JPS5876140A - Chemical vapor deposition apparatus - Google Patents

Chemical vapor deposition apparatus

Info

Publication number
JPS5876140A
JPS5876140A JP17516781A JP17516781A JPS5876140A JP S5876140 A JPS5876140 A JP S5876140A JP 17516781 A JP17516781 A JP 17516781A JP 17516781 A JP17516781 A JP 17516781A JP S5876140 A JPS5876140 A JP S5876140A
Authority
JP
Japan
Prior art keywords
reaction tube
vapor deposition
melting point
metal
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17516781A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tanizawa
谷沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP17516781A priority Critical patent/JPS5876140A/en
Publication of JPS5876140A publication Critical patent/JPS5876140A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily remove and recover a high m.p. metal adhered to a part other than an object to be treated, by providing a high m.p. metal recovering means to a vapor deposition apparatus wherein the gaseous substance of the high m.p. metal is reduced in a reaction tube and the formed high m.p. metal is adhered to the object to be treated. CONSTITUTION:This chemical vapor deposition apparatus consists of a vapor deposition circuit A and recovery circuit B. A reaction tube 1 is heated in a heating furnace 2 and an object 3 to be treated is quietly rotated horizontally to send the gaseous substances convertible to a high m.p. metal, for example, WF6 and a carrier gas such as H2 into the pipe 1 from an inflow port 1a. These gases 9 are reduced under heating in the pipe 1 and W is uniformly adhered to the desired surface of the object 3 to be treated. At this time, the part of the produced W is adhered to the inner surface of the pipe 1 as an adhered contaminant 5. In this case, when a F2 gas is sent into the tube 1, it is reacted with the contaimnant 5 to form WF6 and this WF6 is flowed into a trap 6 to be subjected to vapor deposition in the succeeding process.

Description

【発明の詳細な説明】 この発明は、反応管の内面などに析出付着した高融点金
属の除去・回収を可能とした化学蒸着(CVD)装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chemical vapor deposition (CVD) apparatus that is capable of removing and recovering high melting point metal deposited on the inner surface of a reaction tube.

W+、Mo をフッ素で処理してWFsやMoF6にす
るなどのように、高融点金属を一旦気体物質化し、得ら
れた高融点金属の気体物質を水素などをキャリアガスと
して反応管内に送シ込み、これらのガス体を反応管内で
加熱するなどすることによシ、前記反応管内において還
元反応を生起させ、前記気体物質から高融点金属を生成
させて、この高融点金属を、前記反応管内にあらかじめ
収容されている被処理品(基材)の表面に付着させて膜
とする化学蒸着装置は、広く知られている。
For example, by treating W+, Mo2 with fluorine to make WFs or MoF6, a high melting point metal is once converted into a gaseous material, and the resulting high melting point metal gaseous material is sent into a reaction tube using hydrogen or the like as a carrier gas. By heating these gases in the reaction tube, etc., a reduction reaction is caused in the reaction tube, a high melting point metal is generated from the gaseous substance, and this high melting point metal is introduced into the reaction tube. Chemical vapor deposition equipment that deposits a film on the surface of a pre-housed workpiece (substrate) is widely known.

この化学蒸着装置においては、反応管内で生成した高融
点金属が、反応管の内壁面その他被処・埋置以外の部分
にも付着する。これらの汚損付着物は、多量になると、
たとえば付着面から剥離して被処理品上に落下しこれに
欠陥を生じさせたり、次回以降の蒸着作業に支障を生じ
させたシなどする。そのため、化学蒸着装置の使用にあ
たっては、この汚損付着物を除去することが重要な作業
のひとつとなっていた。従来は、ホーニング法などの機
械的方法やH2O2で溶解洗浄するなどの化学的方法に
よって、この除去作業を行なうようにしていたのである
が、これらの方法によれば、装置の解体・組立、洗液の
除去・乾燥その他の前作業・後作業に時間を1けるなど
作業時間が長くなるとともに手間も面倒となる。さらに
、除去した高融点金属を回収することが困難もしくは不
可能であるため、レアメタルとして高価なW、Mo等高
融点金属を無駄に捨て去るという不利益もあった。
In this chemical vapor deposition apparatus, the high melting point metal produced within the reaction tube also adheres to the inner wall surface of the reaction tube and other parts other than those to be treated or buried. When these fouling deposits become large,
For example, it may peel off from the surface to which it is attached and fall onto the object to be processed, causing defects thereon or causing problems in subsequent vapor deposition operations. Therefore, when using a chemical vapor deposition apparatus, one of the important tasks is to remove this fouling deposit. Conventionally, this removal work has been carried out using mechanical methods such as honing or chemical methods such as dissolving and cleaning with H2O2, but these methods require the disassembly, assembly, and cleaning of the equipment. The work time becomes longer and the work is troublesome, as extra time is spent on removing and drying the liquid and other pre-work and post-work. Furthermore, since it is difficult or impossible to recover the removed high melting point metals, there is also the disadvantage that high melting point metals such as rare metals and expensive W and Mo are wasted.

このような事情に鑑み、この発明は、汚損付着物たる高
融点金属の除去・回収を容易とする化学蒸着装置を提供
することを目的とする。
In view of these circumstances, an object of the present invention is to provide a chemical vapor deposition apparatus that facilitates the removal and recovery of high melting point metals as contaminating deposits.

この発明にかかる化学蒸着装置は、反応管と、高融点金
属の気体物質をこの反応管内に送シ込む手段とをそれぞ
れ備え、前記反応管内において還元法によシ前記気体物
質から高融点金属を生成させ、生成した高融点金属を、
前記反応管内に収容されている被処理品の表面に付着さ
せる化学蒸着装置において、前記高融点金属を気体物質
化し得るガスを前記反応管内に送り込む手段と、このガ
スによって反応管内に生成した高融点金属の気体物質を
回収する手段とをそれぞれ備えていることを特徴として
いる。以下、この発明を、その1実施例をあられす図面
に基いて詳しく説明する。
The chemical vapor deposition apparatus according to the present invention includes a reaction tube and a means for pumping a gaseous substance of a high melting point metal into the reaction tube, and removes the high melting point metal from the gaseous substance by a reduction method in the reaction tube. The high melting point metal produced is
In a chemical vapor deposition device for depositing on the surface of a workpiece housed in the reaction tube, there is provided a means for feeding into the reaction tube a gas capable of converting the high melting point metal into a gaseous material, and a high melting point generated in the reaction tube by the gas. and a means for recovering metal gaseous substances. Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明にかかる化学蒸着装置の反応管部分を
示す一部切欠き側面図であって、垂直に立つ反応管lは
その外側に加熱炉2を備え、内部には被処理品3が受台
4上に載置されている。被処理品3は加熱炉2のほぼ中
心に位置する。受台4は、反応管lの下端から外部に突
き出た回転軸6によって支承され、この回転軸6を回転
させる駆動装置(図示省略)の働きによって被処理品3
を載置した状態で静かに水平回転する。図中、1aはガ
ス流入口、7は7ランジ、8はガス排出フランジである
。反応管部分のこのような構造は従来と本質的には異な
らない。
FIG. 1 is a partially cutaway side view showing a reaction tube portion of a chemical vapor deposition apparatus according to the present invention, in which a vertically standing reaction tube l is equipped with a heating furnace 2 on the outside, and a workpiece 3 inside. is placed on the pedestal 4. The workpiece 3 is located approximately at the center of the heating furnace 2 . The pedestal 4 is supported by a rotating shaft 6 protruding from the lower end of the reaction tube 1 to the outside, and a drive device (not shown) rotates the rotating shaft 6 to rotate the product to be processed.
Gently rotate horizontally with the In the figure, 1a is a gas inlet, 7 is a 7-lunge, and 8 is a gas exhaust flange. Such a structure of the reaction tube portion is not essentially different from the conventional one.

加熱炉2で反応管lを加熱するとともに被処理品3を静
かに水平回転させ、流入口1aか°ら反応管1内に高融
点金属の気体物質(たとえばWF6)をキャリアガス(
たとえばH2)とともに送シ込む。送シ込まれたガス(
、たとえばWFe+に2) 9は反応管1内で加熱され
て還元反応を起こすため、前記気体物質から高融点金属
(たとえばW)が生成し、被処理品30所要表面に付着
する。被処理品3はこのとき静かに水平回転しているた
め、その被処理面には均一な高融点金属被膜が形成され
る。被処理品30回転はガス9を撹拌する働きをもする
。なお、生成した高融点金属の一部は、被処理品近傍の
反応管内面など被処理品以外の部分にも付着し、汚損付
着物5となる。
While heating the reaction tube 1 in the heating furnace 2, the product 3 to be processed is gently rotated horizontally, and a gaseous substance of a refractory metal (for example, WF6) is introduced into the reaction tube 1 from the inlet 1a as a carrier gas (
For example, feed in with H2). Injected gas (
, for example, WFe+2) 9 is heated in the reaction tube 1 to cause a reduction reaction, so that a high melting point metal (eg, W) is generated from the gaseous substance and adheres to a desired surface of the workpiece 30. Since the article 3 to be treated is horizontally rotating quietly at this time, a uniform high melting point metal coating is formed on the surface to be treated. The 30 revolutions of the object to be treated also serves to stir the gas 9. Note that a part of the generated high-melting point metal also adheres to parts other than the object to be processed, such as the inner surface of the reaction tube near the object to be processed, and becomes a fouling deposit 5.

次に、この汚損付着物を除去・回収する手段を説明する
。第2図はこの発明にかかる化学蒸着装置全体の説明図
である。ブロックAは蒸着回路であシ、ブロックBは回
収回路である。蒸着回路は、高融点金属の気体物質収容
ボンベ10およびキャリアガスボンベ11を備え、各ボ
ンベのガスをバルブ12を経て反応管1内に送シ込むよ
うにしている。図中、13.14は高融点金属の気体物
質専用送出路に設けられた流量計とパルス15.16は
キャリアガス専用送出路に設けられた流量計とパルプで
ある。蒸着回路はまたガス吸収装置17と真空ポンプ1
8をも備え;反応管1内に残留するガスはバルブ19を
経てこれらの機器に移る。
Next, a means for removing and recovering this fouling deposit will be explained. FIG. 2 is an explanatory diagram of the entire chemical vapor deposition apparatus according to the present invention. Block A is a deposition circuit, and block B is a recovery circuit. The vapor deposition circuit includes a cylinder 10 for containing a high-melting-point metal gas substance and a carrier gas cylinder 11, and the gas from each cylinder is fed into the reaction tube 1 through a valve 12. In the figure, reference numerals 13 and 14 indicate a flow meter provided in a delivery path exclusively for high-melting point metal gas, and pulses 15 and 16 indicate a flow meter and pulp provided in a delivery path exclusively used for carrier gas. The deposition circuit also includes a gas absorption device 17 and a vacuum pump 1.
8; the gas remaining in the reaction tube 1 is transferred to these devices via a valve 19.

図中、20.21はガス吸収装置専用排出路と真空ポン
プ専用排出路にそれぞれ設けられたバルブである。回収
回路は%F2  ボンベ22を備え、流量計23.パル
プ24をそれぞれ経てF2 ガスを反応管1内に送シ込
むようにしている。回収回路はまた冷却4W25に漬け
られて冷やされているトラップ26.大気シール装置2
7およびガス吸着装置28をも備えていて、大気がトラ
ップ26に流入しないよう大気シール装置27でシール
しつつ、後に述べるようにして反応管1内で生成した高
融点金属の気体物質をトラップ26内に回収するように
なっている。図中、29は気体物質回収路に設けられた
パルプである。
In the figure, reference numerals 20 and 21 indicate valves respectively provided in the exhaust path dedicated to the gas absorption device and the exhaust path dedicated to the vacuum pump. The recovery circuit includes a %F2 cylinder 22 and a flow meter 23. F2 gas is fed into the reaction tube 1 through each pulp 24. The recovery circuit also includes a trap 26. which is cooled by soaking in cooling 4W 25. Atmospheric seal device 2
7 and a gas adsorption device 28, and while sealing with an atmosphere sealing device 27 so that the atmosphere does not flow into the trap 26, the high melting point metal gaseous substance generated in the reaction tube 1 is trapped in the trap 26 as described later. It is designed to be collected inside. In the figure, 29 is a pulp provided in the gaseous substance recovery path.

汚損付着物5の除去と高融点金属の回収とを具体的に説
明する。反応管1の内径を一80m品、被処理品3の長
さを30mmとして化学蒸着を行なうと、約120mm
 の長さ範囲で汚損付着物5ができる。
The removal of the fouling deposits 5 and the recovery of the high melting point metal will be explained in detail. When chemical vapor deposition is performed with the inner diameter of the reaction tube 1 being 180 m and the length of the product 3 being 30 mm, the length of the product 3 is approximately 120 mm.
Fouling deposits 5 are formed in the length range.

その付着量はその時間・当シの生成量(Wの場合は約1
0g7時)と蒸着時間の積から求めることができる。W
を例にとると、累計蒸着時間が5時間であれば、その付
着量は約50gとなるから、汚損付着物5の層厚は′約
86μmと推定できる。
The amount of adhesion is determined by the amount of time and amount of production (in the case of W, it is approximately 1
It can be determined from the product of 0g7h) and the deposition time. W
For example, if the cumulative deposition time is 5 hours, the amount of deposited matter is about 50 g, and therefore the layer thickness of the fouling deposit 5 can be estimated to be about 86 μm.

汚損付着物たる高融点金属は、例えばフッ素化するなど
して気体物質化される。WとFとの間には、W+3Fz
−WFaという反応式が成立つので、Wをフッ素化する
ためにはW1モルに対して3モルのF2 が必要となる
。したがって、50gの汚損付着物をフッ素化するため
には、18.3/のF2 を必要とする。
The high melting point metal that is the fouling deposit is converted into a gaseous substance by, for example, being fluorinated. Between W and F, W+3Fz
Since the reaction formula -WFa is established, 3 moles of F2 are required for 1 mole of W to fluorinate W. Therefore, to fluorinate 50 g of fouling deposits, 18.3/F2 is required.

所定の蒸着時間が経過したら、パルプ14を閉じて蒸着
を終る。しかし、キャリアガスH2は流しつづける。そ
の間、加熱炉2の温度を700〜800℃に保ち、少な
くとも30分間は還元雰囲気を保持する。そののち加熱
炉2の温度を300〜400℃に下げ、パルプ16.1
2を閉じてF2 の送シ込みを止める。次に、真空ポン
プ18を用いて反応管1内を真空度10”−2Torr
にしたのちパルプ19,20.21を閉じ、被処理品3
を2or。
After a predetermined vapor deposition time has elapsed, the pulp 14 is closed to end the vapor deposition. However, the carrier gas H2 continues to flow. During this time, the temperature of the heating furnace 2 is maintained at 700 to 800°C, and the reducing atmosphere is maintained for at least 30 minutes. After that, the temperature of the heating furnace 2 was lowered to 300-400℃, and the pulp 16.1
2 to stop feeding F2. Next, using the vacuum pump 18, the inside of the reaction tube 1 is vacuumed at a vacuum level of 10''-2 Torr.
After that, close the pulps 19, 20 and 21, and remove the processed product 3.
2or.

pomの速度で回転させなが゛ら、F2 ボンベ22の
パルプ24を除々に開け、F2 を反応管1に送シ込む
。このとき、流量計23を監視しつつパルプ操作するこ
とによって、F2 の流量を最初の60分間は50cc
/$、次の160分間は100cc/分とする。
The pulp 24 of the F2 cylinder 22 is gradually opened and F2 is pumped into the reaction tube 1 while rotating at a speed of 500 pm. At this time, by operating the pulp while monitoring the flow meter 23, the flow rate of F2 is adjusted to 50 cc for the first 60 minutes.
/$, and 100cc/min for the next 160 minutes.

反応管1に送シ込まれたF2はその内壁面などに付着し
ている汚損付着物5と反応し、これを気体物質化する。
The F2 fed into the reaction tube 1 reacts with the fouling deposits 5 attached to the inner wall surface of the reaction tube 1, and converts it into a gaseous substance.

この反応が完了したとき、汚損付着物5の除去が終了す
る。
When this reaction is completed, the removal of the fouling deposits 5 is completed.

F2 を連続的に送シ込みながら、60分経過ごとにパ
ルプ29を開き、反応管1で生成した高融点金属の気体
物質を30分間トラップ26内に流入させたのち、パル
プ29を閉じる。大気シール装置27内にはトリフルオ
ロクロロエチレン低重合油(商品名ダイフロイル)など
のシール液が入っているが、上記のようにしてパルプ2
゛9を閉じたのち30分経過したときのF2検出の有無
をここで確認する。この操作は上記の反応が完全に終了
するまで繰シ返し行なう′。
While continuously feeding F2, the pulp 29 is opened every 60 minutes to allow the high melting point metal gas produced in the reaction tube 1 to flow into the trap 26 for 30 minutes, and then the pulp 29 is closed. The atmosphere sealing device 27 contains a sealing liquid such as trifluorochloroethylene low-polymerized oil (trade name: DAIFLOIL).
Check here whether F2 is detected 30 minutes after closing 9. This operation is repeated until the above reaction is completely completed.

F2  とWとの反応生成物であるWF6は、凝固点が
2.3℃であるので、冷却槽25の冷却剤をたとえばド
ライアイス−エタノール系(−40℃以下)にしておけ
ば、トラップ26内で完全に凝縮し、回収される。
WF6, which is a reaction product of F2 and W, has a freezing point of 2.3°C, so if the coolant in the cooling tank 25 is, for example, a dry ice-ethanol system (-40°C or lower), the temperature inside the trap 26 will be reduced. completely condensed and collected.

汚損付着物たる高融点金属物質のフッ素化反応が完了す
れば、大気シール装置27でF2が検出されるので、パ
ルプ24 t、 29を直ちに閉じ、同時にパルプ19
,20を開き、つづいてノ(ルプ16゜12をも開いて
、F2 を1.217分の流量で反応管1中に送シ込み
、残留F2  ガスをガス吸収装置17に吸収させる。
When the fluorination reaction of the high melting point metal substance as the fouling deposit is completed, F2 is detected in the atmosphere sealing device 27, so the pulps 24t and 29 are immediately closed, and at the same time, the pulp 19 is closed.
.

この操作以前の余分のF2 ガスは活性炭を吸着剤とす
るガス吸着装置28に吸着させる。
Excess F2 gas before this operation is adsorbed by a gas adsorption device 28 using activated carbon as an adsorbent.

このようにして、トラップ26に回収された高融点金属
の気体物質は、次回以降の化学蒸着操作においてそのま
ま用いることができる。
In this manner, the refractory metal gaseous material collected in the trap 26 can be used as is in subsequent chemical vapor deposition operations.

この発明にかかる化学蒸着装置は、このように、高融点
金属を気体物質化し得るガスを反応管内に送シ込む手段
と、このガスによって反応管内に生成した高融点金属の
気体物質を回収する手段とをそれぞれ備えているため、
反応管内の汚損付着物を容易迅速に除去するとともに直
ちに再利用し得る形で回収することができる。
The chemical vapor deposition apparatus according to the present invention has a means for sending a gas capable of converting a high melting point metal into a gaseous substance into a reaction tube, and a means for recovering a gaseous substance of a high melting point metal generated in the reaction tube by this gas. and
Fouling deposits in the reaction tube can be easily and quickly removed and immediately recovered in a form that can be reused.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる化学蒸着装置の反応管部分の
一部切欠き側面図、第2図は同装置の全体説明図である
。 A・・・蒸着回路 B・・・回収回路 1・・・反応管
1a・・・ガス流入口 2・・・加熱炉 3・・・被処
理品 4・・・・受台 5・・・汚損付着物 6・・・
回転軸9・・Oガス 22・・・F2ボンベ 26・・
・トラップ 24.29・・・パルプ 特許出願人 東邦金属株式会社 代理人 弁理士 菅 原 弘 志 @IWA 第2図
FIG. 1 is a partially cutaway side view of a reaction tube portion of a chemical vapor deposition apparatus according to the present invention, and FIG. 2 is an overall explanatory view of the same apparatus. A... Vapor deposition circuit B... Recovery circuit 1... Reaction tube 1a... Gas inlet 2... Heating furnace 3... Product to be treated 4... pedestal 5... Contamination Adherence 6...
Rotating shaft 9...O gas 22...F2 cylinder 26...
・Trap 24.29...Pulp patent applicant Toho Metals Co., Ltd. Agent Patent attorney Hiroshi Sugawara @IWA Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)反応管と、高融点金属の気体物質をこの反応管内
に送り込む手段とをそれぞれ備え、前記反応管内におい
て還元法によシ前記気体物質から高融点金属を生成させ
、生成した高融点金属を、前記反応管内に収容されてい
る被処理品の表面に付着させる化学蒸着装置において、
前記高融点金属を気体物質化し得るガスを前記反応管内
に送シ込む手段と、このガスによって反応管内に生成し
た高融点金属の気体物質を回収する手段とをそれぞれ備
えていることを特徴とする化学蒸着装置。
(1) A reaction tube and a means for feeding a gaseous substance of a high melting point metal into the reaction tube, and a high melting point metal is generated from the gaseous substance by a reduction method in the reaction tube, and the generated high melting point metal in a chemical vapor deposition apparatus in which the substance is deposited on the surface of a workpiece housed in the reaction tube,
The reactor is characterized by comprising means for feeding a gas capable of converting the high melting point metal into a gaseous substance into the reaction tube, and means for recovering the gaseous substance of the high melting point metal generated in the reaction tube by the gas. Chemical vapor deposition equipment.
JP17516781A 1981-10-31 1981-10-31 Chemical vapor deposition apparatus Pending JPS5876140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17516781A JPS5876140A (en) 1981-10-31 1981-10-31 Chemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17516781A JPS5876140A (en) 1981-10-31 1981-10-31 Chemical vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPS5876140A true JPS5876140A (en) 1983-05-09

Family

ID=15991430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17516781A Pending JPS5876140A (en) 1981-10-31 1981-10-31 Chemical vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS5876140A (en)

Similar Documents

Publication Publication Date Title
JP2614827B2 (en) Apparatus and method for cleaning material or (and) tool surfaces in semiconductor manufacturing using nitrogen trifluoride
JPH01134932A (en) Cleansing process and clarifier of substrate
CN107799391A (en) The nothing with pollutant removal for high-aspect-ratio semiconductor device structure sticks drying process
JP2007177320A (en) METHOD OF WASHING THIN FILM DEPOSITION UNIT FOR DEPOSITING Al-CONTAINING METAL FILM AND Al-CONTAINING METAL NITRIDE FILM
US5714011A (en) Diluted nitrogen trifluoride thermal cleaning process
JP3171593B2 (en) Trap device
JPS5876140A (en) Chemical vapor deposition apparatus
JP2004140373A (en) Subatmospheric supply of fluorine to semiconductor process chamber
US3219482A (en) Method of gas plating adherent coatings on silicon
JP3729578B2 (en) Semiconductor manufacturing method
US6444257B1 (en) Metals recovery system
JP4316340B2 (en) Recycling method of quartz glass jig
JP2836891B2 (en) Cleaning method of SiOx with chlorine fluoride gas
US6539953B2 (en) Method and apparatus for cleaning a heater bellow in a chemical vapor deposition chamber
JPH06283463A (en) Semiconductor manufacturing equipment
JP3770718B2 (en) Method for cleaning substrate to which ammonium fluoride is adhered
JP2002011564A (en) Device for recovering molten metal
JP2002305190A (en) Heat treating apparatus and method for cleaning the same
JP3949217B2 (en) Cleaning method in gas filling container
US7514371B2 (en) Semiconductor substrate surface protection method
JPH07227533A (en) Baking method of vacuum container
Lopez et al. Packed bed carburization of tantalum and tantalum alloy
JPH02198139A (en) Prevention of inner wall contamination of vacuum treatment apparatus
JPH11191537A (en) Cleaning method for semiconductor manufacturing apparatus
JPH02259064A (en) Method for removing deposited film in vacuum thin film forming equipment