JPS5876793A - Weather forecasting device - Google Patents

Weather forecasting device

Info

Publication number
JPS5876793A
JPS5876793A JP17695481A JP17695481A JPS5876793A JP S5876793 A JPS5876793 A JP S5876793A JP 17695481 A JP17695481 A JP 17695481A JP 17695481 A JP17695481 A JP 17695481A JP S5876793 A JPS5876793 A JP S5876793A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
value
probability
rainfall
rainfall probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17695481A
Other languages
Japanese (ja)
Inventor
Giichi Kuroda
義一 黒田
Kazuhiro Araki
荒木 一弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17695481A priority Critical patent/JPS5876793A/en
Publication of JPS5876793A publication Critical patent/JPS5876793A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Electric Clocks (AREA)

Abstract

PURPOSE:To obtain accurate rainfall probability in time when required, by a method wherein rainfall probability is provided by selecting the stored value of rainfall provability corresponding to an atmospheric pressure value or an atmospheric pressure variation value according to the fact that the present atmospheric pressure measured by a pressure sensor is within or out of the reference value range. CONSTITUTION:The present atmospheric pressure detected by a pressure sensor 18 is stored in a data memory 21 through a pressure-voltage converter 19 and an A-D converter 20, and is applied to a comparator 22 as well. The comparator 22 calculates the difference between the present value and an atmospheric pressure value at fixed time before. A display contents selecting circuit 23 selects the rainfall probability corresponding to the atmospheric pressure value to the atmospheric pressure variation value according to the fact whether the value is within the reference range or not, and displays it on a display 13. When the region is switched by a region selecting switch 16 from the Pacific side to the Japan-sea side, the selecting circuit 23 takes the absolute value of the atmospheric pressure variation, and selects the rainfall probability corresponding to the absolute value. The selecting circuit 23 also selects the rainfall probability in the forecasting time range set by a forecasting time selecting switch 17. Accordingly, the accurate rainfall probability is provided in time when required.

Description

【発明の詳細な説明】 この発明は晴雨計に関し、正確な晴雨予測ができるよう
にすることを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a barometer, and an object of the present invention is to enable accurate weather forecasting.

この発明の一実施例を第1図ないし第8図に示す。すな
わち、このR両針は、圧力センサにより現在の気圧値を
測定し、その気EF値が基準気圧範囲外にあるときは記
憶部の気圧値対降雨確率の相関データより降雨確率を選
択し、no記気気圧が基準気圧範囲内にちるときは数時
間前の気圧値との差により気圧変化値を算出し、…l記
憶部の気圧変化値対降雨確率の相関データより対応する
降雨確率を選択することを特徴としている。気象データ
により作成された気圧値対降雨確率の相関データによる
と、気圧値が高いときは[晴j、filE値が低いとき
は「雨」であることが明瞭であるが、高気圧と低気圧の
中間の気圧では雨に向うのか11ざに回うのかは概して
不明瞭であり、降雨確率の予測に欠ける憂いがある。第
8図は時間に対する気圧値のグラフを示している。この
図において気圧値を大きいグループと中間のグループと
小さいグループに分ける第1および第2の基準成田に、
Li設定する。そして気準気圧に、Lの範囲M円につい
ては気圧変化値対降雨確率のデータにより降雨確率を得
るようにする。このことは酊い換えれば、気圧変化値の
大きい範囲については気圧変化対降雨確率のデータで、
また小さい範囲ではより精度の高い気圧値対降雨確率の
データを使用することを意味し、もって正確な晴雨予測
が可能となるものである。
An embodiment of the invention is shown in FIGS. 1 to 8. That is, the two R hands measure the current atmospheric pressure value using a pressure sensor, and when the QEF value is outside the reference atmospheric pressure range, select the probability of rain from the correlation data of the atmospheric pressure value versus the probability of rain in the storage section. When the atmospheric pressure falls within the standard atmospheric pressure range, the atmospheric pressure change value is calculated based on the difference from the atmospheric pressure value several hours ago, and the corresponding rainfall probability is calculated from the correlation data of the atmospheric pressure change value vs. rain probability in the memory section. It is characterized by selection. According to correlation data between atmospheric pressure values and probability of rain created using meteorological data, it is clear that when the atmospheric pressure value is high, it is sunny, and when the filE value is low, it is rainy. At intermediate atmospheric pressures, it is generally unclear whether rain will occur or not, and there is a concern that predictions about the probability of rain are lacking. FIG. 8 shows a graph of atmospheric pressure values versus time. In this figure, the first and second standards Narita that divide atmospheric pressure values into large groups, intermediate groups, and small groups,
Set Li. Then, for the range M circle of L, the probability of rain is obtained from the atmospheric pressure change value versus the probability of rain. To put it another way, for a range of large pressure changes, data on pressure changes versus rainfall probability,
Moreover, in a small range, it means using more accurate data of atmospheric pressure value versus probability of rain, which makes it possible to predict fair weather and rain accurately.

この晴雨計は第1図のように、ケース本体1の内ff1
Hcマイクロコンピュータ(図示省略)を内蔵し、ケー
ス本体lの表面に各表示部およびスイッチ群を設けてい
る。また気圧検出センサ(図示省略)をケース本体lの
表面に設置するかリード線を介して別体に設はマイクロ
コンピュータに信号を入力させるようにしている。まず
表示部は本体lの表面上部に所定の予測時開におけるお
天気ガイドすなわち雨の状態を示す絵と「悪くなる」と
いう文字の表示2、雨に回りことを示す絵と「丁り坂」
という文字の表示3、晴に囲うことを示す絵と「上り坂
」という文字の表示4、晴の状態を示す絵と「良くなる
」という文字の表示5を設け、それらの各上位に該当部
を表示する発光ダイオード6〜9を設けている。また本
体lの表面中段部に今日の日は表示10および現在の時
刻表示11ヲ設ケ、マイクロコンピュータに内蔵したカ
レンダ機能により今月の日[」゛および現在の時刻を出
力させている。本体1の表面F段に現在の気圧値表示1
2および降雨確率表示13を設け、11■記気圧センサ
により検出した気圧値をマイクロコンピュータより出力
させるとともに、その”a7 気圧値から演算処理され
た降雨確率をそれぞれ表示させている。
As shown in Figure 1, this barometer has ff1 inside the case body 1.
It has a built-in Hc microcomputer (not shown), and a display section and a group of switches are provided on the surface of the case body l. Further, an air pressure detection sensor (not shown) is installed on the surface of the case main body l or is installed separately via a lead wire, so that a signal is inputted to the microcomputer. First of all, the display part is a weather guide at the top of the main body l that opens at a predetermined forecast time, that is, a picture showing the rain condition and the word "It's going to get worse" 2, a picture showing that it's going to rain and the word "chorisaka"
A display 3 with the words ``uphill'' with a picture indicating that it will be sunny, a display 5 with the word ``uphill'' and a picture showing sunny conditions, and a display 5 with the word ``getting better'' with a picture showing sunny conditions, and the corresponding section above each of them. Light emitting diodes 6 to 9 are provided for displaying. In addition, a display 10 for today's date and a display 11 for the current time are provided in the middle part of the surface of the main body 1, and the date of this month and the current time are outputted by a calendar function built into the microcomputer. Current atmospheric pressure value display 1 on the F stage of the main body 1
2 and a rainfall probability display 13 are provided, and the atmospheric pressure value detected by the atmospheric pressure sensor (11) is outputted from a microcomputer, and the rainfall probability calculated from the "a7 atmospheric pressure value" is displayed.

一方操作部は、ケース本俸lの皿面に時刻変更(調整)
スイッチ14および日げ変更スイッチ15を設けてiJ
記日は表示10および1痔刻表示11の表示内容を調節
している。また本俸lの側面「端に地域選択スイッチ1
6を設け、本体1の表面に予測時間選択スイッチ17を
設け、この予測時間選択スイッチ17は何時間後から何
時間の1川の予測を対象とし、曲者の数値に対応するつ
まみとしてrOJ 、 r6J 、 r12J、r24
1が設定され、後者の数値に対応するつまみとしてr6
J 、 ri2J 、 rt8J 、「24」が設定さ
れている。
On the other hand, the operation unit is on the plate of the case to change (adjust) the time.
iJ is equipped with a switch 14 and a shade change switch 15.
The diary adjusts the display contents of display 10 and one hemorrhoid display 11. Also, on the side of the main salary l, there is a region selection switch 1 at the end.
6, and a prediction time selection switch 17 is provided on the surface of the main body 1, and this prediction time selection switch 17 targets the prediction of one river from how many hours later. r6J, r12J, r24
1 is set, and r6 is set as the knob corresponding to the latter value.
J, ri2J, rt8J, and "24" are set.

ケース本体10内部のマイクロコンピュータのブロック
図およびフローチャートを第2図および第3図に示して
いる。すなわち、まず主な構成は王カセンサ18により
現在の気圧を検出し、圧カー岐王変換部19でその置を
電圧に変換し、さらにA−D変換部20でアナロク隘を
デジタル量に変換する。そのデジタル量の気圧値Xnは
気圧値データ記憶部21に記憶されるとともに、気圧比
較部22に入力される。この気圧値データ記1意部21
は各時間ごとの気圧値が記憶され、圧力センサ18の気
圧値が書込まれる。気圧比較部22では現在(測定時点
)から3時間口Hの気圧値Xn−1を気圧値データ記憶
部21より呼び出して気圧値Xnと比較し、その差を計
算するDXn−Xn−Xn−□の演算により気圧変化値
■)Xnを算出する。cii、I記或圧値孔および気圧
変化値DXnを表示内容選択回路23に入力し、削記或
王値Xnが基準気王範囲円か否かもしくは気圧変化値D
Xnが所定の基準値より大きいか否かを判断するととも
に、記憶部24よりその判断内容に対応する相関データ
の降雨確率を選択する。
A block diagram and a flowchart of the microcomputer inside the case body 10 are shown in FIGS. 2 and 3. That is, first, the main configuration is to detect the current atmospheric pressure with the pressure sensor 18, convert the current pressure into a voltage with the pressure converter 19, and further convert the analog value into a digital amount with the A-D converter 20. . The digital atmospheric pressure value Xn is stored in the atmospheric pressure value data storage section 21 and is input to the atmospheric pressure comparison section 22 . This atmospheric pressure value data record part 21
The barometric pressure value for each time is stored, and the barometric pressure value of the pressure sensor 18 is written. The atmospheric pressure comparison unit 22 reads the atmospheric pressure value Xn-1 at 3 hours H from the current time (measurement time) from the atmospheric pressure value data storage unit 21, compares it with the atmospheric pressure value Xn, and calculates the difference DXn-Xn-Xn-□ The atmospheric pressure change value (■)Xn is calculated by the calculation. cii, input the pressure value hole I and the atmospheric pressure change value DXn into the display content selection circuit 23, and check whether the recorded or king value Xn is within the standard air pressure range circle or the atmospheric pressure change value D
It is determined whether or not Xn is larger than a predetermined reference value, and the rain probability of correlation data corresponding to the content of the determination is selected from the storage unit 24.

そして選択されfc降雨確率をドライバ25全通しく5
) て降雨確率表示13に表示する。こうして圧力センサ1
8を必要時に動作させることにより、正確な降雨確率を
知ることができる。
Then, the selected fc rainfall probability is passed through the driver 25.
) is displayed on the rainfall probability display 13. In this way, pressure sensor 1
By operating 8 when necessary, it is possible to know the accurate probability of rain.

つぎに各種寸加構成について説明する。まず第1は地域
選択である。これは気圧値対降雨確率の相関および気圧
変化値対降雨確率の相関が地域によって異なることに基
いている。この地域別は太平洋側と日本海側に分かれ、
たとえば気圧変化値対降雨確率の相関に関して、太平洋
(111+の代表例として大阪(管区気象台)の気圧変
化対降雨確率を第4図に示し、日本海1lllの代表例
として金沢(地方気象台)のそれを第5図に示している
。これらの図かられかるように大阪では気圧変化Dxn
がプラスに大きくなるほど降雨確率は小さくなるのに対
し、金沢では電圧変化DxnがOけ近で降雨確率が極小
となり、プラスまたはマイナスに大きくなるほど大きく
なる。そこで第1図および第2図のように地域選択スイ
ッチ16f、設けるとともに、降雨確率記憶部25VC
地域ごとの或匝仙対降雨確率の相関データを記憶させる
とともに気圧便化値(6) 対降雨確率の相関データについては太平洋側の気圧変化
対降雨確率のデータを記憶させる。そして後者の場合前
記選択スイッチ16により日本海側地域に切換えられた
とき、気圧比較部22で算出された気圧変化値DXnの
絶対値を算出するようにし、その絶対値に対応する降雨
確率記憶部25の降雨確率を選択する。気圧変化値DX
nの絶対値は−DXnがDXnとして扱われることを意
味する。すなわち、第5図の特性は気圧変化値Oの位置
を基準として対象とみなすことができ、気圧変化値の絶
対値IDXn1対降雨確率の特性は第6図のようになり
、これは太平洋側特性と同じ特性を示すこととなる。し
たがって記憶部25に各地域ごとのデータを記憶するこ
となく、太平洋側のデータのみで地域別の降雨確率が得
られ、記憶部24の記憶容量を低減することができる。
Next, various dimensional configurations will be explained. The first is regional selection. This is based on the fact that the correlation between atmospheric pressure values and rainfall probability and the correlation between atmospheric pressure change values and rainfall probability differ depending on the region. This region is divided into the Pacific side and the Sea of Japan side,
For example, regarding the correlation between atmospheric pressure changes and rainfall probability, Figure 4 shows the correlation between atmospheric pressure changes and rainfall probability in Osaka (regional meteorological observatory) as a representative example of the Pacific Ocean (111+), and that of Kanazawa (local meteorological observatory) as a representative example of the Sea of Japan 1llll. is shown in Figure 5.As can be seen from these figures, the atmospheric pressure changes Dxn in Osaka
The probability of rain decreases as Dxn becomes more positive, whereas in Kanazawa, the probability of rain becomes minimum when the voltage change Dxn approaches O, and increases as Dxn becomes more positive or negative. Therefore, as shown in FIGS. 1 and 2, a region selection switch 16f is provided, and a rainfall probability storage section 25VC is
In addition to storing the correlation data of the probability of rainfall versus a certain Sosen for each region, the atmospheric pressure conversion value (6) Regarding the correlation data of the probability of rainfall versus changes in atmospheric pressure on the Pacific Ocean side, is stored. In the latter case, when the selection switch 16 switches to the Sea of Japan region, the absolute value of the atmospheric pressure change value DXn calculated by the atmospheric pressure comparison section 22 is calculated, and the rainfall probability storage section corresponds to the absolute value. Select 25 rain probabilities. Air pressure change value DX
The absolute value of n means that -DXn is treated as DXn. In other words, the characteristics shown in Figure 5 can be considered to be based on the position of the pressure change value O, and the characteristics of the absolute value of the pressure change value IDXn1 versus the probability of rain are as shown in Figure 6, which is the Pacific side characteristic. It shows the same characteristics as . Therefore, without storing data for each region in the storage section 25, the rainfall probability for each region can be obtained using only data on the Pacific Ocean side, and the storage capacity of the storage section 24 can be reduced.

第2は複数種類の予測時間範囲を選択できる予測時lv
1選択スイッチ17を設けるとともに、降雨確率記憶部
25に各予測時間範囲ごとの気圧変化対降雨確率の相関
データを記憶させ、@記選択スイッチ17により設定さ
れた予測時間範囲の相関データを降雨確率選択時に記憶
部25から呼出す構成である。各データは気象データよ
り作成されるが、この実施例では現在(測定時点)を基
準にして0.6.12および24時間後でしかもこれら
の時刻から6.12.18および24+1e間の各間に
対するデータを記憶している。この構成により、自己の
知りたい任意時間先の降雨1時間を精度よく知ることが
できる。
The second is the prediction time lv that allows you to select multiple types of prediction time ranges.
1 selection switch 17 is provided, and the rainfall probability storage unit 25 stores correlation data of atmospheric pressure change versus rainfall probability for each predicted time range, and the correlation data of the predicted time range set by the selection switch 17 is used as the rainfall probability. The configuration is such that it is called from the storage unit 25 at the time of selection. Each data is created from meteorological data, but in this example, the data is calculated based on the current time (measurement point), 0.6.12 and 24 hours later, and between 6.12.18 and 24+1e from these times. It stores data for. With this configuration, it is possible to accurately know one hour of rainfall any time ahead that the user wants to know.

第3図は季節選択26の機能である。気圧変化対降雨確
率の相関は季節によっても異なることを考慮し、四季の
各季節毎の相関データを年間平均のデータに代えて記憶
部25に記憶させ、日は変更スイッチ15により設定さ
れた日けに基いて年間カレンダ27の機能により季節選
択し7て自動的に記憶部の対応データを呼び出すように
しでいる。
FIG. 3 shows the function of the season selection 26. Considering that the correlation between atmospheric pressure changes and rainfall probability varies depending on the season, the correlation data for each of the four seasons is stored in the storage unit 25 instead of the annual average data, and the date is set by the change switch 15. Based on this, the yearly calendar 27 function selects the season 7 and automatically calls up the corresponding data in the storage section.

第4図は1立間による気圧値の修正すなわち、日変化修
正28の機能である。これは時間ごとの気圧値の平均値
と一日の気圧値の平均値の差を測定時の測定値に加減し
て修正する。大阪および金沢での昭和55年7月1日〜
昭和56年6月30日の3時間おきの気圧値を各時間毎
に集計し平均値を求めた結果を1表に示し、その平均的
グラフを第7図に示す。
FIG. 4 shows the function of the daily variation correction 28, in which the atmospheric pressure value is corrected by one standing interval. This is corrected by adding or subtracting the difference between the hourly average atmospheric pressure value and the daily average atmospheric pressure value to the measured value at the time of measurement. From July 1, 1980 in Osaka and Kanazawa
Table 1 shows the results of calculating the average value of the three-hourly atmospheric pressure values on June 30, 1980, and the average graph is shown in Figure 7.

第7図において、Q工は気圧値の一日の平均値、Q2は
気圧値の時間毎の平均値であるが、前記表および第7図
より大阪で最大差2.2 mb、金沢で最大差1.5m
bであること、また9時、21時に最大になり、3時、
15Rに最小になることがわかる。
In Figure 7, Q is the daily average value of atmospheric pressure, and Q2 is the hourly average of atmospheric pressure. From the table above and Figure 7, the maximum difference is 2.2 mb in Osaka, and the maximum in Kanazawa. Difference 1.5m
b, and reaches its maximum at 9:00 and 21:00, and at 3:00,
It can be seen that it becomes minimum at 15R.

したがって気圧値を日変化修正したものの過去の相関デ
ータでn度のよい降雨確率を記憶部24に記憶しておい
て、たとえば9時の場合、測定気圧値にa(mb)マイ
ナスし、15時の場合、測定気圧値にb(mb)プラス
する日変化修正を行い気圧変化(9) を求めるようにすると予測のfft+wが上がる。この
修正は日付の設定されたカレンダ27の機能に基いて、
日変化修正28により、A−Dg換部20の出力の気圧
値を自動的に修正することにより行う。
Therefore, the good rainfall probability of n degrees is stored in the storage unit 24 based on the past correlation data even though the atmospheric pressure value has been corrected for daily variation.For example, at 9 o'clock, a (mb) is subtracted from the measured atmospheric pressure value, and at 15 o'clock In this case, if the measured atmospheric pressure value is corrected for daily variation by adding b (mb) to obtain the atmospheric pressure change (9), the predicted fft+w will increase. This modification is based on the function of the calendar 27 in which the date is set.
This is done by automatically correcting the atmospheric pressure value output from the A-Dg converter 20 using the daily change correction 28.

以上のように、この発明の晴雨計は、圧力センサにより
現在の気圧値を測定し、その気圧値が基準気圧範囲外に
あるときは記憶部の気圧値対降雨確率の相関データより
降雨確率を選択し、前記気圧値が基準気圧範囲内にある
ときは数時間前の気圧値との差により気圧変化値を算出
し、nil tr己記憶部の気圧変化値対降雨確率の相
関データより対応する降雨確率を選択するようにしたた
め、より正確な降雨確率を必要時に知ることができると
いう効果がある。
As described above, the rain gauge of the present invention measures the current atmospheric pressure value using the pressure sensor, and when the current atmospheric pressure value is outside the reference atmospheric pressure range, calculates the probability of rain from the correlation data of the atmospheric pressure value versus the probability of rain in the storage section. When the atmospheric pressure value is within the standard atmospheric pressure range, the atmospheric pressure change value is calculated based on the difference from the atmospheric pressure value several hours ago, and the correlation data between the atmospheric pressure change value and the probability of rain is calculated in the memory unit. Since the rain probability is selected, there is an effect that a more accurate rain probability can be known when necessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の外観、斜視図、第2図は
マイクロコンピュータの動作のブロック図、第3図はそ
のフローチャート、第4図は大阪での気圧変化対降雨確
率特性図、第5図は金沢での俄(lO) 圧変化対降雨確率特性図、第6図はその気圧変化絶対値
対降雨確率特性図、第7図は一日の気圧値特性図、第8
図は年間時間に対する気圧値特1生図である。 1・・・ケース本体、13・・・降雨確率表示、16・
・・地域選択スイッチ、17・・・予測時間選択スイッ
チ、18・・・圧力センサ、21・・・気圧値データ記
憶部、22・・・気圧比較部、23・・・表示内容選択
回路、24・・・降雨確率記憶部、27・・・季節選択
、29・・・日変化修正、K、L・・・基準気圧、M・
・・基準気圧範囲(11) 手続補正書(自発) 昭和57年3月13日 昭和56 平時 許 願第176954号2、発明の名
称 晴雨計 3、補正をする者 事件との関係  出願人 住 所 大阪府門真市大字門真1048番地名 称 (
583)松下電工株式会社 6、補正の対象 明細書 7、補正の内容 (1)明細書の特許請求の範囲の記載を別紙のとおり補
正する。 (2)明細書第6頁第19行目、第7頁第6行目、同頁
第13行目、同頁第19行目、第8頁第2行目、同頁第
13行目、「記憶部25」とあるを、「記憶部24」と
訂正する。 2、特許請求の範囲 気圧値対降雨侮率の相関テークお工び気圧変化値対降雨
確率の相関データを記憶した第1の記憶部と、現在の気
圧を測定する圧力センサと、数時間前の気圧値を記憶し
た第2の記憶部とを備え、前記圧力センサで測定された
気圧値が一定の基準気圧範囲内のときその気圧値に対応
する降雨確率を前記第1の記憶部より選択し、前記気圧
値か基準気圧範囲内のときその気圧差と前記第2のE憶
都より呼出した所定時間11trの気圧値との差により
気圧変化値を算出し、この気圧変化値にX、J応する降
雨al率を前記第1の起億都より選択することを特徴と
する晴雨計。 (2)
Fig. 1 is an external appearance and perspective view of an embodiment of the present invention, Fig. 2 is a block diagram of the operation of the microcomputer, Fig. 3 is its flowchart, Fig. 4 is a graph of atmospheric pressure changes versus rainfall probability characteristics in Osaka, Figure 5 is a characteristic diagram of the time (lO) pressure change vs. rainfall probability in Kanazawa, Figure 6 is a characteristic diagram of the absolute value of atmospheric pressure change vs. rainfall probability, Figure 7 is a characteristic diagram of the daily atmospheric pressure value, and Figure 8 is a characteristic diagram of the atmospheric pressure change versus rainfall probability.
The figure is a graphical representation of the atmospheric pressure value characteristics for annual time. 1...Case body, 13...Rainfall probability display, 16.
... Region selection switch, 17... Prediction time selection switch, 18... Pressure sensor, 21... Atmospheric pressure value data storage section, 22... Atmospheric pressure comparison section, 23... Display content selection circuit, 24 ...Rainfall probability storage section, 27...Season selection, 29...Daily change correction, K, L...Reference atmospheric pressure, M.
...Reference atmospheric pressure range (11) Procedural amendment (voluntary) March 13, 1980, 1982 Peacetime Permit Application No. 176954 2, Name of the invention: barometer 3, Relationship with the case of the person making the amendment Applicant's address 1048 Kadoma, Kadoma City, Osaka Prefecture Name (
583) Matsushita Electric Works Co., Ltd. 6, Specification to be amended 7, Contents of the amendment (1) The statement of the scope of claims in the specification is amended as shown in the attached sheet. (2) Specification page 6, line 19, page 7, line 6, page 7, line 13, page 8, line 19, page 8, line 2, page 8, line 13, "Storage unit 25" should be corrected to "Storage unit 24." 2. Claims Correlation between atmospheric pressure value and probability of rain A first storage unit that stores correlation data between atmospheric pressure change value and probability of rain, a pressure sensor that measures the current atmospheric pressure, and a sensor that measures the current atmospheric pressure several hours ago. a second storage section storing an atmospheric pressure value, and when the atmospheric pressure value measured by the pressure sensor is within a certain reference atmospheric pressure range, a rain probability corresponding to the atmospheric pressure value is selected from the first storage section. Then, when the atmospheric pressure value is within the reference atmospheric pressure range, an atmospheric pressure change value is calculated from the difference between the atmospheric pressure difference and the atmospheric pressure value for a predetermined time of 11tr read from the second e-memory, and X, A rain gauge, characterized in that a corresponding rainfall rate is selected from the first rainfall rate. (2)

Claims (1)

【特許請求の範囲】[Claims] 気圧値対降雨確率の相関データおよび気圧変化値対降雨
確率の十目関データを配憶した第1の気憶部と、現在の
気圧を測定する圧力センサと、数時間前の気圧値を配憶
した第2の記憶部とを備え、前記圧力センサで測定され
た気圧値が一定の基準気圧範囲外のときその気圧値に対
応する降雨確率を前記第1の気憶部より選択し、前記気
圧値が基準気圧範囲内のときその気圧前とgTI記第2
の気憶部よシ呼出した所定時間前の気圧値との差により
気圧変化値を算出し、この気圧変化値に対応する降雨確
率を前記第1の気憶部より選択することを特徴とする晴
雨計。
A first memory section that stores correlation data of atmospheric pressure values versus rainfall probability and ten-point correlation data of atmospheric pressure change values versus rainfall probability, a pressure sensor that measures the current atmospheric pressure, and a pressure sensor that stores atmospheric pressure values from several hours ago. a second storage section storing the information, and selecting a rainfall probability corresponding to the atmospheric pressure value from the first storage section when the atmospheric pressure value measured by the pressure sensor is outside a certain reference atmospheric pressure range; When the atmospheric pressure value is within the standard atmospheric pressure range, before that atmospheric pressure and gTI No. 2
An atmospheric pressure change value is calculated based on the difference between the atmospheric pressure value recalled from the memory section of a predetermined time before, and a rain probability corresponding to this atmospheric pressure change value is selected from the first memory section. Rain gauge.
JP17695481A 1981-10-31 1981-10-31 Weather forecasting device Pending JPS5876793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17695481A JPS5876793A (en) 1981-10-31 1981-10-31 Weather forecasting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17695481A JPS5876793A (en) 1981-10-31 1981-10-31 Weather forecasting device

Publications (1)

Publication Number Publication Date
JPS5876793A true JPS5876793A (en) 1983-05-09

Family

ID=16022619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17695481A Pending JPS5876793A (en) 1981-10-31 1981-10-31 Weather forecasting device

Country Status (1)

Country Link
JP (1) JPS5876793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197894A (en) * 1989-12-26 1991-08-29 Rhythm Watch Co Ltd Weather tendency device
JPH0443285U (en) * 1990-08-09 1992-04-13
US5140523A (en) * 1989-09-05 1992-08-18 Ktaadn, Inc. Neural network for predicting lightning
JPH05188158A (en) * 1991-12-18 1993-07-30 Seikosha Co Ltd Timepiece having barometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140523A (en) * 1989-09-05 1992-08-18 Ktaadn, Inc. Neural network for predicting lightning
JPH03197894A (en) * 1989-12-26 1991-08-29 Rhythm Watch Co Ltd Weather tendency device
JPH0443285U (en) * 1990-08-09 1992-04-13
JPH05188158A (en) * 1991-12-18 1993-07-30 Seikosha Co Ltd Timepiece having barometer

Similar Documents

Publication Publication Date Title
US4396293A (en) Salat time alarm electronic timepiece
CN202907027U (en) Mobile terminal capable of automatically switching themes
US6907582B2 (en) Communication of information through background modulation in an information display
US20050258038A1 (en) Oxidation-reduction potentiometer
US20060095210A1 (en) Weather station
JPS5876793A (en) Weather forecasting device
KR840002110A (en) Battery residual voltage detection device
JP2007139541A (en) Intrusion detection method and intrusion detection system
JPS5876791A (en) Weather forecasting device
DE68909842T2 (en) Device for measuring height and barometric pressure.
JPS6020176A (en) Barometer
Abrahamsen et al. Antarctica And the southern ocean
JPS5876790A (en) Weather forecasting device
JPS5876792A (en) Weather forecasting device
McMillin et al. A method for the use of satellite retrievals as a transfer standard to determine systematic radiosonde errors
JPH0161167B2 (en)
JP3173051B2 (en) Weather forecasting device
JP3304566B2 (en) Radiation measurement device
JPS5869289U (en) barremeter
Srinivas et al. Statistical forecasting of met-ocean parameters in the Cochin estuarine system, southwest coast of India
Scott Instructions in the use of Meteorological Instruments
Hogg We Need a Hydrology Manual
US20050063253A1 (en) Sun dial and method for determining average sunlight
JP3134387B2 (en) Oxygen concentration detector
RU2002132073A (en) WEATHER PREDICTOR