JPS5876754A - Data processor for electrophoresis analyzer - Google Patents

Data processor for electrophoresis analyzer

Info

Publication number
JPS5876754A
JPS5876754A JP56176115A JP17611581A JPS5876754A JP S5876754 A JPS5876754 A JP S5876754A JP 56176115 A JP56176115 A JP 56176115A JP 17611581 A JP17611581 A JP 17611581A JP S5876754 A JPS5876754 A JP S5876754A
Authority
JP
Japan
Prior art keywords
section
boundary
ion component
time
representative signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56176115A
Other languages
Japanese (ja)
Other versions
JPS6260027B2 (en
Inventor
Shunei Mizuno
水野 俊英
Omiya Kaneda
鐘田 臣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56176115A priority Critical patent/JPS5876754A/en
Publication of JPS5876754A publication Critical patent/JPS5876754A/en
Publication of JPS6260027B2 publication Critical patent/JPS6260027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable an accurate detection of representative signal values for individual ion component zones by selecting the largest of means in an electrophoresis analysis to be recognized as representative signal value for the ion component zone with this as the front end thereof. CONSTITUTION:A data processor 3 is equipped with a smoothing section 5 for calculating a mean per smoothing time gamma with respect to a signal P from an electrophoresis analyzer 2, a boundary detecting section 6 for detecting a boundary section between ion component zones of different types and a selecting section 8 for selecting the largest of means contained in signals P existing until the recognition time T equivalent to multiplication of the time gamma by a specified constant passes after the detection of a desired boundary section. Then, the selected means are recognized as representative signal values for ion component zones with the boundary section as the front end thereof. This ensures a constant representative signal value thereby enabling a highly accurate qualitative analysis regardless of variation in the amount of sample when a drift occurs.

Description

【発明の詳細な説明】 この発1事1は電気練りσノ分析装(百用データ処坤装
置に関し、さらに詳しくは、′−χ気泳動分析装置のデ
テクタからの信号より個々のイオンtj2.分ゾーンの
代表(Et号1面を正確に検知しうるデーク処坤装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION This issue 1 relates to an electric kneading σ analyzer (a data processing device), and more specifically, it detects individual ions tj2. Relating to a device that can accurately detect the representative (Et No. 1 side) of the minute zone.

′屯気汰納分析装置のデテクタには、導電率デテクタ、
熱デテクタ。電位勾ILデテククなど種々のタイプのも
のがあり、それらのいずれでもこの発す]を適用できる
が、電位勾配検出器かもつとも普及しているので、以下
己れを例にとって副、川する。
``The detector of the ton air analyzer includes a conductivity detector,
heat detector. There are various types of potential gradient IL detectors, and this method can be applied to any of them, but since potential gradient detectors are also popular, we will use them as an example below.

電位勾配デテクタの出力値りに糸いて試料の同定を行う
のに、P IJlm (Potential Unit
 Value)法を用いることが一般的であるが、これ
によれば各イオンlly、分ゾーンの′重付勾配植をi
li L、 <求めることが重要である。
To identify the sample based on the output value of the potential gradient detector, P IJlm (Potential Unit
It is common to use the ``value'' method, but according to this method, each ion lly, minute zone's weighted gradient is
li L, <It is important to seek.

ところが、軍使勾配デテクタの出力信号は不規I411
なノイズ欣1分を含み、まだ斐+iUIすることがある
ので、正位勾配値を1′シく求めるには伺らかの信号処
理欠IAtjす必要がある。
However, the output signal of the military slope detector is irregular I411.
Since the signal includes a noise level of 1 minute and may still exceed 1+iUI, it is necessary to perform some signal processing in order to obtain the positive gradient value 1' higher.

そこで従来のデータ処理装置で仁1、平滑化時間τを定
め、その所定時間τの間の信号の平均値pを聯出し、そ
の平均伯丁をその間の(S号伯とみなすことにより不漕
、 +411なノイス成分をキA′ンセルすることか行
われている。この所定時h1τの長さは、ini常、4
1号変化が急であれば算lく、ゆるやかであれば化軟的
に長く決められる8また、あるイオン成分ゾーンの前端
境界部が検出されてから後端境。
Therefore, by determining the smoothing time τ using a conventional data processing device, calculating the average value p of the signal during that predetermined time τ, and considering the average value p as the (S value) during that period, the smoothing time τ is determined. , +411 noise components are canceled by A'.The length of h1τ at a given time is always 4
No. 1 If the change is steep, it will be long, but if it is gradual, it will be determined to be long.8 Also, after the front boundary of a certain ion component zone is detected, the rear boundary is determined.

赤部が検出される捷での信号値を平均し、その平均1i
t!iをそのイオン成分ゾーンの代−に信号値とみなす
ことにより信号のf!1IIJを均すことか行われてい
る。
Average the signal values at the points where the red part is detected, and calculate the average 1i
T! f of the signal by considering i as the signal value for its ionic component zone. 1IIJ is being evened out.

ところが、第1図に示すようなドリフトに起因する変I
[v)が生じると、従来装置ではその変動の影響により
代表信号端が変わる欠点があった。すなわら、同じイオ
ン成分ゾーンでも、ドリフト量によって、捷たそのゾー
ンiLが炒いとき(実線)と艮いとき(破4)によって
、1トj!−11直がP、  i>21)2のように変
ってくる欠点があった。
However, the change in I due to drift as shown in Figure 1
When [v) occurs, the conventional device has the disadvantage that the representative signal end changes due to the influence of the fluctuation. In other words, even in the same ion component zone, depending on the amount of drift, the difference in the zone iL varies between when it is fried (solid line) and when it is not mixed (broken line 4). -There was a drawback that the 11th shift changed to P, i>21)2.

この発明はこのような状況に鑑みてなされたもので、従
来装↑行の具備する構成を利用した簡単な構j戊によっ
て上記欠点を解消したデータ処理装置を肪1供するもの
である。
The present invention has been made in view of the above circumstances, and is intended to provide a data processing device that eliminates the above-mentioned drawbacks by a simple structure that utilizes the configuration of conventional devices.

以下、図に示す実施例に基いて、この発(月をl’t’
f脱する。
Below, based on the example shown in the figure, this emission (the moon is l't'
f escape.

第2図に示すmは、電気法1υ)分析システムの一搗一
成例であり、等非電気体11σノ分析’A ii’j1
2i 1:、マイクロコンピュータのごときデータ処理
装置i’fi3)と、プリンタ・ブロック(4)とが川
口に1巾、没″7.> 71で/i−っている。
m shown in Fig. 2 is an example of the electric method 1υ) analysis system, and is an example of the analysis system for the non-electrical substance 11σ 'A ii'j1
2i 1: A data processing device (i'fi3) such as a microcomputer and a printer block (4) are located at the river mouth at a distance of 1 width.

データ処理部113)の構成を機fjHブロックの形で
表わすと、平滑部(6)、境界検出部[iil 、 I
f!l’ iil’ 1fl(i7)および餌算処理部
(8)になる。
When the configuration of the data processing unit 113) is expressed in the form of a machine fjH block, it includes a smoothing unit (6), a boundary detection unit [iil, I
f! l'il' 1fl (i7) and bait calculation processing unit (8).

千階部(5)は、等非電気体りOJ分セ1装置i、’+
’t21のノー′テクタからの′【h;位勾配置、ゴ号
PをパI萌間△τ(/こJ−乏ば0.1秒)毎に読み込
み、nイl’i: +i’?み込−f、rイ1工にIt
/均値rを費用する。換1.すれir、半r1゛1化(
1ζ1.1’tIl r (−n×/\τ)当りの平均
イ1itiを”fI出する3、1111″11ダτの値
d:、(SrPの立上りが急と予測されるときにQ:[
小さく、ゆるやかと予測されるときには大きく決めらh
る。
The 1000th floor part (5) is a non-electric OJ unit 1 device i, '+
'[h; position position, Go P from 't21's no'tector is read every Pa I moe △τ (/ko J - 0.1 seconds), nil'i: +i' ? Input-f, r-i 1st work It
/cost the average value r. Exchange 1. Threadir, half r1゛1 conversion (
1ζ1.1'tIl r (-nx/\τ) to output the average I1iti per (-nx/\τ) 3,1111''11da τ value d:, (When the rise of SrP is predicted to be sudden, Q: [
If it is predicted to be small and gradual, do not set it large.
Ru.

j′M!、界検出都(61fct、上記半滑jXj(、
(5)からの−・11.’4hJ 1111. +p1
七Fの一次微分および二次畝分を勢出1.、甲・均i+
(i、−次微分値、二次微分値を各々けr定の基準値と
比軟することにより、異種のイオン成分ゾーン間の境界
部を検出する。
j′M! , field detection capital (61 fct, the above half-slide jXj (,
From (5) -・11. '4hJ 1111. +p1
1. Express the first-order differential and second-order ridges of 7F. , instep/uniform i+
(The boundary between zones of different ion components is detected by comparing the i-th differential value and the second-order differential value with the reference value of the ker constant.

上記平滑部(5)と境界検出部(6)とは従東装自′も
具備しているものであるが、次の時計部(7)およびび
算処理部(8)は新規であり、この発明の要部を構成す
るものである。
The smoothing section (5) and the boundary detection section (6) are also equipped with Jyuto Soji', but the next clock section (7) and multiplication processing section (8) are new. This constitutes the main part of this invention.

時計部(7)は、上記平滑部(i)から乎滑化時聞τを
dトみ込み、予め設定された所′、メ定数C倍して、認
定時間Tを薄、出する。すなわ1つ、 ′I’ = CXτ        ・・・(1)を鉾
田する。前述したようにての値d−倍信号の立上りが速
いときには小さく、ゆるやかなさきにkl、大きいから
、6認定時間Tは暦号Pの立上りが急のときにはバjか
く、ゆるやかなときには員くなる。
The clock section (7) takes in the smoothed time τ from the smoothing section (i), multiplies it by a constant C at a preset point, and outputs the certified time T. In other words, 'I' = CXτ...(1) is expressed as Hokota. As mentioned above, the value d - times is small when the rise of the signal is fast, and kl is large when the rise is gradual, so the certified time T is large when the rise of the calendar number P is sudden, and small when the rise is slow. Become.

さらに時計部(7+kl、前記境界侠出部lLi1かし
、の境界部検知信号(S)が入力されたのちIif+記
認定時間Tが経過した時に出力信号(IJ)を出力する
Further, after inputting the boundary detection signal (S) of the clock section (7+kl, the boundary section lLi1), an output signal (IJ) is output when Iif+certification time T has elapsed.

演算処理部18)N:、前ル4.境界部検知信号(S)
が入力されてから前記出力僅号(F)が入力される壕で
の間に入力される平均値pを刻々比較し、そのIIJ大
(114を選出する。これはたとえば第3図に示ずイ「
イMでは(E)になる。
Arithmetic processing unit 18) N:, 4. Boundary detection signal (S)
The average value p input during the period from when is input to when the output number (F) is input is compared moment by moment, and the IIJ large (114) is selected. stomach"
In case of iM, it becomes (E).

さらに演嘗処即部+81id:、選出した114大七駒
値をそのとき快知されているイオン成分ゾーンの代表信
号値と、k、定し、これに基いてI〕II 11ri法
による同定を行い、プリンタ・ブロック(4)へ出力を
発する1、以上の説、I!」から理解されるように、こ
の望1月のデータ処理装置は、電気法・ful1分析装
置i・イのデテクタからの信号Pに対し、平滑化+b7
間τ当りの)IL均イ面Pを個用する平滑部と異イ用の
イオン成分ゾーン1?’+1のJWW都を検出する境界
検出部と4・具備すると〕kに、ある境界部が検出され
てから1111記半1f’、l化時聞τの所定定故f音
の認定1t’!iIl’d TがにJ(ji・IJ−る
までの間にデテクタから入力されるイ1イリ゛V(含丑
れる平均1′111の最大のものを選出する旅出部を只
fliii L、これにより選出された平均値を前記1
訃界+1ji、ケIIII端とするイオン成分ゾーンノ
代表イrr号#liと1/ −” 1u!、’+i4 
+l fl+<とじたものである。
Furthermore, the selected 114 large seven-piece value is defined as the representative signal value of the ion component zone that is well known at that time, and based on this, identification is performed using the I]II 11ri method. The above theory, I! As can be understood from ``, the data processing device of this month performs smoothing +b7 on the signal P from the detector of the electrical method ful1 analyzer i.
Ion component zone 1 for the smooth part and the different surface using the IL uniform surface P (per interval τ)? 4. Equipped with a boundary detection unit that detects the JWW capital of '+1', after a certain boundary is detected at [k], 1111 and a half 1f', recognition 1t' of a predetermined faulty f-sound of l conversion time τ! Just select the travel section that selects the maximum value of the average 1'111 input from the detector until T reaches J(ji・IJ-), The average value selected in this way is
Representative of the ionic component zone with death world +1ji and keIII end Irr #li and 1/-” 1u!, '+i4
+l fl+<.

そこで第3図を参照すれば1月らかなように、ドリフト
があっても、また試料量(すなわちイオン成分ゾーン長
)がf化しても、それらにほとんど帳響されない一定の
代表佑刃値がけられ、正しく精度の良い定性を行うこと
ができるようになる1、なお、認定時間Tを必腔以上に
焚くとるとスパイク状のノイズが混入して認定を謂る0
J能性か増加するから、認定時間′rはでさるだけ外、
1くするのがよい。一方、1d号Pの立上りが急な場合
にはイオン成分ゾーンの前端境、界都か検出されてから
すぐに借りの最大1′面が現われ、ゆるやかな場さには
しばらくしてから現われるのが普通である。そこで、曲
者の場合には認定時間Tを清くし、後者の場合に(rj
l>くすることが望ましい。ところで、この発IJJに
おいてにj:、前述したように認定時間Tは佃Sjpの
立」ニリが急のときには短かくなり、ゆるやかなときに
は挽くなるから、前記条件に頑合しており大変好ましい
Therefore, referring to Figure 3, as shown in January, even if there is a drift or the sample amount (i.e., ion component zone length) becomes 1. However, if the qualification time T is longer than the required time, spike-like noise will be mixed in and the qualification will be impossible.
Since the J-ability increases, the certified time'r increases by a large amount,
It is better to set it to 1. On the other hand, when the rise of 1d No. P is steep, the maximum 1' surface of the borrow appears immediately after the front boundary of the ion component zone, Kaito, is detected, and when the rise is gradual, it appears after a while. is normal. Therefore, in the case of the songwriter, the certified time T is made clear, and in the latter case, (rj
It is desirable that the By the way, in this IJJ, the certified time T is shorter when the ni is sudden and becomes sharper when it is gradual, as mentioned above, so it is very preferable because it satisfies the above conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来≠1「イの動作を説11町するイソタコフ
ェログラム図、第2図日この発(ν1のデータ処理装置
の一実施例を含む1ゼ気泳dili O相システムの一
例の構成説(別図、第3図はこの発1力の装置lイの1
1の作をjJ/j’+川するイソタコフェログラム図で
ある。 (1)・・・電気泳動分析システム、 (2)・・・%運軍気沫仙分析装u′1”、(3)・・
・データ処理装置、(4)・・・プリンタ・ブロック、
(5)−・平滑部、    (6)・・境界検出81<
、(7)・・時計111)、    (8)・・・演神
処理部。
Figure 1 is an isotachopherogram diagram that describes the operation of conventional ≠ 1. The composition theory (separate diagram, Figure 3 shows the device that produces this power)
It is an isotachopherogram diagram showing the production of No. 1 as jJ/j'+river. (1)...Electrophoresis analysis system, (2)...% Fortune Qi Qixian analysis device u'1'', (3)...
・Data processing device, (4)...printer block,
(5)--Smooth part, (6)--Boundary detection 81<
, (7)... Clock 111), (8)... Enjin processing section.

Claims (1)

【特許請求の範囲】[Claims] 1、電気泳動分析−!に置のデテクタからの信号Pに、
5  対し、平滑化時向τ当りの平均値下を節用する平
滑部と異種のイオン成分ゾーン同の境界部を検出する境
界検出部とを具イ1…すると共に、ある境界部が検出さ
れてから前記平均化時間τの所定定数倍の継電時間Tが
終過する捷での間にデテクタから入力される信号に含捷
れる平均値の簾大のものを選出する選出部を共篩し、こ
れにより選出された平均値を前記珈4界部を前端とする
イオン改分ゾーンの代表イ日号価として認定可能とした
ことを特!貧とする電気泳IgIJty析装置a用デー
タ処理装置14i、。
1. Electrophoretic analysis-! The signal P from the detector located at
5. On the other hand, a smoothing section that uses the lower average value per smoothing time direction τ and a boundary detection section that detects a boundary between zones of different ion components are used. A selection unit that selects a signal having a large average value that is included in the signal input from the detector during a period where a relay time T that is a predetermined multiple of the averaging time τ has passed has passed. This makes it possible to certify the average value selected as the representative daily price of the AEON reform zone whose front end is the C4 area. a data processing device 14i for an electrophoretic IgIJty analyzer a;
JP56176115A 1981-10-31 1981-10-31 Data processor for electrophoresis analyzer Granted JPS5876754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56176115A JPS5876754A (en) 1981-10-31 1981-10-31 Data processor for electrophoresis analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56176115A JPS5876754A (en) 1981-10-31 1981-10-31 Data processor for electrophoresis analyzer

Publications (2)

Publication Number Publication Date
JPS5876754A true JPS5876754A (en) 1983-05-09
JPS6260027B2 JPS6260027B2 (en) 1987-12-14

Family

ID=16007939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56176115A Granted JPS5876754A (en) 1981-10-31 1981-10-31 Data processor for electrophoresis analyzer

Country Status (1)

Country Link
JP (1) JPS5876754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198403A2 (en) * 1985-04-09 1986-10-22 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acid
EP0199327A2 (en) * 1985-04-19 1986-10-29 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acids
EP0242629A2 (en) * 1986-03-26 1987-10-28 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0453684A (en) * 1990-06-15 1992-02-21 Atlas:Kk Support device for wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198403A2 (en) * 1985-04-09 1986-10-22 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acid
EP0199327A2 (en) * 1985-04-19 1986-10-29 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acids
EP0242629A2 (en) * 1986-03-26 1987-10-28 Fuji Photo Film Co., Ltd. Signal processing method for determining base sequence of nucleic acid

Also Published As

Publication number Publication date
JPS6260027B2 (en) 1987-12-14

Similar Documents

Publication Publication Date Title
EP0161672B1 (en) Data processing system for chromatography
US3811841A (en) Gating flow cell structure for continuous-flow analysis systems
ES2014862A6 (en) An apparatus and a method for measuring the activity of radioactive samples containing a multiple of radioactive isotopes, without separate determination of the quench level.
JPS5876754A (en) Data processor for electrophoresis analyzer
US3949198A (en) Methods and apparatuses for correcting coincidence count inaccuracies in a coulter type of particle analyzer
EP0070959B1 (en) Electrophoretic apparatus
Clem et al. Modularized digitizing time-synchronizing current-sampling system for electroanalytical studies
JPH09304370A (en) Chromatographic data processing method
Belchamber et al. The application of computers in chemometrics and analytical chemistry
Catsimpoolas et al. Transient state isoelectric focusing: Computational procedures for digital data processing with a desk-top programmable calculator
US2863115A (en) Polarographic apparatus and method
EP0010526A1 (en) Method and apparatus for investigating haemocoagulation or aggregation of platelets
Cierpisz et al. Radiometric online ash monitor for coal industry using fuzzy logic
JPH10123115A (en) Chromatography data processing method
SU1003096A1 (en) Statistic analyzer
SU1133699A1 (en) Device for measuring effective energy of x-radiation or high voltage across x-ray tube
McFatter On detecting sex bias in salaries.
Birnbaum On the one-mediator null hypothesis of salary equity.
JPS59182353A (en) Measuring device for permeability of membrane
JPS6260022B2 (en)
JPH10267722A (en) Flow rate measuring device
SU622091A1 (en) Random process analyzing arrangement
SU980020A1 (en) Device for determination of gauss function decay constant
Brown Chemical measurement and data reduction from a systems analysis perspective
RU2110085C1 (en) Method for measuring heat characteristics of distributed object of given shape and for multiple-channel control of its temperature field