JPH01175159A - Charged particle energy analyzer - Google Patents

Charged particle energy analyzer

Info

Publication number
JPH01175159A
JPH01175159A JP62334887A JP33488787A JPH01175159A JP H01175159 A JPH01175159 A JP H01175159A JP 62334887 A JP62334887 A JP 62334887A JP 33488787 A JP33488787 A JP 33488787A JP H01175159 A JPH01175159 A JP H01175159A
Authority
JP
Japan
Prior art keywords
electrodes
potential
film
center
edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334887A
Other languages
Japanese (ja)
Inventor
Taketsugu Kodama
小玉 雄嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62334887A priority Critical patent/JPH01175159A/en
Publication of JPH01175159A publication Critical patent/JPH01175159A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dissolve the disturbance of the electric field at end edges of electrodes by covering the opening face of the end edge sections of semi-spherical concentric double electrodes with a resistance film and feeding a current in the direction of the electrode radius. CONSTITUTION:A ceramic substrate 3 is fitted so as to close the opening between semi-spherical concentric double electrodes 1 and 2, a conductor film 4 is formed on the surface on the side toward the space between the electrodes, and the film 4 is made of a resistance film. A conducting layer 41 is formed facing flanges 11 and 21 on the inner periphery and the outer periphery of the film 4. When the voltage is applied across the electrodes 1 and 2, a current flows in the direction of the electrode radius, and the desired potential gradient is obtained. The above resistance layer is made thick in proportion to the distance from the center of the electrodes 1 and 2, thus the potential in the resistance film is changed in reverse proportion to the distance from the center. On the other hand, the potential across the electrodes 1 and 2 is in reverse proportion to the distance from the center. When both inner and outer edges of the resistance film and the edges of the electrodes 1 and 2 are connected, the potential at each point of the resistance film becomes the same potential as the correct potential across the double electrodes 1 and 2. The disturbance of the electric field at end edges of the electrodes is dissolved.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は球面電極を用いた静電型エネルギー分析器に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an electrostatic energy analyzer using spherical electrodes.

ロ、従来の技術 荷電粒子線を運動のエネルギーによって分析するのに同
心二重球面電極を用いる方法が一般に用いられている。
B. Prior Art A method using concentric double spherical electrodes is generally used to analyze charged particle beams based on their kinetic energy.

この型のエネルギー分析器は半球状の同心二重電極を用
い、電極間に形成される方向が球面電極の半径方向で強
さが球面中心からの距離の2乗に反比例した電場内にお
ける荷電粒子の運動によってエネルギー選別を行うよう
になっている。この型のエネルギー分析器は上述したよ
うに中心から放射状に距離の2乗に反比例する電場の作
用によってエネルギー分析を行うのであるが、電極が半
球型であるため、電極の縁の近(では電気力線は外方に
曲って荷電粒子の運動が乱される。これを防ぐため従来
は第2図に示すように、内外半球電極1.2の縁の間に
同心的に導体リングGを数本配置し、これらを分圧抵抗
Rの途中適当位置に接続して、各リングがその位置にお
ける二重電極間の正しい電位と同電位になるようにして
、電極の縁における電場の乱が電極間内部深くまで及ぶ
のを防いでいる。
This type of energy analyzer uses hemispherical concentric double electrodes, and charged particles are formed between the electrodes in an electric field whose direction is the radial direction of the spherical electrode and whose strength is inversely proportional to the square of the distance from the center of the sphere. Energy is sorted by the movement of the As mentioned above, this type of energy analyzer performs energy analysis by the action of an electric field that is inversely proportional to the square of the distance radially from the center, but since the electrode is hemispherical, near the edge of the electrode (where the electric field is The lines of force bend outward and the motion of charged particles is disturbed.In order to prevent this, conventionally a number of conductor rings G were placed concentrically between the edges of the inner and outer hemispherical electrodes 1.2, as shown in Figure 2. These are connected to appropriate positions in the middle of the voltage dividing resistor R, so that each ring has the same potential as the correct potential between the double electrodes at that position, so that disturbances in the electric field at the edges of the electrodes are avoided. This prevents it from reaching deep inside the body.

ハ1発明が解決しようとする問題点 二重半球形電極の電場の電極端縁における乱れを防ぐの
に従来のように数本のリングを用いる方法では、リング
の位置だけが正しい電位に保たれ、リングとリングの間
には外部空間の影響が入込んで、付近の電場は第3図に
示すように波打った形に乱れている。このような電場の
乱れにより荷電粒子線が電極間に入射するときおよび出
射するとき散乱されて、エネルギースペクトルの分解能
が低下し、バックグラウンドが増大している。
C1 Problem to be solved by the invention In the conventional method of using several rings to prevent disturbance of the electric field at the edge of the double hemispherical electrode, only the positions of the rings are kept at the correct potential. , the influence of external space enters between the rings, and the nearby electric field is disturbed in a wavy shape as shown in Figure 3. Due to such disturbances in the electric field, the charged particle beam is scattered when it enters between the electrodes and when it exits, reducing the resolution of the energy spectrum and increasing the background.

従って本発明は半球状同心2重電極型エネルギー分析器
における電極端縁の電場の乱れの補正を完全なものにす
ることを目的としている。
Therefore, it is an object of the present invention to completely correct the disturbance of the electric field at the edge of the electrode in a hemispherical concentric dual electrode energy analyzer.

二1問題点解決のための手段 内外電極の端縁間の開口面を抵抗膜で覆い、電極半径の
方向に電流を流すようにした。
21. Means for solving the problem The opening between the edges of the inner and outer electrodes was covered with a resistive film to allow current to flow in the radial direction of the electrodes.

ホ0作用 同心2重球面電極間に形成される電場強度は中心からの
距離の2乗に反比例しており、従って電極間電位は中心
からの距離に反比例して変化している。厚さが中心から
の距離に比例しているような抵抗膜に一点に向い或は−
点から発散する半径方の電流を流すときは円周方向の電
流密度は中心からの距離に反比例しており、従って抵抗
膜内の電位は中心からの距離に反比例して変化すること
になるから、抵抗膜の内外両縁を夫々内外各電極の縁に
接続して各電極と同電位にすれば自然に抵抗膜の各点の
電位は2重電極間の正しい電位と同電位になり、電極端
縁における電場の乱れは完全に解消される。
The electric field strength formed between the two concentric spherical electrodes is inversely proportional to the square of the distance from the center, and therefore the potential between the electrodes changes inversely to the distance from the center. A resistive film whose thickness is proportional to the distance from the center is oriented at one point or -
When flowing a radial current that diverges from a point, the current density in the circumferential direction is inversely proportional to the distance from the center, so the potential inside the resistive film changes inversely to the distance from the center. , if both the inner and outer edges of the resistive film are connected to the edges of the inner and outer electrodes and made to have the same potential as each electrode, the potential at each point on the resistive film will naturally become the same potential as the correct potential between the double electrodes, and the voltage will increase. The electric field disturbances at the extreme edges are completely eliminated.

へ、実施例 第1図に本発明の一実施例を示す。1,2は半球状同心
2重電極であり、3は内外半球状電極間の開口を閉塞す
るように取付けられたセラミック基板で、電極間空間に
向う側の表面に導体薄膜4が形成してあり、この薄膜が
抵抗膜となっている。内側電極1の縁には球心に向う方
向にフランジ11が延出してあり、外側電極2の縁には
外方に向うフランジ21が延出しである。導体膜4の内
周および外周の上記フランジ11.21と対向する部分
には夫々リング状に銀或は銅の比較的厚い導電層41が
形成してあり、7ランジ11.21がこの層に圧接され
るようにクランプ部材5によって電極1,2とセラミッ
ク基板3とが結合されている。この構造によって画電極
1,2間に電圧を印加すると導体層4には自然に半径方
向に電流が流れて所望の電位勾配が形成される。6は荷
電粒子線の入射開口であって、セラミック基板3におけ
る円周方向のスリットであり、荷電粒子出射開口も同じ
形状になっている。入口スリット6の両側には入口スリ
ットと平行してaで示すように導体膜4が形成してない
部分が設けである。このようなダミーのスリットがない
ときは、スリット6で電流が遮断されることにより、ス
リットの両縁間に電位差が現れるが、ダミーのスリット
aを設けることにより、スリット6の両縁間の電位差が
解消されるので、入口スリットを大きくすることができ
る。なお入出射開孔は円形の小孔でもよい。導体膜4は
抵抗膜として作用するものであるが、余り高抵抗にする
と、汚染物質の付着による抵抗変化の影響が大きく、電
極間空間の残留ガスとの衝突等で散乱された荷電粒子の
入射電流による電位の乱れの影響が大きくなるので、電
極間電圧100Vに対して10〜100mA程度の電流
が流れるようにするのが望ましい。
Embodiment FIG. 1 shows an embodiment of the present invention. 1 and 2 are hemispherical concentric double electrodes, and 3 is a ceramic substrate attached to close the opening between the inner and outer hemispherical electrodes, and a conductive thin film 4 is formed on the surface facing the interelectrode space. , this thin film is a resistive film. A flange 11 extends from the edge of the inner electrode 1 in a direction toward the spherical center, and a flange 21 extends outward from the edge of the outer electrode 2. A comparatively thick conductive layer 41 of silver or copper is formed in a ring shape on the inner and outer circumferences of the conductor film 4 at the portions facing the flanges 11.21, respectively, and seven flange 11.21 are formed on this layer. The electrodes 1 and 2 and the ceramic substrate 3 are connected by a clamp member 5 so as to be in pressure contact with each other. With this structure, when a voltage is applied between the picture electrodes 1 and 2, a current naturally flows in the conductor layer 4 in the radial direction, forming a desired potential gradient. Reference numeral 6 denotes an entrance aperture for the charged particle beam, which is a slit in the circumferential direction in the ceramic substrate 3, and a charged particle exit aperture also has the same shape. On both sides of the entrance slit 6, parallel to the entrance slit, there are portions where the conductor film 4 is not formed, as shown by a. When there is no such dummy slit, the electric current is interrupted by the slit 6, and a potential difference appears between the two edges of the slit.However, by providing the dummy slit a, the potential difference between the two edges of the slit 6 is reduced. Since this eliminates the problem, the entrance slit can be made larger. Note that the entrance/exit aperture may be a circular small hole. The conductor film 4 acts as a resistive film, but if the resistance is too high, the influence of resistance change due to adhesion of contaminants will be large, and the incidence of charged particles scattered due to collision with residual gas in the interelectrode space, etc. Since the effect of potential disturbance due to current becomes large, it is desirable that a current of about 10 to 100 mA flow with respect to an interelectrode voltage of 100 V.

導体膜は金属の蒸着法によって形成される。均一厚さに
蒸着できるように蒸発源を配置し、基板と同軸上で適当
な形の遮蔽板を回転させながら、蒸着を行うことにより
、厚さが中心からの距離に比例して増加して行く導体膜
の層を形成することができる。
The conductor film is formed by a metal vapor deposition method. By arranging the evaporation source so that it can be deposited to a uniform thickness and performing the deposition while rotating an appropriately shaped shielding plate coaxially with the substrate, the thickness increases in proportion to the distance from the center. A layer of conductive film can be formed.

ト、効果 本発明によるときは電極端縁の電場の乱れが完全に解消
されるので、荷電粒子エネルギー分析における分解能の
向上およびバックグラウンド低下の効果が得られる。
Effects According to the present invention, disturbances in the electric field at the edge of the electrode are completely eliminated, so that the effects of improved resolution and background reduction in charged particle energy analysis can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部斜視図、第2図は従来
例の要部斜視図、第3図は従来例における電場の乱れを
示す図である。 1.2・・・半球状同心2重電極、3・・・セラミック
基板、4・・・導体膜、5・・・クランプ、6荷電粒子
線入射開口。 代理人  弁理士 縣  浩 介
FIG. 1 is a perspective view of a main part of an embodiment of the present invention, FIG. 2 is a perspective view of a main part of a conventional example, and FIG. 3 is a diagram showing disturbance of an electric field in a conventional example. 1.2... Hemispherical concentric double electrode, 3... Ceramic substrate, 4... Conductor film, 5... Clamp, 6 Charged particle beam incidence aperture. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 半球状同心二重電極の端縁部開口を厚さが中心からの距
離に比例して厚くなるようにした抵抗層で覆い、この抵
抗層の内外両縁を夫々上記二重電極の端縁と接続したこ
とを特徴とする荷電粒子エネルギー分析器。
The edge opening of the hemispherical concentric double electrode is covered with a resistive layer whose thickness increases in proportion to the distance from the center, and the inner and outer edges of this resistive layer are connected to the edges of the double electrode, respectively. A charged particle energy analyzer characterized in that:
JP62334887A 1987-12-28 1987-12-28 Charged particle energy analyzer Pending JPH01175159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334887A JPH01175159A (en) 1987-12-28 1987-12-28 Charged particle energy analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334887A JPH01175159A (en) 1987-12-28 1987-12-28 Charged particle energy analyzer

Publications (1)

Publication Number Publication Date
JPH01175159A true JPH01175159A (en) 1989-07-11

Family

ID=18282338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334887A Pending JPH01175159A (en) 1987-12-28 1987-12-28 Charged particle energy analyzer

Country Status (1)

Country Link
JP (1) JPH01175159A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141083A (en) * 1977-05-14 1978-12-08 Ulvac Corp Micro probe secondary mass spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141083A (en) * 1977-05-14 1978-12-08 Ulvac Corp Micro probe secondary mass spectrometer

Similar Documents

Publication Publication Date Title
US3942012A (en) System for monitoring the position, intensity, uniformity and directivity of a beam of ionizing radiation
US3013232A (en) Control of response curves for photoelectric cells
JP4625317B2 (en) Phase plate for phase contrast electron microscope, method for producing the same, and phase contrast electron microscope
KR0156874B1 (en) Sealing member for sealing magnetic fluid
US3735128A (en) Field termination plate
US4562447A (en) Ion modulating electrode
Rau et al. An annular toroidal backscattered electron energy analyser for use in scanning electron microscopy
JPH01175159A (en) Charged particle energy analyzer
JPS59837A (en) Wien filter
US3997788A (en) Device for monitoring the position, intensity, uniformity and directivity of an ionizing radiation beam
US4427890A (en) Dose monitor chamber for electron or X-ray radiation
DE2431415C3 (en) Electrode assembly for electric fields and process for their manufacture
Moore The simulation of FIM desorption patterns
US4742224A (en) Charged particle energy filter
JPS61220482A (en) Nondirectional photodiode
JPH0198985A (en) Monitoring device for measuring particle beam
JPH0577140B2 (en)
US4049989A (en) Ion production means
JP2600108B2 (en) High transmittance spherical electrode and energy analyzer
US3297894A (en) Apparatus for ionizing particles in a mass spectrometer
US20170047137A1 (en) Variable aperture for controlling electromagnetic radiation
JPS61250949A (en) Acceleration tube
GB1246520A (en) Electrofilter electrodes
JP2757397B2 (en) Electronic detector
WO1993010554A2 (en) Charged particle energy analyser