JPS5878362A - Charged-particle energy analyzer - Google Patents

Charged-particle energy analyzer

Info

Publication number
JPS5878362A
JPS5878362A JP56175180A JP17518081A JPS5878362A JP S5878362 A JPS5878362 A JP S5878362A JP 56175180 A JP56175180 A JP 56175180A JP 17518081 A JP17518081 A JP 17518081A JP S5878362 A JPS5878362 A JP S5878362A
Authority
JP
Japan
Prior art keywords
film
angle
center
electric
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56175180A
Other languages
Japanese (ja)
Other versions
JPH0114668B2 (en
Inventor
Hiroshi Yamauchi
洋 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56175180A priority Critical patent/JPS5878362A/en
Publication of JPS5878362A publication Critical patent/JPS5878362A/en
Publication of JPH0114668B2 publication Critical patent/JPH0114668B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter
    • H01J49/488Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter with retarding grids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To correct the difference in the selecting energy level which is caused according to the value of theta by preparing a conductor surface, which constitutes a low-pass filter, from a resistance layer, giving an electric-potential gradient along the surface of the resistance layer, and decreasing the electric-potential difference between a part of the resistance layer and a facing grid as said part comes apart from the center of the resistance layer. CONSTITUTION:Since the incidence angle upon a low-pass filter is 1/2 of the emission angle of electrons (or ions) discharged from a sample (S), the incidence angle becomes large as it comes apart from the center of the surface of a resistance film 2. Therefore, in the figure, the angle (theta) is larger than the angle (theta'). A lead wire 3 is made to penetrate the center of an insulating body 1, and connected to the center point of the resistance film 2. An electric-potential difference is given between the lead wire 3, and conductor rings 4 connected to the outermost periphery of the film 2. The film 2 is provided with an electric potential gradient sloping up from the periphery to the center of the film 2. When the angle of the outermost periphery of the film 2 seen from the position of the sample (S) is supposed to be (2thetao), the incidence angle at the outermost periphery of the film 2 is (thetao). When the electric potentials of the center and the outermost periphery of the film 2, respectively, are supposed to be (Vo) and (V) with reference to that of a grid (G1), the influence of the slant incidence is compensated when the relationship of V=Vocos thetao is satisfied.

Description

【発明の詳細な説明】 本発明は成る値よりも低い運動のエネルギーを持った荷
電粒子を反射するローパスフィルタと、上記酸る値より
もわずか低い他のエネルギー値よりも高い運動のエネル
ギーを持った荷電粒子を通過させる・・イパスフィルタ
とを組合せて成るエネルギー値を中心とするせまいエネ
ルギー幅内に含まれる運動エネルギーを有する荷電粒子
を選別す1− るようにした荷電粒子エネルギー分析装置等におffる
0−パスフィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a low-pass filter that reflects charged particles with a kinetic energy lower than the above value and a kinetic energy higher than another energy value slightly lower than the above-mentioned value. A charged particle energy analyzer, etc. that is configured to select charged particles having kinetic energy contained within a narrow energy range centered on the energy value formed by combining an i-pass filter with an i-pass filter that passes through the charged particles. Regarding the off-pass 0-pass filter.

上述した荷電粒子エネルギー分析装置は例えば第1図に
宗すような構成になっている。Mは0を中心とする金属
球面で、その前面に同じく0を中心とする球面のグリッ
ドG1が配置され、MとGで 1とtローパスフィルタを構成している。G2゜G3も
夫々0を中心とする同心球面のグリッドで02、G3に
よってバイパスフィルタを構成している。グリッドGl
、G2は同電位にしてあり、荷電粒子として電子を考え
ると、M、G3は夫々グリッドGl、G2より低電位に
しである。0点の傍に電子発生源Sを置く。これは例え
ばX線で励起された試料であって、その場合図示装置は
試料から出るX線光電子をエネルギー分析することにな
る。Sから出た電子のうち成るエネルギーより高い運動
エネルギーを持ったものは金属面Mに衝突するが、その
エネルギーより低い運動エネルギーを持った電子は金属
面Mによって反射され、0点の傍でSの反対側に一旦集
束した上でグリツドG2の面に入射し、こ\で更に成る
エネルギー値より低いエネルギーを持った電子はG3に
よって反射され、そのエネルギーより高いエネルギーを
持った電子だけがグリッドG3を通過する。このように
して成るエネルギーを中心にせまい幅の中に含まれるエ
ネルギーを持った電子だけがグリッドG3の右側に取出
される。
The above-described charged particle energy analyzer has a configuration similar to that shown in FIG. 1, for example. M is a metal spherical surface centered at 0, and a spherical grid G1 also centered at 0 is placed in front of it, and M and G constitute a 1 and t low-pass filter. G2 and G3 are also concentric spherical grids centered on 0, and 02 and G3 constitute a bypass filter. Grid Gl
, G2 are at the same potential, and considering electrons as charged particles, M and G3 are at a lower potential than the grids Gl and G2, respectively. Place an electron source S near the 0 point. This is, for example, a sample excited with X-rays, in which case the illustrated device will perform an energy analysis of the X-ray photoelectrons emanating from the sample. Among the electrons emitted from S, those with kinetic energy higher than the energy of the component collide with the metal surface M, but electrons with kinetic energy lower than that energy are reflected by the metal surface M, and S Once focused on the opposite side, the electrons enter the surface of grid G2, and further electrons with energy lower than this value are reflected by G3, and only electrons with energy higher than that are reflected by grid G3. pass through. Only electrons having energy contained within a narrow width around the energy thus formed are taken out to the right side of grid G3.

こ\でローパスフィルタの作用を考える。第2図はロー
パスフィルタの一部を拡大したもので、ローパスフィル
タで反射される荷電粒子は金属面Mの法線Nに対してθ
の傾きで入射し、θの傾きで反射される。この入射角2
反射角θは第1図で8点が0点に近いときは小さな値で
あり、かつM上で中心に近い所でもMの外周部でも略同
じとみなせる。しかし色々な目的で8点を0点から離し
、金属面に近づけて反射される荷電粒子が平行に近くな
るようにした場合とか、金属面Mを楕円面にして8点及
び、反射粒子の集束点をその焦点に位置させるような場
合、上記した入射角2反射角θは金属面M上の場所によ
って異って来る。所で荷電粒子が金属面MとグリッドG
lとの間で反射されるか否かを決めるのは荷電粒子の速
度Vではなく、速度Vの面Mの法線方向の成分v1であ
り、vl−v cosθ≠v(1−θ2/2)であるか
ら、θが面M上の場所により0から相当大きな値にまで
変化しているときはθ2/2の項が無視できなくなり、
同じエネルギー即ち同じVの粒子でもθが小さい方向の
ものは反射されずθが犬なる方向のものは反射されるこ
とになってエネルギー分解能が低下する。
Now let's consider the effect of a low-pass filter. Figure 2 is an enlarged view of a part of the low-pass filter, and the charged particles reflected by the low-pass filter are θ with respect to the normal N to the metal surface M.
It enters at an angle of θ and is reflected at an angle of θ. This angle of incidence 2
The reflection angle θ is a small value when the 8 points are close to 0 in FIG. 1, and can be considered to be approximately the same both near the center on M and on the outer periphery of M. However, for various purposes, there are cases where the 8 points are moved away from the 0 point and brought closer to the metal surface so that the reflected charged particles are nearly parallel, or when the metal surface M is made an ellipsoid and the 8 points and the reflected particles are focused. When a point is located at its focal point, the above-mentioned angle of incidence and angle of reflection θ differ depending on the location on the metal surface M. Now, the charged particles are connected to the metal surface M and the grid G.
It is not the velocity V of the charged particle that determines whether it is reflected between the charged particle and l, but the component v1 of the velocity V in the normal direction to the plane M, and vl-v cosθ≠v(1-θ2/2 ), so when θ changes from 0 to a considerably large value depending on the location on plane M, the term θ2/2 cannot be ignored,
Even if the particles have the same energy, that is, the same V, those in the direction where θ is small are not reflected, and those in the direction where θ is small are reflected, resulting in a decrease in energy resolution.

本発明はローパスフィルタにおいて入反射角が場所によ
って異るような場合に上述した原因によるエネルギー分
解能の低下が起らないようにすることを目的としてなさ
れた。本発明はローパスフィルタを構成する導体面を抵
抗層で形成し、面に沿って電位勾配を与え、入反射角θ
が犬なる場所ではθの小さい場所より対向するグリッド
との間の電位差を小さくすることによってθの大小によ
り生ずる選別エネルギーレベルの差を補正するようにし
たローパスフィルタを提供するものである。
The present invention has been made with the object of preventing the energy resolution from decreasing due to the above-mentioned causes when the angle of incidence and reflection of a low-pass filter differs depending on the location. In the present invention, the conductive surface constituting the low-pass filter is formed with a resistive layer, a potential gradient is applied along the surface, and the incident reflection angle θ is
The present invention provides a low-pass filter that corrects the difference in the sorting energy level caused by the magnitude of θ by reducing the potential difference between the opposing grid and the grid at locations where θ is small.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

第3図に本発明の一実施例を示す。1は導体面を支持す
る絶縁体で0を中心とする凹球面で表面に抵抗被膜2が
形成してあり、この被膜が第1図に示すMに相当する。
FIG. 3 shows an embodiment of the present invention. Reference numeral 1 denotes an insulator supporting the conductor surface, which has a concave spherical surface centered at 0, and has a resistive coating 2 formed on its surface, and this coating corresponds to M shown in FIG.

G1はOを中心とする球面グリッドで第1図の01に対
応する。被膜2の曲率半径の1/2の位置の所に電子源
(或はイオン源)の試料Sが置かれる。この構成による
と試料Sから放出されローパスフィルタで反射される電
子は平行になる。試料Sから放出される電子のエネルギ
ー分布は試料面の法線に対する電子放射方向の傾きに依
存しており、ローパスフィルタで反射された電子を平面
状の・・イパスフィルタを通して何らかの面状検出手段
で検出すると同心円的なパターンが得られ、このパター
ンから電子のエネルギーの放射方向による分布が求まる
。このような装置構成でローパスフィルタへの入反射角
は、電子(或はイオン)の試料Sからの放出角の1/2
であるから、抵抗被膜2の面の外周程大きくなっている
。即ち図でθ〉G1である。絶縁体1の中心部にはリー
ド線3が貫通させてあって抵抗被膜2の中央点と接続し
てあり、抵抗被膜2の外周縁と接続された導体環4との
間にΔVなる電位差が与えてあり、抵抗被膜2には外周
から中心に向う電位勾配が形成されている。今試料Sの
位置から抵抗被膜2の外周縁を望む角を2θ0とすると
、この外周縁における入反射角はθOである。グリッド
G1の電位を基準にして抵抗被膜2の中央の電位をVO
とし外周縁の電位を■とすると、■=Vocosθ0と
なっておれば斜め入射の影響は補償される。もつともこ
の場合抵抗被膜2が均一であると、被膜2に沿う電位勾
配は外周部でゆるやかで中心に向う程急勾配になってお
り、補償が完全に行われるのは外周縁だけで途中の半径
の所では補償は近似的となる。
G1 is a spherical grid centered at O and corresponds to 01 in FIG. A sample S of an electron source (or ion source) is placed at a position that is 1/2 the radius of curvature of the coating 2 . With this configuration, electrons emitted from the sample S and reflected by the low-pass filter become parallel. The energy distribution of electrons emitted from the sample S depends on the inclination of the electron emission direction with respect to the normal to the sample surface, and the electrons reflected by the low-pass filter are passed through a planar... When detected, a concentric pattern is obtained, and from this pattern the distribution of electron energy in the radiation direction can be determined. With such a device configuration, the angle of incidence and reflection of the low-pass filter is 1/2 of the angle of emission of electrons (or ions) from the sample S.
Therefore, the outer circumference of the surface of the resistive coating 2 is larger. That is, in the figure, θ>G1. A lead wire 3 is passed through the center of the insulator 1 and connected to the center point of the resistive coating 2, creating a potential difference of ΔV between the outer periphery of the resistive coating 2 and the connected conductor ring 4. A potential gradient is formed in the resistive coating 2 from the outer periphery toward the center. If the angle at which the outer periphery of the resistive coating 2 is viewed from the position of the sample S is 2θ0, then the incident/reflection angle at this outer periphery is θO. The potential at the center of the resistive film 2 is VO with respect to the potential of the grid G1.
Assuming that the potential at the outer periphery is ■, then if ■=Vocosθ0, the influence of oblique incidence can be compensated. Of course, in this case, if the resistive film 2 is uniform, the potential gradient along the film 2 will be gentle at the outer periphery and steeper toward the center, and complete compensation will occur only at the outer periphery and at some radius along the way. Compensation is approximate at .

第4図はより完全な補償を行うに適した実施例で絶縁体
1の凹球面に導体リングR1〜R5を敷設し、これらの
リング表面を絶縁体凹面と同一面に仕上げ、その上に抵
抗被膜2を形成したもので、リングR1〜R4にリード
線l!1〜/4を接続し、各リング及び抵抗被膜2の外
周縁を試料Sから望む角を201〜2θ5とするとき、
各リングに■a cosθ1〜Vo cosθ5なる電
位を与えるようにしたものである。
Figure 4 shows an embodiment suitable for more complete compensation, in which conductor rings R1 to R5 are laid on the concave spherical surface of the insulator 1, the surfaces of these rings are finished flush with the concave surface of the insulator, and a resistor is placed on top of the conductor rings R1 to R5. A coating 2 is formed on the rings R1 to R4 with lead wires l! 1 to /4 are connected, and the angle of each ring and the outer periphery of the resistive coating 2 as seen from the sample S is 201 to 2θ5,
A potential of (a) cos θ1 to Vo cos θ5 is applied to each ring.

第5図はローパスフィルタを回転楕円面とし、荷電粒子
源Sをその一つの焦点に位置させ、他の焦点位置に反射
荷電粒子を集中させるようにした構成で、この場合、荷
電粒子のローパスフィルタへの入反射角は同フィルタの
中央帯(帯は図の紙面に垂直の方向に延びる)で最大で
ある。この実施例の場合抵抗被膜20面における同電位
帯は第3、第4図の実施例のような同心円でなく、図の
紙面に垂直の方向に延びる線になるから、抵抗被膜2に
接触している導体a、  a’、 b等は膜2に治って
図の紙面に垂直の方向に延びており、夫々所定の電圧が
印加される。
Figure 5 shows a configuration in which the low-pass filter is an ellipsoid of revolution, the charged particle source S is located at one focal point, and the reflected charged particles are concentrated at the other focal point.In this case, the charged particle low-pass filter The angle of incidence and reflection is greatest in the central band of the filter (the band extends perpendicular to the plane of the figure). In this embodiment, the same potential band on the surface of the resistive film 20 is not a concentric circle as in the embodiments shown in FIGS. The conductors a, a', b, etc. that are connected to the membrane 2 extend in a direction perpendicular to the plane of the drawing, and a predetermined voltage is applied to each of them.

なお各実施例でp、p’等は蝉抗膜2及びグリッドG1
の端縁における電界の乱れを防ぐだめの保護リングであ
る。
In each example, p, p', etc. are the cicada anti-film 2 and the grid G1.
This is a protective ring that prevents disturbance of the electric field at the edge of the

抵抗被膜2は塗布法によっても蒸着法によってもよく、
膜厚分布を制御し、第3図の構成で膜面に沿う電位勾配
の分布を適当にすることも可能である。
The resistive coating 2 may be formed by a coating method or a vapor deposition method,
It is also possible to control the film thickness distribution and make the potential gradient distribution along the film surface appropriate using the configuration shown in FIG.

本発明荷電粒子エネルギー分析器は上述したような構成
で、荷電粒子の入射角が場所によって異るような用法が
要求される場合にエネルギー分解能の低下を来たさず、
その用法における目的を実現することが可能となる。
The charged particle energy analyzer of the present invention has the above-described configuration, and can be used without deteriorating energy resolution when the incident angle of charged particles varies depending on the location.
It becomes possible to realize the purpose of its usage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は荷電粒子エネルギー分析装置の一例を示す側面
図、第2図はローパスフィルターの一部拡大図、第3図
は本発明の一実施例の側断面図、第4図は本発明の他の
実施例の側断面図、第5図は本発明の更に他の実施例の
側断面図である。 1・・・絶縁体、2・・・抵抗被膜、3・・・リード線
、S・・・試料、G1・・・グリッド。 代理人 弁理士  縣   浩  介
Fig. 1 is a side view showing an example of a charged particle energy analyzer, Fig. 2 is a partially enlarged view of a low-pass filter, Fig. 3 is a side sectional view of an embodiment of the present invention, and Fig. 4 is a side view showing an example of a charged particle energy analyzer. FIG. 5 is a side sectional view of still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Insulator, 2... Resistance coating, 3... Lead wire, S... Sample, G1... Grid. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 導体面とその前面に張設したグリッドとの間に適当な電
圧を印加し、上記導体面に入射する荷電粒子のうち成る
エネルギーレベルより低い運動エネルギーの荷電粒子を
反射させることにより荷電粒子ヲエネルギーによって選
別する構成で、上記導体面を抵抗膜によって形成し、そ
の面に沿って電位勾配を持たせたことを特徴とする荷電
粒子エネルギー分析器。
By applying an appropriate voltage between a conductive surface and a grid stretched in front of the conductive surface, charged particles having a kinetic energy lower than the energy level of the charged particles incident on the conductive surface are reflected, thereby energizing the charged particles. 1. A charged particle energy analyzer characterized in that the conductor surface is formed of a resistive film and a potential gradient is provided along the surface.
JP56175180A 1981-10-31 1981-10-31 Charged-particle energy analyzer Granted JPS5878362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175180A JPS5878362A (en) 1981-10-31 1981-10-31 Charged-particle energy analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175180A JPS5878362A (en) 1981-10-31 1981-10-31 Charged-particle energy analyzer

Publications (2)

Publication Number Publication Date
JPS5878362A true JPS5878362A (en) 1983-05-11
JPH0114668B2 JPH0114668B2 (en) 1989-03-13

Family

ID=15991664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175180A Granted JPS5878362A (en) 1981-10-31 1981-10-31 Charged-particle energy analyzer

Country Status (1)

Country Link
JP (1) JPS5878362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849629A (en) * 1986-11-14 1989-07-18 Shimadzu Corporation Charged particle analyzer
JPH03217712A (en) * 1990-01-24 1991-09-25 Matsushita Electric Ind Co Ltd Oil burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849629A (en) * 1986-11-14 1989-07-18 Shimadzu Corporation Charged particle analyzer
JPH03217712A (en) * 1990-01-24 1991-09-25 Matsushita Electric Ind Co Ltd Oil burner

Also Published As

Publication number Publication date
JPH0114668B2 (en) 1989-03-13

Similar Documents

Publication Publication Date Title
US4308457A (en) Device for the detection of back-scattered electrons from a sample in an electron microscope
US3328595A (en) Dual beam optical gyroscope pickoff
US4849629A (en) Charged particle analyzer
JPS5878362A (en) Charged-particle energy analyzer
JPH05182625A (en) Objective lens
US4135088A (en) Charged-particle analyzer
US6198798B1 (en) Planispherical parallax-free X-ray imager based on the gas electron multiplier
US4394676A (en) Photovoltaic radiation detector element
US4118622A (en) Cone optical system
JP3117795B2 (en) Scanning electron microscope
JPS5841623B2 (en) Mass spectrometer ion detector
JPS6262075B2 (en)
JPH0114666B2 (en)
JPH0213463B2 (en)
JP3345256B2 (en) Charged particle detector
EP0208866B1 (en) Gas analyzer with large area pyroelectric detector
US3894231A (en) Image converter or intensifier device
JPH0210646A (en) Charged particle energy analyzer
JPH06138252A (en) X-ray inspection device
JPS60240042A (en) Energy analyzer
JPH01175159A (en) Charged particle energy analyzer
JPH035080Y2 (en)
JPH0341402Y2 (en)
JPS62226554A (en) Charged particle energy analyzer
JPS5814618B2 (en) Kadenriyuushibimunobeamkei-sokuteisouchi