−人参が配されている。−万、
M−ムRY、〜M−ムRY4の他端側に接して、データ
線の几めO負荷回路DLO,。
WT! A signal application pad P-Wl, ground potential connection pad P-GliD, 08 signal application pad P-08° data signal input pad P-D1n, address signal application pad P
-A, P-Mu's house and P-ginseng are arranged. Ten thousand,
In contact with the other end side of M-MU RY, to M-MU RY4, there is a data line reduction load circuit DLO,.

DLO冨、DI、03及びDLO4が配されている。こ
れらの負荷回路を構成するM工8P]WICは、アドレ
ス信号表0 ””AI 、ム1寓、ムlのためのアドレ
スバラファムDBI  、及びムDBs  、が左右に
隣接して設けられている。そして、このムDBskC近
接して、工0チップの周辺に沿ってアドレス信号印加パ
ッドP−ム4、P−ム3、P−ム3、P−ム重及びP−
ム・、電源電圧voo供給パッドP−VOO% アドレ
ス信号印加パッドP−ム’11%P−ム11% F−ム
■及びP−ム1・が配置されている。
DLO Tomi, DI, 03 and DLO4 are arranged. The M8P]WIC that constitutes these load circuits has address signal tables 0""AI, MU1, address signals DBI for M1, and MUDBs adjacent to each other on the left and right. . Adjacent to this MDBskC, address signal application pads P-4, P-3, P-3, P-3 and P-
, power supply voltage voo supply pad P-VOO%, address signal application pad P-mu'11%, P-mu11%, F-mu■ and P-mu1 are arranged.

このRムMIOの各メモリアレイを構成するメモリセル
は、第2図及び第3図に示す如き構造を有している。
The memory cells constituting each memory array of this RM MIO have a structure as shown in FIGS. 2 and 3.

卸ち、高年―物濃度のP+型シリコン基板1上に低不純
物1lIFiILO薄hP−型エピタキシャル層2が成
長せしめられ、このエピタキシャル層にメモリセル用の
各HチャネルM工8P]1TQ1 、Ql、Qas %
 Qa t)”設けられテいル。MI87ITQh’;
Lm u記憶保持機能を有する駆動トランジスタで6っ
て、各ポリシリコンゲート電極G1、Glは麗工8FI
TQ1%q1の各を型ドレイン領域3.4に夫々ダイレ
クトコンタクト方式で接続式れている。ゲート電極GI
 、Glは更に延長でれて不純物をドープしていない高
抵抗ポリシリコン部分(負荷抵抗R1s Rr  )及
び低抵抗ポリシリコン配置tを介し、電圧v0゜の電源
に接続されている。M工8FMTQ3 % Qs K共
通のN+屋ソース領域5はアルミニクAfJiG M 
DKよって1iI地式れて込る◇また、トランスばツシ
ョンゲートとlk;EsM X 81FMT Qa 、
Qa u、ホリシリコンのワードl!W(共通ゲート電
極)と、F蔗TQ1%  Qs と共通のC型ドレイン
領域4.3と、アルミニウムのデータIID% Dに接
続式れ友H+型ソース領域6.7とによって夫々構成嘔
れている。
A low impurity 1lIFiILO thin hP- type epitaxial layer 2 is grown on a P+ type silicon substrate 1 with a high concentration of ions. Qas%
MI87ITQh';
6 is a drive transistor with Lmu memory retention function, and each polysilicon gate electrode G1, Gl is a Reiko 8FI.
Each of TQ1%q1 is connected to the type drain region 3.4 by a direct contact method. Gate electrode GI
, Gl are further extended and connected to a power source at a voltage v0° via a high resistance polysilicon portion (load resistance R1s Rr ) not doped with impurities and a low resistance polysilicon arrangement t. M engineering 8FMTQ3 % Qs K common N+ya source region 5 is aluminum AfJiG M
DK includes 1iI ground type ◇ Also, transformer gate and lk; EsMX 81FMT Qa,
Qa u, the word l of horisilicon! W (common gate electrode), a C-type drain region 4.3 common to the F TQ1% Qs, and an H+-type source region 6.7 connected to the aluminum data IID% D, respectively. There is.

このメモリセルは第5図に等価的に示し友ように、ポリ
シリコン負荷抵抗R1、R雪が直列接続式したMIS型
駆動駆動トランジスタ、Qmからなる一対のインバータ
回路を有し、これらのインバータ回路の人出力を交差結
合することによって情報の記憶手段としての7リツプフ
ロツプを構成している。また、各インバータ回路KFi
、トランスミッションゲート用のM工8FICTQ富、
Qlが接続式れている。負荷抵抗R1、R@の一方の端
子にはポリシリコン配!ltを介して電圧V。0が印加
され、ltMI 8FIltTGLl 、Qa f)各
ソース端子Fi接地されている。そして、第1のインバ
ータの出力は第2のインバータのMより FITq3の
ゲート端子に入カ場れ、ま次第シのインバータの出力は
第1のインバータのMI81FIITQxのゲート端子
に人カ嘔れている。第1のインバータの出刃はMより’
ll’NTQat介してデータ瑠りに1第2のインハ/
 O出力tj M X B F I T Q 4を介し
てデータ!l1IDK加えられる。つまり、トランスミ
ッションゲートq1%Qaはフリップフロップと相補デ
ータ線対D−D間K>ける情報の伝達管制御するための
アドレス手段として用すられ、七の動作はワードilW
[印加されるアドレス信号によってwIll嘔れる。
As shown equivalently in FIG. 5, this memory cell has a pair of inverter circuits consisting of a polysilicon load resistor R1, an MIS type drive transistor Qm connected in series with an R, and these inverter circuits By cross-coupling the human outputs, a seven-lip flop is constructed as an information storage means. In addition, each inverter circuit KFi
, M-engineer 8FICTQ wealth for transmission gate,
Ql is connected. One terminal of load resistor R1, R@ has polysilicon wiring! Voltage V through lt. 0 is applied, and each source terminal Fi is grounded. Then, the output of the first inverter is input from the second inverter M to the gate terminal of FITq3, and the output of the second inverter is input to the gate terminal of MI81FIITQx of the first inverter. . The cutting edge of the first inverter is from M'
I'll send the data via NTQat to the 1st and 2nd interface.
Data via O output tj M X B F I T Q 4! l1IDK added. In other words, the transmission gate q1%Qa is used as an address means for controlling the information transmission line between the flip-flop and the complementary data line pair DD.
[Will be turned off by the applied address signal.]

本実施IIKよるRA緘工Oにおいて特徴的な構成は、
メモリアレイM−ムRY1〜M−ムRY4(第1図参照
)の各両11部にエピタキシャル層2を上下に貫通する
高濃度N+型拡散領域8.9が夫々形成され、かつこれ
らの拡散領域に連続して各メモリアレイの直下にのみN
”!II!込み層10が形成場れていること1:IiS
る。この埋込み層10はエピタキシャル層lOはエピタ
キシャル層2と基板lとの関にあって、これらt互いに
分離する作用【なしていると共に% alHKよるキャ
リアに対して極めて重要な役割を果している。即ち、第
4図に要部を拡大図示したように、埋込み層10に対し
アルミニウム電極11からN 型領域8を介して正の電
源電圧V。0を印加する一方、エピタキシャル層2及び
基板IKは負の電源電圧vBBを印加した状態で使用す
ることによって、α線12が入射して特にエピタキシャ
ル層2中で電子−ホール対が発生した場合でも、電子は
埋込み層10の正の電界に引′#ゼられて埋込み層10
にトラップ嘔れることになる。この結果、その電子はド
レイン領域4内へ拡散してゆかなくなり、ドレイン電位
は安定に保持嘔れるから、メモリセルの正常な記憶機能
を発輝できることになる。また、ホールの方は、負電位
のエピタキシャル層2及ヒ基板illへ集められる。
The characteristic configuration of the RA work O according to this implementation IIK is as follows:
High-concentration N+ type diffusion regions 8.9 are formed in both 11 portions of each of the memory arrays M-MU RY1 to M-MU RY4 (see FIG. 1), vertically penetrating the epitaxial layer 2, and these diffusion regions N only immediately below each memory array consecutively to
``!II! The formation field of the inclusion layer 10 is lost 1: IiS
Ru. This buried layer 10 is located in the relationship between the epitaxial layer 2 and the substrate 1, and serves to separate them from each other, and also plays an extremely important role for carriers caused by %AlHK. That is, as shown in an enlarged view of the main part in FIG. 4, a positive power supply voltage V is applied to the buried layer 10 from the aluminum electrode 11 through the N type region 8. 0, while applying a negative power supply voltage vBB to the epitaxial layer 2 and substrate IK, even if α rays 12 are incident and electron-hole pairs are generated, especially in the epitaxial layer 2. , the electrons are attracted by the positive electric field of the buried layer 10 and
The trap will make you vomit. As a result, the electrons are prevented from diffusing into the drain region 4, and the drain potential is stably maintained, allowing the memory cell to perform its normal storage function. In addition, holes are collected into the epitaxial layer 2 and the substrate ill, which are at a negative potential.

このように、a耐によるキャリアを埋込み層lOK効果
的にトラップできる仁とによって、メモリセルの耐a耐
強度を確実に向上嘔ぜることができることKなる。また
、この耐a耐強度は、P型ウェルにNチャネルMX8P
BiTt−設けてウェル−基板間の電位差で電子を基板
側へトラップできる0M0III型メモリセルと同勢に
なることが期待され、0M0a型メモリより耐α線強度
が劣ると考えられるMIS型メ子メモリきな福音をも几
ら丁ことができる。
In this manner, the a-tolerance strength of the memory cell can be reliably improved by virtue of the fact that the buried layer can effectively trap carriers due to the a-tolerance. In addition, this a resistance strength is
It is expected that it will be on the same level as the 0M0III type memory cell, which can trap electrons to the substrate side using the potential difference between the well and the substrate by providing BiTt, and is thought to have lower α-ray resistance than the 0M0a type memory. It is possible to thoroughly read the great gospel.

また、P−型エピタキシャル層2の存在によって、M工
871TのN 型能動領域のな丁PN接合の接合容量を
適度に小さくできる◎しかも、周辺回路素子部には上記
の埋込み層10t−形成していない(第3図参照)こと
も重要でめる。つまり、例えばロウデコーダR−DOR
′t−構成するM工5FITT:l、においては上記の
埋込み層10が存在していないので、ソース又はドレイ
ン領域となるN+盤拡散領域13.14の一方(ドレイ
ン領域)に異常電圧が加わつ友とき、ドレイン領域から
アバランシェ効釆によって電流よりBか流れてもこのよ
りB/fiウェハの縦方向(深場方向)K流れることに
なる。このため、よりBKよる電源電圧VBBの上昇分
(チャネル下)を最小に抑えることができ、ドレイン電
位の低下を抑えて七の耐圧を充分に保持できる。CtL
K反して、デコーダ部にも上記の埋込み層lOが存在し
ている場合には、上記のtiよりBはエピタキシャル層
2會逼して横方向にしか流れないので、■BBによる電
圧降下分が大きくなり、これによってドレイン電位が増
々低下してついKは破壊に至るという現象が生じる恐れ
がめる。なお、この現象は、電流量の少ないメモリセル
では生じ姥<、周辺回路素子部では生じ易いが、本実施
例の構造によって周辺回路素子部でのよりHによる電圧
vBBの上昇は効果的に防がれている。また、上記の如
くに周辺回路部を構成し几場合、周辺回路部自体が負荷
容量が大さくしかも電流供給能力が大でるるために、そ
の耐α−強度は大きく、メモリセルVこおけるようなW
込み層lOは不要で必る。
Furthermore, due to the presence of the P-type epitaxial layer 2, the junction capacitance of the PN junction in the N-type active region of the M-871T can be appropriately reduced.In addition, the above-mentioned buried layer 10T is not formed in the peripheral circuit element part. It is also important to note that this is not the case (see Figure 3). That is, for example, row decoder R-DOR
Since the above-mentioned buried layer 10 does not exist in the M process 5FITT:1 that constitutes 't-, an abnormal voltage is applied to one of the N+ diffusion regions 13 and 14 (drain region) which becomes the source or drain region. In this case, even if a current B flows from the drain region due to the avalanche effect, the current flows K in the vertical direction (deep field direction) of the B/fi wafer. Therefore, the increase in power supply voltage VBB due to BK (below the channel) can be further suppressed to a minimum, and the drain potential can be suppressed from decreasing and the withstand voltage of 7 can be sufficiently maintained. CtL
On the other hand, if the above-mentioned buried layer IO is present in the decoder section, B flows only in the lateral direction due to the ti of the epitaxial layer 2, so the voltage drop due to ■BB is There is a fear that this will cause a phenomenon in which the drain potential decreases more and more, leading to destruction of K. Note that this phenomenon occurs in memory cells with a small amount of current and is likely to occur in the peripheral circuit element section, but the structure of this embodiment effectively prevents the increase in voltage vBB due to H in the peripheral circuit element section. It's broken. In addition, when the peripheral circuit section is configured as described above, the peripheral circuit section itself has a large load capacity and a large current supply capability, so its α-resistance is large and the memory cell V is protected. W
The embedded layer IO is not necessary but necessary.

次に、第3図に示した構造の製造方法全第6図について
駅間する。
Next, the method for manufacturing the structure shown in FIG. 3 will be described in detail with reference to FIG. 6.

まず第6A図のように、P 型シリコン基板lの一生面
に、0VD(化学的気相成長法)で5i03からなるマ
スク15i形成し、これtこ公知のフォトエツチングを
施して上記埋込み層lOに相当する部分を除去し、ここ
から砒素又はリンを熱拡散ぜしめてN+型拡散領域16
1に形成する。
First, as shown in FIG. 6A, a mask 15i made of 5i03 is formed by 0VD (chemical vapor deposition) on the entire surface of a P-type silicon substrate l, and this is subjected to known photoetching to form the buried layer lO. A portion corresponding to the N+ type diffusion region 16 is removed and arsenic or phosphorus is thermally diffused from there.
Form into 1.

次いでマスク15t−エツチングで除去した後、第6B
図のように、全面にOVDによって単結晶シリコン層2
′にエピタキシャル成長させる。このとき、上記M 型
拡散領域16中の不純物が後拡散されて、エピタキシャ
ル層2と基板lとの間にN+型埋込み層lOが形成され
る。
Then, after removing the mask 15t by etching, the 6th B
As shown in the figure, a single crystal silicon layer 2 is deposited on the entire surface by OVD.
′ is epitaxially grown. At this time, the impurity in the M type diffusion region 16 is post-diffused to form an N+ type buried layer lO between the epitaxial layer 2 and the substrate l.

次いで第6C図のように、窒化シリコン膜17をマスク
とする公知の選択酸化技術によって、素子分離用のフィ
ールド810n膜18t−成長嘔ぜる。
Next, as shown in FIG. 6C, a field 810n film 18t for element isolation is grown by a known selective oxidation technique using the silicon nitride film 17 as a mask.

次いでマスク17及び下地の51o1膜19i夫々エツ
チングで除去した後、第6D図のように1酸化性雰囲気
中での熱酸化によってゲート酸化膜20を成長式ぜ、7
オトレジス) 21 を所定パターンに豪ぜてゲート酸
化!s20の一部をエツチングする。
After removing the mask 17 and the underlying 51o1 film 19i by etching, the gate oxide film 20 is grown by thermal oxidation in a mono-oxidizing atmosphere as shown in FIG. 6D.
Otregis) 21 in a predetermined pattern and gate oxidation! Etch a part of s20.

次いで第6z図のように、ゲート酸化膜20の上記除去
部分から砒素又はリンを熱拡散名ぜ、メモリアレイ領域
の両側部においてエピタキシャル層2?r上下に貫通し
て埋込み層lOK達するN+型拡散領域8.9を夫々形
成する。この際、図示省略はしたが、メモリアレイ領域
上及び周辺回路領域上を適当なマスク(例えばフォトレ
ジスト)で被株しておいてもよいし、或いは拡散領域8
.9の形成後に−Hゲート酸化膜を除去した後に新たな
ゲート酸化膜を形成し直してもよい。
Next, as shown in FIG. 6z, arsenic or phosphorus is thermally diffused from the removed portion of the gate oxide film 20 into the epitaxial layer 2 on both sides of the memory array region. N+ type diffusion regions 8 and 9 are formed passing through the upper and lower parts of r and reaching the buried layer lOK, respectively. At this time, although not shown, the memory array area and peripheral circuit area may be covered with an appropriate mask (for example, photoresist), or the diffusion area 8 may be covered with a suitable mask (for example, photoresist).
.. After the -H gate oxide film is removed after forming 9, a new gate oxide film may be formed again.

次いで第6F図のように、GVDで全面にポリシリコン
kg長させて公知のリン処理を施してかう、公知のフォ
トエツチングでパターンニンクシてゲート篇、極又は配
線となる各ポリシリコン膜Gt、Gt、Gi、22を夫
々形成する。
Next, as shown in FIG. 6F, the polysilicon film Gt is made to have a length of 1 kg over the entire surface by GVD and subjected to a known phosphorus treatment, and then patterned by a known photoetching process to form each polysilicon film Gt that will become a gate, a pole, or a wiring. Gt, Gi, 22 are formed respectively.

次いで第6G図のように、各ポリシリコン膜の表面を熱
酸化して薄い810.膜23を形成し、しかる後に上述
の負荷抵抗R,,R,の領域をフォトレジストで仮櫟し
た後、砒素又はリンのイオンビーム24を全面に照射す
る。これによって、各ポリシリコン膜及びフィールドS
iOtgkマスクとしてケート酸化fi120’kJし
てエピタキシャル層2にイオン打込み全行ない、ソース
又はドレイン領域としてのN 型領域3.4.5.13
.14を夫々形成する。
Next, as shown in FIG. 6G, the surface of each polysilicon film is thermally oxidized to form a thin layer 810. A film 23 is formed, and then the regions of the load resistors R, , R, mentioned above are temporarily covered with a photoresist, and then the entire surface is irradiated with an ion beam 24 of arsenic or phosphorus. As a result, each polysilicon film and field S
Complete ion implantation into the epitaxial layer 2 using a gate oxidation fi120'kJ as an iOtgk mask, and N type region 3.4.5.13 as a source or drain region.
.. 14 respectively.

次いで第6H図のように、C’VDで全面にリンシリケ
ートガラス膜25を析出爆ぜ几後、公知のフォトエツチ
ングでガラス膜25及び下地の日10mmk順次エツチ
ングし、各コンタクトホール26を形成する。そして、
全面にアルミニウムを例えば真空蒸着技術で被Nぜしめ
、公知のフォトエツチングでパターンニングして、第3
図に示し几アルiニウム配置111、GNDt−形成す
る。図示省略したが、更にファイナルパッシベーション
膜等を施してスタティックRAM工0を完成嘔ぜる。
Next, as shown in FIG. 6H, a phosphosilicate glass film 25 is deposited and exploded on the entire surface by C'VD, and then the glass film 25 and the underlying layer are sequentially etched by 10 mm by known photoetching to form each contact hole 26. and,
Aluminum is coated with N on the entire surface using, for example, vacuum evaporation technology, and patterned using known photoetching to form a third layer.
As shown in the figure, the Al-I arrangement 111 is formed with GNDt. Although not shown, a final passivation film and the like are further applied to complete the static RAM construction 0.

以上・本発明を例示したが、上述の実施例は本発明の技
術的思想に基いて史に変形が可能である。
Although the present invention has been illustrated above, the embodiments described above can be modified based on the technical idea of the present invention.

例えば、上述の埋込み層10はIC全域に形成してよい
し、上記の如くに必要な箇所のみく形成してもよい。ま
几、上述の各半導体領域の導電型を逆導電型に変換して
よい。上述のメモリセルの構造は種々変吏することがで
きる。な訃、本発明はダイナミックRAM(1トランジ
スタ方式も含む)等にも適用可能でるる。
For example, the above-mentioned buried layer 10 may be formed over the entire IC, or may be formed only at necessary locations as described above. Alternatively, the conductivity type of each semiconductor region described above may be converted to the opposite conductivity type. The structure of the memory cell described above can be varied in various ways. However, the present invention can also be applied to dynamic RAM (including one-transistor type), etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものでおって、第1図はス
タティックRAMのレイアウトを概略的に示す平面図、
第2図はそのメモリアレイ部の要部を示す拡大平面図、
第3図は第2図のX−X1ijに沿う断面図、第4図は
a!l入射時の状況を説明するだめの第3図の要部拡大
断面図、第5図はメモリセルの等価回路図、第6A図〜
第6H図は第3図の構造の製造方法全工程順に示す各断
面図でめるっ なお、図面に用いられている符号において、8及び9は
N 型拡散領域、10はN 型埋込み層12はα−12
2riポリシリコン配線、Q、+及びQIは駆動用MI
日yg’r、Qs及びQ4Fiトランスミッションゲー
ト用閂工8IPKT、Q、Hロウデコーダ用M工81F
ET%R,及びRm#−1tポリシリコン負荷抵抗、D
及びDはアルミニウムのデータ鮒、GNDFiアルミニ
ウムの接地巌、w#iポリシリコンのワード線でおる。 305
The drawings show an embodiment of the present invention, and FIG. 1 is a plan view schematically showing the layout of a static RAM;
FIG. 2 is an enlarged plan view showing the main part of the memory array section.
FIG. 3 is a sectional view taken along the line X-X1ij in FIG. 2, and FIG. 4 is a! 3 is an enlarged cross-sectional view of the main part of FIG. 3 to explain the situation at the time of l-injection, FIG. 5 is an equivalent circuit diagram of a memory cell, and FIGS. 6A to 6A.
FIG. 6H is a cross-sectional view showing the entire manufacturing process of the structure shown in FIG. is α-12
2ri polysilicon wiring, Q, + and QI are MI for driving
Japanese yg'r, Qs and Q4Fi transmission gate bar work 8IPKT, Q, H row decoder M work 81F
ET%R, and Rm#-1t polysilicon load resistance, D
and D are aluminum data line, GNDFi aluminum ground line, and w#i polysilicon word line. 305

Claims (1)

【特許請求の範囲】[Claims] 1、高不純物濃度で第1導電型の半導体基体上に低不純
物濃度で第1導電蓋の半導体層が形成式れ・この半導体
層に記憶素子部と周辺回路素子部とが設けられている半
導体記憶装置におりて、少なくとも前記記憶素子部下に
て前記半導体基体と前記半導体層との関に高不純物濃度
で第2導電型の埋込み層が形成され、この埋込み層には
前記半導体基体及び前記半導体層とは逆極性の電圧を印
加するように構成式れたことを特徴とする半導体記憶装
置。
1. A semiconductor layer of a first conductive lid is formed with a low impurity concentration on a semiconductor substrate of a first conductivity type with a high impurity concentration.A semiconductor layer is provided with a memory element portion and a peripheral circuit element portion in this semiconductor layer. In the storage device, a buried layer of a second conductivity type with a high impurity concentration is formed between the semiconductor substrate and the semiconductor layer at least under the storage element, and the buried layer has a second conductivity type buried layer that has a high impurity concentration between the semiconductor substrate and the semiconductor layer. A semiconductor memory device characterized in that the semiconductor memory device is configured to apply a voltage having a polarity opposite to that of the layer.
JP56104462A 1981-07-06 1981-07-06 Semiconductor memory device Pending JPS587860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104462A JPS587860A (en) 1981-07-06 1981-07-06 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104462A JPS587860A (en) 1981-07-06 1981-07-06 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS587860A true JPS587860A (en) 1983-01-17

Family

ID=14381249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104462A Pending JPS587860A (en) 1981-07-06 1981-07-06 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS587860A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271265A (en) * 1985-09-25 1987-04-01 Hitachi Ltd Memory
JPS634672A (en) * 1986-06-25 1988-01-09 Hitachi Ltd Semiconductor device
JPH02113572A (en) * 1988-10-22 1990-04-25 Nec Corp Semiconductor memory circuit device
JPH03232272A (en) * 1990-02-07 1991-10-16 Mitsubishi Electric Corp Semiconductor memory device
EP0509565A2 (en) * 1987-07-10 1992-10-21 Kabushiki Kaisha Toshiba Semiconductor device having different impurity concentration wells
US5452467A (en) * 1982-11-26 1995-09-19 Inmos Limited Microcomputer with high density ram in separate isolation well on single chip
JPH0817208B2 (en) * 1987-09-14 1996-02-21 モトローラ・インコーポレーテツド Trench cell for integrated circuit
US6208010B1 (en) 1985-09-25 2001-03-27 Hitachi, Ltd. Semiconductor memory device
US6414368B1 (en) * 1982-11-26 2002-07-02 Stmicroelectronics Limited Microcomputer with high density RAM on single chip
US6740958B2 (en) 1985-09-25 2004-05-25 Renesas Technology Corp. Semiconductor memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279787A (en) * 1975-12-26 1977-07-05 Toshiba Corp Integrated circuit device
JPS54127291A (en) * 1978-03-27 1979-10-03 Cho Lsi Gijutsu Kenkyu Kumiai Mos semiconductor ic device
JPS55146961A (en) * 1979-05-02 1980-11-15 Hitachi Ltd Semiconductor memory device
JPS55156358A (en) * 1979-05-25 1980-12-05 Hitachi Ltd Semiconductor memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5279787A (en) * 1975-12-26 1977-07-05 Toshiba Corp Integrated circuit device
JPS54127291A (en) * 1978-03-27 1979-10-03 Cho Lsi Gijutsu Kenkyu Kumiai Mos semiconductor ic device
JPS55146961A (en) * 1979-05-02 1980-11-15 Hitachi Ltd Semiconductor memory device
JPS55156358A (en) * 1979-05-25 1980-12-05 Hitachi Ltd Semiconductor memory device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452467A (en) * 1982-11-26 1995-09-19 Inmos Limited Microcomputer with high density ram in separate isolation well on single chip
US6414368B1 (en) * 1982-11-26 2002-07-02 Stmicroelectronics Limited Microcomputer with high density RAM on single chip
US5506437A (en) * 1982-11-26 1996-04-09 Inmos Limited Microcomputer with high density RAM in separate isolation well on single chip
US5491359A (en) * 1982-11-26 1996-02-13 Inmos Limited Microcomputer with high density ram in separate isolation well on single chip
US6208010B1 (en) 1985-09-25 2001-03-27 Hitachi, Ltd. Semiconductor memory device
JPS6271265A (en) * 1985-09-25 1987-04-01 Hitachi Ltd Memory
US6740958B2 (en) 1985-09-25 2004-05-25 Renesas Technology Corp. Semiconductor memory device
US6864559B2 (en) 1985-09-25 2005-03-08 Renesas Technology Corp. Semiconductor memory device
JPS634672A (en) * 1986-06-25 1988-01-09 Hitachi Ltd Semiconductor device
EP0509565A2 (en) * 1987-07-10 1992-10-21 Kabushiki Kaisha Toshiba Semiconductor device having different impurity concentration wells
JPH0817208B2 (en) * 1987-09-14 1996-02-21 モトローラ・インコーポレーテツド Trench cell for integrated circuit
JPH02113572A (en) * 1988-10-22 1990-04-25 Nec Corp Semiconductor memory circuit device
JPH03232272A (en) * 1990-02-07 1991-10-16 Mitsubishi Electric Corp Semiconductor memory device

Similar Documents

Publication Publication Date Title
US4112575A (en) Fabrication methods for the high capacity ram cell
US4754320A (en) EEPROM with sidewall control gate
US4630088A (en) MOS dynamic ram
KR100210721B1 (en) Floating gate field isolation device and method of marking said device
US6274901B1 (en) Nonvolatile semiconductor memory device and method for fabricating the same
EP0453998B1 (en) Semiconductor memory device having a bit line constituted by a semiconductor layer
JPH04328860A (en) Semiconductor integrated circuit device and manufacture thereof
JPH08298295A (en) Non-volatile semiconductor storage and its manufacture
JPS587860A (en) Semiconductor memory device
JP4815695B2 (en) Method of operating nonvolatile semiconductor memory device
JPH07226446A (en) Semiconductor device and its manufacture
JP2772020B2 (en) MOS type semiconductor device
JPH0318353B2 (en)
US7064090B2 (en) Method of manufacturing a semiconductor integrated circuit device
US5116775A (en) Method of producing semiconductor memory device with buried barrier layer
EP0021776B1 (en) Semiconductor memory device and method of making same
US5027175A (en) Integrated circuit semiconductor device having improved wiring structure
EP0454051A2 (en) Program element for use in redundancy technique for semiconductor memory device, and method of fabricating a semiconductor memory device having the same
JPS61229352A (en) Ic type dynamic memory and manufacture thereof
JPS63204770A (en) Semiconductor storage device and manufacture thereof
JP2568770B2 (en) High density memory array and method of forming the same
JPH077823B2 (en) Semiconductor integrated circuit device
KR900004730B1 (en) Semiconductor memory device and method for production thereof
JPS63199464A (en) Non-volatile semiconductor memory device
JP2523645B2 (en) Semiconductor memory device and manufacturing method thereof