JPS5876946A - Digital operating device - Google Patents

Digital operating device

Info

Publication number
JPS5876946A
JPS5876946A JP17548481A JP17548481A JPS5876946A JP S5876946 A JPS5876946 A JP S5876946A JP 17548481 A JP17548481 A JP 17548481A JP 17548481 A JP17548481 A JP 17548481A JP S5876946 A JPS5876946 A JP S5876946A
Authority
JP
Japan
Prior art keywords
gate
bit
gates
propagation
carry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17548481A
Other languages
Japanese (ja)
Inventor
Masaru Uya
宇屋 優
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17548481A priority Critical patent/JPS5876946A/en
Publication of JPS5876946A publication Critical patent/JPS5876946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/5055Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination in which one operand is a constant, i.e. incrementers or decrementers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/386Special constructional features
    • G06F2207/3876Alternation of true and inverted stages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To reduce the delay in propagation and to speed up carry propagation, by taking a gate corresponding to an even number order bit of a logical gate chain as a twin pair gate for the gate corresponding to an odd number order bit. CONSTITUTION:A carry propagation path of an incrementor/decrementor is formed by connecting NAND gates 12, 14 and NOR gates 13, 15 being twin pair gates of the gates 12, 14 alternately at each bit. The propagation delay time of the carry propagation path is expressed as (n-2)DELTAT and quickened, where DELTAT is the propagation delay time for the NAND gates and inverters. A decrement/ increment selection terminal DEC performs increment when the terminal is a low logical level and decrement when a high logical level.

Description

【発明の詳細な説明】 本発明は、加算器、ALU(算術論理演算ユニット)、
インクリメンタ/デクリメンタなどのディジタルデータ
の演算装置に関し、特に、下位ビットから上位ビットに
伝搬するキャリー(ボロー)信号を高速に伝搬するよう
にしたディジタル演算装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an adder, an ALU (arithmetic logic unit),
The present invention relates to a digital data arithmetic device such as an incrementer/decrementer, and particularly relates to a digital arithmetic device that propagates a carry (borrow) signal from lower bits to upper bits at high speed.

第1図に従来のインクリメンタ/デクリメンタの回路例
を示す。これは、6ビツトデイジタル演算装置に関する
FIG. 1 shows an example of a conventional incrementer/decrementer circuit. This relates to a 6-bit digital arithmetic device.

第1図に従来のインクリメンタ/デクリメンタの回路例
を示す。これは、6ビツトデイジタルデータx6−−−
−−− xo(x5: MSB 、xo: LSB)を
入力して、+1又は−1されたデータy6・・・・・・
yo(76:MOB、yo: LSB)を得るものであ
る。
FIG. 1 shows an example of a conventional incrementer/decrementer circuit. This is 6-bit digital data x6---
--- Input xo (x5: MSB, xo: LSB) and add +1 or -1 to data y6...
yo (76: MOB, yo: LSB).

DEC!デクリメント/インクリメント選択端子であり
、′0#(低論理レベル)のときインクリメント、′1
″(高論理レベル)のときデクリメント動作をさせるた
めのものである。
DEC! Decrement/increment selection terminal; increment when '0# (low logic level), '1
'' (high logic level) to perform a decrement operation.

1〜s 、y 〜11HtXOR(排他的論理和)ゲー
トであり、12〜16はNANDゲート、6゜16〜1
9はインバータである。+1又は−1された結果y・・
・・・・yoのうち、最も早く値が決定6 するのはyoであり、逆に最も遅いのは最上位ビットの
y6である。つまり、+1する場合、ynの値が決定す
るのは、In−1・・・・・・”oに1を加えたときに
ルー1ビツト目からキャリーが発生するかしないかに関
係しているため、上位ビットはど結果の決定が遅くなる
。このキャリーの伝搬径路が、第1図中の点線で囲った
部分である。この伝搬径路の構成1jANDチエーンに
なっていて、NANDゲートとインバータを一組とし、
これを4組直列接続した構成となっている。この場合、
NANDゲートとインバータの伝搬遅延時間を共にΔ丁
とすれば、点線で囲んだ罐径路の遅延時間Fi8ΔTと
なる5nビツトの場合は、Q(n−2)ΔTの伝搬遅延
となる。
1~s, y~11HtXOR (exclusive OR) gates, 12~16 are NAND gates, 6°16~1
9 is an inverter. +1 or -1 result y...
. . . Among yo, yo is the fastest to determine its value, and conversely, the most significant bit, y6, is the slowest. In other words, when adding +1, the value of yn is determined by whether or not a carry occurs from the 1st bit when adding 1 to In-1...''o. Therefore, the determination of the result for the upper bit is delayed.The propagation path of this carry is the part surrounded by the dotted line in Figure 1.The structure of this propagation path is an AND chain, which includes a NAND gate and an inverter. One set,
The configuration is such that four sets of these are connected in series. in this case,
If the propagation delay time of the NAND gate and the inverter are both ΔT, then in the case of 5n bits, the delay time of the can path surrounded by the dotted line is Fi8ΔT, and the propagation delay is Q(n-2)ΔT.

この遅延時間が第1図の最大伝搬遅延時間を決めている
This delay time determines the maximum propagation delay time in FIG.

本発明は、この最大伝搬遅延を大幅に短縮するために成
されたものである。
The present invention has been made to significantly reduce this maximum propagation delay.

第2図に本発明の実施例を示す。第2図は、第1図のイ
ンクリメンタ/デクリメンタを改良したものであり、機
能は全く同じであって最大伝搬遅延時間は約2分の1に
短縮されている。第2図では、第1図の点線中のAND
チェーンの代わりにNANDゲート(12,14)とこ
れに双対なゲートであるNORゲート(13,15)を
ビット毎に交互に接続している。このため、第2図の点
線中のキャリー伝搬径路の伝搬遅延時間は、4ΔTとな
り、nビットで考えると、(n−2)ΔTとなって、第
1図の場合の2分の1に短縮されて、高速のインクリメ
ンタ/デクリメンタが実現できる。第2図の点線の外の
回路は、第1図の回路に対して、偶数ピッ) (!2.
 ”4 )のビット処理回路(例えば、x2vc対シテ
は8 (7) E X N ORゲート)が極性を合わ
せるためEXORゲートからEXNORゲートに変わっ
ているが、速度的にはあまり変わらないか、むしろ速く
なる。
FIG. 2 shows an embodiment of the present invention. FIG. 2 shows an improved version of the incrementer/decrementer shown in FIG. 1, and the functions are exactly the same, but the maximum propagation delay time is reduced to about half. In Figure 2, the AND in the dotted line in Figure 1
Instead of a chain, NAND gates (12, 14) and NOR gates (13, 15), which are dual gates thereof, are alternately connected for each bit. Therefore, the propagation delay time of the carry propagation path in the dotted line in Figure 2 is 4ΔT, and when considered in terms of n bits, it becomes (n-2)ΔT, which is reduced to half of that in Figure 1. As a result, a high-speed incrementer/decrementer can be realized. The circuits outside the dotted line in Figure 2 are even numbered pips (!2.) compared to the circuit in Figure 1.
``4) bit processing circuit (for example, x2vc vs. 8 (7) It gets faster.

ここで、実施例、即ち第2図の回路が、第1図と同じ論
理になっていることを明らかにしておく。
It should be made clear here that the embodiment, ie, the circuit of FIG. 2, has the same logic as that of FIG. 1.

第2図が、第1図と異なるところは、偶数ビ・ノド(!
2. !4 )目の部分だけであり、x4→y4(入力
x4から結果y4が得られる径路)はx2→y2と全く
同じであるから、!2→y2の径路が、第1図のそれと
同じであることを証明すればよい。すなわち、第2図の
82がB、と同じであればよい。
The difference between Fig. 2 and Fig. 1 is that even number bi-nod (!
2. ! 4) It's only the eye part, and x4 → y4 (the path from input x4 to result y4) is exactly the same as x2 → y2! It is sufficient to prove that the path 2→y2 is the same as that in FIG. That is, it is sufficient if 82 in FIG. 2 is the same as B.

両図から明らかなように、第1図のAと第2図のAは同
じ信号である。第2図の へと第1図のへはそれぞれ次
の式で表わされる。
As is clear from both figures, A in FIG. 1 and A in FIG. 2 are the same signal. 2 in Fig. 2 and 1 in Fig. 1 are respectively expressed by the following formulas.

B2=A+(x2■DEC) −−−−−−(1) 。B2=A+(x2■DEC)---(1).

B、=A e (x2■DEC) −−−−−−(2)
ド・モルガンの法則により、式(1) 、 +2)は同
じであるから、B2==B、となる。同様に、第2図の
y2は、y2=AΦx2で示され、第1図Oy2は、y
2=jlΦx2=AOx2となるから、両方o y2は
相等しくなる。
B, = A e (x2■DEC) --------(2)
According to De Morgan's law, since equations (1) and +2) are the same, B2==B. Similarly, y2 in FIG. 2 is shown as y2=AΦx2, and Oy2 in FIG.
2=jlΦx2=AOx2, so both o y2 are equal.

以上の説明から、2の補数器や、加減算器のように、下
位ビットからのキャリー(又はボロー)が上位ビットへ
伝搬する径1!Is−を有する回路においては、このキ
ャリー伝搬径路として、NANDゲートとこれに双対な
ゲートであるNORゲートとを交互に(1ビツトおきに
)接続したNAND−N ORf x −7(又n N
 OR−N A N D f ニー 7)を用いれば、
リプルキャリ一方式において最大の動作速度が得られる
From the above explanation, we can see that, like a two's complementer or an adder/subtractor, the carry (or borrow) from the lower bits propagates to the upper bits with a diameter of 1! In a circuit having Is-, the carry propagation path is NAND-NORf x -7 (also n N
If you use OR-N A N D f knee 7),
Maximum operating speed can be obtained with ripple carry one-way type.

以上説明したように、本発明によれば、補数器、加算器
などのディジタルデータの演算を実行するに6たってキ
ャリー伝搬を高速にできるので、ゲート数の少ないリプ
ルキャリ一方式で高速のディジタル演算装置が実現でき
る。
As explained above, according to the present invention, carry propagation can be made high-speed when performing digital data operations such as a complementer and an adder, so that a high-speed ripple-carry type digital arithmetic device with a small number of gates can be used. can be realized.

第2図は本発明の実施例の具体的回路構成図である。FIG. 2 is a specific circuit configuration diagram of an embodiment of the present invention.

1〜s 、 7〜11−、、−−−1i:XORゲート
、12〜16・・−・・・NANDゲート。
1-s, 7-11-, ---1i: XOR gate, 12-16...NAND gate.

Claims (2)

【特許請求の範囲】[Claims] (1)複数くット構成のディジタル入力データの各ビッ
トに対応して設けられ、対応するビy)を演算処理する
ビット処理回路と、上記入力データの下位ビットから上
位ビット方向に走る論理ゲート・チェーンを含み、上記
ビット処理回路を制御する制御信号を発生する制御回路
とを具備し、上記論理ゲート−チェーンの偶数ビット目
に対応するゲートが奇数ビット目に対応するゲートの双
対ゲートであることを特徴とするディジタル演算装置。
(1) A bit processing circuit that is provided corresponding to each bit of digital input data having a plurality of bits and that performs arithmetic processing on the corresponding bit, and a logic gate that runs from the lower bit to the upper bit of the input data. - A control circuit that includes a chain and generates a control signal for controlling the bit processing circuit, wherein the gate corresponding to the even-numbered bit of the logic gate-chain is a dual gate of the gate corresponding to the odd-numbered bit. A digital arithmetic device characterized by:
(2)論理ゲートチェーンの偶数ビット目に対応するゲ
ートがNANDゲート又はNORゲートであり、奇数ビ
ット目に対応するゲートがNORゲート又はNANDゲ
ートであることを特徴とする特許請求の範囲第1項記載
のディジタル演算装置・
(2) Claim 1, characterized in that the gate corresponding to the even numbered bit of the logic gate chain is a NAND gate or a NOR gate, and the gate corresponding to the odd numbered bit is a NOR gate or a NAND gate. The digital arithmetic device/
JP17548481A 1981-10-30 1981-10-30 Digital operating device Pending JPS5876946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17548481A JPS5876946A (en) 1981-10-30 1981-10-30 Digital operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17548481A JPS5876946A (en) 1981-10-30 1981-10-30 Digital operating device

Publications (1)

Publication Number Publication Date
JPS5876946A true JPS5876946A (en) 1983-05-10

Family

ID=15996842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17548481A Pending JPS5876946A (en) 1981-10-30 1981-10-30 Digital operating device

Country Status (1)

Country Link
JP (1) JPS5876946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250174A2 (en) * 1986-06-20 1987-12-23 Advanced Micro Devices, Inc. Incrementer and decrementer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250174A2 (en) * 1986-06-20 1987-12-23 Advanced Micro Devices, Inc. Incrementer and decrementer

Similar Documents

Publication Publication Date Title
JPS6359171B2 (en)
JPH08123665A (en) Difference-carry-retention adder and multiplier
JPS63262918A (en) Binary counter
JPS60116034A (en) Adding circuit
JPS5876946A (en) Digital operating device
JPH10105378A (en) Parallel adder
JPH0160856B2 (en)
JP2513721B2 (en) Adder
US5619442A (en) Alternating polarity carry look ahead adder circuit
JP3351672B2 (en) Adder
US5442801A (en) Arithmetic and logic unit
US6522690B1 (en) Zero determination signal generating circuit
US9170774B2 (en) Fast carry lookahead circuits
JPH02259926A (en) Addition control system
JPS5846732B2 (en) logic operation circuit
JP3207490B2 (en) Adder circuit and n-bit adder using the same
JPS648858B2 (en)
JPS6361368A (en) Logic circuit forming system
US6272514B1 (en) Method and apparatus for interruption of carry propagation on partition boundaries
JPH0367327A (en) Addition circuit
JPS61166664A (en) Data transfer device
JPS63151223A (en) Decoding circuit
KR200326695Y1 (en) Digital processor
JPH01266627A (en) Logic circuit
JPH0497423A (en) Adder