JPH02259064A - Method for removing deposited film in vacuum thin film forming equipment - Google Patents

Method for removing deposited film in vacuum thin film forming equipment

Info

Publication number
JPH02259064A
JPH02259064A JP8270189A JP8270189A JPH02259064A JP H02259064 A JPH02259064 A JP H02259064A JP 8270189 A JP8270189 A JP 8270189A JP 8270189 A JP8270189 A JP 8270189A JP H02259064 A JPH02259064 A JP H02259064A
Authority
JP
Japan
Prior art keywords
thin film
film
vacuum
forming equipment
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8270189A
Other languages
Japanese (ja)
Inventor
Hiroshi Hiroki
弘志 尋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP8270189A priority Critical patent/JPH02259064A/en
Publication of JPH02259064A publication Critical patent/JPH02259064A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove the thin film deposited on the surface of the vacuum thin film forming equipment made of stainless steel by previously forming a coating film of Ni, Cr, iron or their alloy on the surface. CONSTITUTION:A coating film of Ni, Cr and iron or their alloy is previously formed on the surface of the vacuum thin film forming equipment made of stainless steel. After a thin film is formed, the coating film is dissolved, and the thin film deposited on the coating film surface when the film is formed is removed. In addition, although the coating film can be easily formed by wet plating such as electroless plating and electroplating and vacuum physical vapor deposition such as vacuum deposition and sputtering, wet plating is preferably used from the standpoint of ease and cost. When the equipment is dipped in a liq. solubilizer, the solubilizer infiltrates from pinholes or the part free of the depositing film, and the depositing film is efficiently dissolved.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、真空薄膜形成設備の表面に付着する薄膜の除
去を容易に行うための方法に関するものである。ここで
真空薄膜形成設備とは、各種真空薄膜形成装置及び治具
のことを指す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for easily removing a thin film adhering to the surface of vacuum thin film forming equipment. Here, the vacuum thin film forming equipment refers to various vacuum thin film forming apparatuses and jigs.

[従来の技術] 真空薄膜形成装置には真空蒸着、イオンプレーディング
、スパッタリング、CVDなどの装置が知られている。
[Prior Art] Vacuum deposition, ion plating, sputtering, CVD, and other devices are known as vacuum thin film forming devices.

これらの装置はいずれも真空容器を持ち、真空または低
圧条件下で薄膜材料となる物質を蒸気、イオン、あるい
は化合物のガスなどの形で供給し、処理対象物の表面に
薄膜を形成するものである。これらの装置で薄膜の形成
を行う場合、高品質の薄膜を得るため、真空薄膜形成処
理を行う前に真空容器の内部が一度高真空になるまで排
気する。真空容器及び真空容器内で使用する治具の材質
には、蒸気圧が低い、他の物質と反応し難い、耐熱性が
ある。加工が特に困難ではない、比較的安価にかつ容易
に入手できる、等の理由により、ステンレスが主に使わ
れる。
All of these devices have a vacuum container and supply substances that become thin film materials in the form of steam, ions, or compound gases under vacuum or low pressure conditions to form a thin film on the surface of the object to be treated. be. When forming a thin film using these devices, in order to obtain a high-quality thin film, the inside of the vacuum container is once evacuated to a high vacuum before performing the vacuum thin film forming process. The materials of the vacuum container and the jigs used in the vacuum container have low vapor pressure, do not easily react with other substances, and are heat resistant. Stainless steel is mainly used because it is not particularly difficult to process and is relatively inexpensive and easily available.

形成する薄膜の材質には、例えばシリコン、カーボン、
窒化クロム、チタン、窒化チタンなどが用いられるが、
処理対象物に各種の薄膜を形成する際に、処理対象物以
外の真空薄膜形成設備の表面、即ち治具の表面や真空容
器の内面などにも薄膜が付着する。膜が付着すると表面
積が増え、真空薄膜形成設備の真空容器において吸着し
て放出されるガスが増えるため、真空容器内の真空度の
低下や規定の真空度に達するまでの排気時間の長時間化
をもたらし、形成した薄膜の品質の低下や処理時間の長
時間化による効率の低下を招く。また、この付着した膜
はシャッターや可動性の治具などの機械的動作の障害に
なったり、剥離して形成した薄膜に付着して、その品質
を低下させる場合もある。このため、付着した膜の定期
的な除去が重要な作業となっている。
The material of the thin film to be formed includes, for example, silicon, carbon,
Chromium nitride, titanium, titanium nitride, etc. are used,
When forming various thin films on the object to be processed, the thin film also adheres to surfaces of the vacuum thin film forming equipment other than the object to be processed, such as the surface of the jig and the inner surface of the vacuum container. As the film adheres, the surface area increases, and the amount of gas adsorbed and released in the vacuum container of the vacuum thin film forming equipment increases, resulting in a decrease in the degree of vacuum in the vacuum container and a longer evacuation time to reach the specified degree of vacuum. This leads to a decrease in the quality of the formed thin film and a decrease in efficiency due to a prolonged processing time. In addition, this adhered film may impede the mechanical operation of shutters, movable jigs, etc., or may adhere to the thin film formed by peeling, degrading its quality. For this reason, periodic removal of the adhered film has become an important task.

除去の方法としては、 a)砥石やサンドペーパーなどで付着した薄膜を擦り落
す b)酸などの溶解液により付着した薄膜を溶解する C)真空薄膜形成設備の表面に予めアルミニウム薄膜を
形成し、アルカリ溶解に浸漬してアルミニウム薄膜を溶
解することにより付着膜を除去する(特公昭63−66
901号公報)等がある。
The removal method is as follows: a) Scrape off the attached thin film with a grindstone or sandpaper b) Dissolve the attached thin film with a solution such as acid C) Form an aluminum thin film on the surface of the vacuum thin film forming equipment in advance, The adhering film is removed by dissolving the aluminum thin film by immersing it in alkaline solution (Special Publication No. 1983-1966).
901) etc.

[発明が解決しようとする課題] a)の方法では、 1)多大な作業時間を必要とする。これは、付着膜が密
着性がよく、耐摩耗性に優れたものである場合に著しい
[Problems to be solved by the invention] Method a): 1) requires a large amount of work time; This is remarkable when the deposited film has good adhesion and excellent wear resistance.

2)真空薄膜形成設備表面を損傷する。2) Damage to the surface of the vacuum thin film forming equipment.

という欠点がある。There is a drawback.

b)の方法では、 1)付着膜が溶解し難い材質である場合、溶解に長時間
を要し、また、非常に溶解しにくい材質の場合(例えば
C、S i C、S i3 N4など)、実質的に溶解
による除去が不可能である場合がある。
In method b), 1) If the deposited film is made of a material that is difficult to dissolve, it will take a long time to dissolve, or if it is made of a material that is extremely difficult to dissolve (for example, C, SiC, Si3N4, etc.) , it may be virtually impossible to remove by dissolution.

2)真空薄膜形成設備の表面が、溶解液に長時間浸漬す
るため、溶解する可能性がある。
2) Since the surface of the vacuum thin film forming equipment is immersed in the solution for a long time, there is a possibility that it will dissolve.

C)の方法では、真空薄膜形成設備の表面にアルミニウ
ム薄膜を形成するため、 1)アルミニウムの融点は比較的低い(660℃)ため
、アルミニウム薄膜を形成しなかった場合に比べて使用
温度が低く制限される。
In method C), an aluminum thin film is formed on the surface of the vacuum thin film forming equipment, so 1) The melting point of aluminum is relatively low (660°C), so the operating temperature is lower than when no aluminum thin film is formed. limited.

2)薄膜のアルミニウムがそれを形成した真空薄膜形成
設備の表面に拡散し、真空薄膜形成設備の表面を劣化さ
せる。
2) The aluminum in the thin film diffuses onto the surface of the vacuum thin film forming equipment in which it was formed, degrading the surface of the vacuum thin film forming equipment.

等の欠点がある。There are drawbacks such as.

本発明は上記従来の方法の欠点に鑑みてなされたもので
あり、真空薄膜形成設備に付着した薄膜の除去を効率的
に行うことができる方法の提供を目的とする。
The present invention has been made in view of the drawbacks of the conventional methods described above, and an object of the present invention is to provide a method that can efficiently remove thin films attached to vacuum thin film forming equipment.

[課題を解決するための手段] 即ち、本発明は、ステンレスよりなる真空薄膜形成設備
の表面にあらかじめニッケル、クロム、鉄のいずれかま
たはそれらの合金よりなる被膜を形成しておき、薄膜形
成処理を行なった後、前記被膜を溶解することにより、
薄膜形成処理により被膜表面に付着した薄膜を除去する
ことを特徴とする真空薄膜形成設備の付着膜除去方法を
要旨とする。
[Means for Solving the Problems] That is, the present invention provides a method of forming a coating made of nickel, chromium, iron, or an alloy thereof on the surface of a vacuum thin film forming equipment made of stainless steel, and then performing a thin film forming process. After performing, by dissolving the coating,
The gist of the present invention is a method for removing an adhered film in vacuum thin film forming equipment, which is characterized by removing a thin film adhered to the surface of a film through a thin film forming process.

以下、詳述する。The details will be explained below.

ニッケル、クロム、鉄のいずれかまたはそれらの合金よ
りなる被膜は、無電解めっき、電気めっき等の湿式めっ
き、真空蒸着、スパッタリング等の真空物理蒸着などよ
って容易に形成できる。被膜形成が容易かつ安価にでき
るといったことによリ、湿式めっきが好ましい。ここで
、金属単体だけではなくその合金をも含めたのは、ニッ
ケルめっきのかわりに使われるニッケルー鉄めっき等の
合金でも同様の効果が得られることによる。
A coating made of nickel, chromium, iron, or an alloy thereof can be easily formed by wet plating such as electroless plating or electroplating, vacuum physical vapor deposition such as vacuum evaporation, or sputtering. Wet plating is preferred because the coating can be formed easily and inexpensively. The reason why we include not only single metals but also their alloys is that similar effects can be obtained with alloys such as nickel-iron plating, which is used instead of nickel plating.

こうして形成された被膜は、真空薄膜形成設備を溶解液
に浸漬することによって溶解される。前記被膜表面に付
着した薄膜に存在するピンホールを通って、または、被
膜の表面に薄膜が形成されていない部分から溶解液が浸
入し、被膜を溶解する。この時、単に溶解液に浸漬する
のではなく、溶解しようとする側を陽極にして電流を流
し、電気分解により溶解してもよく、また、この効果を
溶解の促進に使用してもよい。
The film thus formed is dissolved by immersing the vacuum thin film forming equipment in a dissolving solution. The solution enters through pinholes existing in the thin film attached to the surface of the coating or from areas where the thin film is not formed on the surface of the coating, and dissolves the coating. At this time, instead of simply immersing the material in the solution, the side to be dissolved may be used as an anode and a current may be applied to dissolve the material by electrolysis, or this effect may be used to promote dissolution.

溶解液は、被膜を溶解でき、基材のステンレスを溶解し
ないかステンレスよりも被膜の材質を優先的に溶解する
ものであればよい。これらの溶解液は、形成する被膜の
成分により、適宜選択し使用するもので、−例を挙げる
と、ニッケルには硝酸、硫酸+H2O2、クロムには塩
酸、N a OH+Ka (Fe CCN) 6) 、
鉄には硝酸、硫酸などが使用できる。
The dissolving liquid may be any solution as long as it can dissolve the coating and not dissolve the stainless steel base material or dissolve the coating material preferentially over the stainless steel. These solutions are appropriately selected and used depending on the components of the film to be formed; for example, nitric acid, sulfuric acid + H2O2 for nickel, hydrochloric acid, Na OH + Ka (Fe CCN) 6) for chromium,
Nitric acid, sulfuric acid, etc. can be used for iron.

被膜の膜厚は、付着膜を除去する間隔や形成する薄膜の
、被膜及び基材のステンレスへの拡散のしやすさ、使用
温度などの使用条件によって任意に決定される。たとえ
ば、高温で拡散しやすい材質の膜を形成し、長期間付着
膜の除去を行わない場合は厚い膜厚が必要であるし、拡
散しにくい材質の膜を形成し、−回処理する毎に付着膜
の除去を行うような場合は、膜厚が特に厚い必要はない
The thickness of the coating is arbitrarily determined depending on usage conditions such as the interval at which the adhered film is removed, the ease with which the formed thin film diffuses into the coating and the stainless steel base material, and the usage temperature. For example, if a film is formed of a material that easily diffuses at high temperatures and the adhered film is not removed for a long period of time, a thick film is required. When removing an attached film, the film does not need to be particularly thick.

また、被膜の膜厚が厚い方が薄膜が付着していない部分
からの溶解がしやすい。ただし、ある程度以上厚くなる
と、厚さを厚くしても効果はあまり変わることがない。
Further, the thicker the film, the easier it is to dissolve from the parts to which the thin film is not attached. However, once the thickness exceeds a certain level, the effect does not change much even if the thickness is increased.

このため、数千人〜数十μm程度の範囲で使用条件に応
じて膜厚を選ぶのが適当と考えられる。
For this reason, it is considered appropriate to select the film thickness in the range of several thousand to several tens of micrometers depending on the usage conditions.

[作 用] 真空薄膜形成設備に予めニッケル、クロム、鉄のいずれ
かまたはそれらの合金よりなる被膜を形成することによ
り、薄膜形成を行うときに付着する薄膜は、真空薄膜形
成設備の基材にではなく、この被膜に付着する。このた
め、被膜を溶解して除去すれば、付着した薄膜を容易に
除去することができる。
[Function] By forming a coating made of nickel, chromium, iron, or an alloy thereof on the vacuum thin film forming equipment in advance, the thin film that adheres when forming the thin film will be attached to the base material of the vacuum thin film forming equipment. Instead, it adheres to this coating. Therefore, by dissolving and removing the coating, the attached thin film can be easily removed.

薄膜にはピンホールが存在するので、薄膜を除去しよう
とする真空薄膜形成設備を被膜を溶解できる溶解液に浸
漬すると、薄膜に存在するピンホールを通って、または
、被膜の表面に薄膜が形成されていない部分から溶解液
が侵入し、被膜を溶解することができる。
Since there are pinholes in the thin film, if the vacuum thin film forming equipment used to remove the thin film is immersed in a dissolving solution that can dissolve the film, a thin film will be formed through the pinholes existing in the thin film or on the surface of the film. The solution can enter from the untreated areas and dissolve the coating.

このとき、被膜が溶解し易い材質であるため、溶解に要
する時間が短く、基材のステンレスよりも被膜が優先的
に溶解されるため、基材のステンレスの溶解は少ない。
At this time, since the coating is made of an easily soluble material, the time required for dissolution is short, and the coating is preferentially dissolved over the base stainless steel, so that the base stainless steel is less likely to dissolve.

被膜の材質は、基材のステンレスと同等若しくはそれ以
上の温度でも真空容器内で使用することができ、溶融す
ることがなく、ステンレスの成分であるので、基材のス
テンレスに拡散しないか若しくは拡散しても悪影響がな
い。
The material of the coating can be used in a vacuum container at a temperature equal to or higher than that of the stainless steel base material, does not melt, and is a component of stainless steel, so it will not diffuse into the stainless steel base material or will not diffuse into the stainless steel base material. There is no negative effect.

[実施例] 以下、本発明を実施例に基づき更に詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail based on Examples.

末血負よ 直径約7anの円板状のステンレス製のサンプルホルダ
ーにあらかじめニッケル膜を電気めっきにより膜厚3μ
m形成し、パイプ状のサンプルを被処理物として、サン
プルホルダー上に置き、300℃に加熱してスパッタ法
により窒化クロム膜形成処理を行った後、このサンプル
ホルダーを硝酸に3時間浸漬した。
A nickel film was electroplated in advance to a thickness of 3μ on a stainless steel disc-shaped sample holder with a diameter of about 7an.
A pipe-shaped sample was placed on a sample holder as an object to be processed, heated to 300° C., and subjected to sputtering to form a chromium nitride film, and then the sample holder was immersed in nitric acid for 3 hours.

失胤貫主 直径約7印の円板状のステンレス製のサンプルホルダー
にあらかじめクロム膜を膜厚1μmスパッタ法により形
成し、パイプ状のサンプルを被処理物として、サンプル
ホルダー上に置き、スパッタ法によりアルミナ膜形成処
理を行った後、このサンプルホルダーを2時間塩酸に浸
漬した。
A chromium film with a thickness of 1 μm was formed in advance on a disc-shaped stainless steel sample holder with a main diameter of approximately 7 marks by sputtering, and a pipe-shaped sample was placed on the sample holder as an object to be treated, and then sputtered using sputtering. After performing the alumina film formation treatment, this sample holder was immersed in hydrochloric acid for 2 hours.

尖厳孤立 直径約7国の円板状のステンレス製のサンプルホルダー
にあらかじめ鉄の膜を膜厚10μm電気めっきにより形
成し、パイプ状のサンプルを彼処=8− 理物として、サンプルホルダー上に置き、500℃に加
熱してスパッタ法により炭化チタン膜形成処理を行った
後、このサンプルホルダーを4時間硫酸に浸漬した。
An iron film was electroplated to a thickness of 10 μm in advance on a disc-shaped stainless steel sample holder with a diameter of approximately 7 mm, and a pipe-shaped sample was placed on the sample holder as a physical object. After heating to 500° C. to form a titanium carbide film by sputtering, the sample holder was immersed in sulfuric acid for 4 hours.

失胤孤土 直径約7cmの円板状のステンレス製のサンプルホルダ
ーにあらかじめクロム膜を電気めっきにより膜厚4μm
形成し、パイプ状のサンプルを被処理物として、サンプ
ルホルダー上に置き、300℃に加熱してスパッタ法に
より窒化クロム膜形成処理を行った後、このサンプルホ
ルダーを無水酢酸ナトリウム+水酸化ナトリウムの溶液
に浸漬し、陽極酸化により、ホルダー側を陽極にして、
電流を2時間流し、クロム膜を溶解した。
A chromium film was electroplated in advance to a thickness of 4 μm on a disc-shaped stainless steel sample holder with a diameter of about 7 cm.
A pipe-shaped sample is placed on a sample holder as an object to be processed, heated to 300°C, and a chromium nitride film is formed by sputtering. Immerse it in a solution and use anodic oxidation to make the holder side the anode.
A current was applied for 2 hours to dissolve the chromium film.

匝較Mよ 直径約7国の円板状のステンレス製のサンプルホルダー
を使用して、パイプ状のサンプルを被処理物として、サ
ンプルホルダー上に置き、300℃に加熱してスパッタ
法により窒化クロム膜形成処理を行った後、このサンプ
ルホルダーの付着膜をベルトサンダーやサンドペーパー
を用いて擦り落そうとした。
Using a disc-shaped stainless steel sample holder with a diameter of about 7 mm, a pipe-shaped sample is placed on the sample holder as the object to be treated, heated to 300°C, and chromium nitride is applied by sputtering. After the film formation process was performed, an attempt was made to scrape off the adhered film on the sample holder using a belt sander or sandpaper.

崖絞粁主 直径約7anの円板状のステンレス製のサンプルホルダ
ーを使用して、パイプ状のサンプルを被処理物として、
サンプルホルダー上に置き、300°Cに加熱してスパ
ッタ法により窒化クロム膜形成処理を行った後、このサ
ンプルホルダーを塩酸、硫酸、硝酸に120時間浸漬し
た。
Using a disc-shaped stainless steel sample holder with a main diameter of about 7 ann, a pipe-shaped sample was used as the object to be processed.
The sample was placed on a sample holder and heated to 300°C to form a chromium nitride film by sputtering, and then the sample holder was immersed in hydrochloric acid, sulfuric acid, and nitric acid for 120 hours.

迄敗1 直径7cmの円板状のステンレス製のサンプルホルダー
を使用して、パイプ状のサンプルを被処理物として、サ
ンプルホルダー上に置き、300℃に加熱してスパッタ
法により窒化クロム膜形成処理を行った後、このサンプ
ルホルダーを弗硝酸に浸漬した。
Failure 1 Using a disc-shaped stainless steel sample holder with a diameter of 7 cm, place a pipe-shaped sample as the object to be treated on the sample holder, heat it to 300°C, and form a chromium nitride film by sputtering. After this, the sample holder was immersed in fluoronitric acid.

ル敗■土 直径約7a11の円板状のステンレス製のサンプルホル
ダーあらかじめアルミニウム膜をスパッタ法により膜厚
4μm形成し、パイプ状のサンプルを被処理物として、
サンプルホルダー上に置き、300℃に加熱してスパッ
タ法により窒化クロム膜形成処理を行った。
A disk-shaped stainless steel sample holder with a diameter of approximately 7mm. An aluminum film was formed in advance with a thickness of 4 μm by sputtering, and a pipe-shaped sample was used as the object to be processed.
The sample was placed on a sample holder, heated to 300° C., and a chromium nitride film was formed by sputtering.

[発明の効果] 実施例1,2,3.4では、何れも付着膜の除去を容易
に行なえ、ホルダーにも異常はなかった。
[Effects of the Invention] In Examples 1, 2, and 3.4, the attached film could be easily removed, and there was no abnormality in the holder.

比較例1は、窒化クロム膜が耐摩耗性に優れているため
、サンプルホルダーに約20μm付着した膜を除去する
のに8時間を要し、ホルダーにも傷がついた。比較例2
は、窒化クロムはほとんど溶解しなかった。比較例3は
、窒化クロムは溶解したが、それと共にホルダーも溶解
した。比較例4は、アルミニウム膜が溶解し、ホルダー
とサンプルの一部を溶接したようになった。
In Comparative Example 1, since the chromium nitride film has excellent wear resistance, it took 8 hours to remove the film that had adhered to the sample holder to a thickness of about 20 μm, and the holder was also damaged. Comparative example 2
Almost no chromium nitride was dissolved. In Comparative Example 3, the chromium nitride was dissolved, but the holder was also dissolved. In Comparative Example 4, the aluminum film melted and the holder and part of the sample were welded together.

以上より、本発明によれば、使用温度の新たな制約を受
けることなく、真空薄膜形成設備の表面を傷つけること
なく、容易に付着する薄膜の除去を行うことができ、付
着膜を除去する作業の効率化を図ることができる。
As described above, according to the present invention, it is possible to easily remove a thin film that adheres to the surface of the vacuum thin film forming equipment without being subject to new restrictions on the operating temperature and without damaging the surface of the vacuum thin film forming equipment. It is possible to improve efficiency.

Claims (1)

【特許請求の範囲】[Claims]  ステンレスよりなる真空薄膜形成設備の表面にあらか
じめニッケル、クロム、鉄のいずれかまたはそれらの合
金よりなる被膜を形成しておき、薄膜形成処理を行なっ
た後、前記被膜を溶解することにより、薄膜形成処理に
より被膜表面に付着した薄膜を除去することを特徴とす
る真空薄膜形成設備の付着膜除去方法。
A thin film is formed by forming a film made of nickel, chromium, iron, or an alloy thereof on the surface of vacuum thin film forming equipment made of stainless steel, and then melting the film after performing a thin film forming process. A method for removing an adhered film in vacuum thin film forming equipment, the method comprising removing a thin film adhered to a film surface through processing.
JP8270189A 1989-03-31 1989-03-31 Method for removing deposited film in vacuum thin film forming equipment Pending JPH02259064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270189A JPH02259064A (en) 1989-03-31 1989-03-31 Method for removing deposited film in vacuum thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8270189A JPH02259064A (en) 1989-03-31 1989-03-31 Method for removing deposited film in vacuum thin film forming equipment

Publications (1)

Publication Number Publication Date
JPH02259064A true JPH02259064A (en) 1990-10-19

Family

ID=13781706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270189A Pending JPH02259064A (en) 1989-03-31 1989-03-31 Method for removing deposited film in vacuum thin film forming equipment

Country Status (1)

Country Link
JP (1) JPH02259064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283929A (en) * 1995-04-07 1996-10-29 Ulvac Japan Ltd Material for vacuum
US8216654B2 (en) 2003-02-19 2012-07-10 Ulvac, Inc. Components for a film-forming device and method for cleaning the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283929A (en) * 1995-04-07 1996-10-29 Ulvac Japan Ltd Material for vacuum
US8216654B2 (en) 2003-02-19 2012-07-10 Ulvac, Inc. Components for a film-forming device and method for cleaning the same

Similar Documents

Publication Publication Date Title
Maxman Target preparation techniques
TW201207163A (en) Method for stripping nitride coatings
JPH02259064A (en) Method for removing deposited film in vacuum thin film forming equipment
KR20190056558A (en) manufacturing method of Ti-Zr alloy target and coating method of gold color thin layer using the same
US3835007A (en) Process for bonding copper or iron to titanium or tantalum
US6669534B2 (en) Surface treatment of oxidizing materials
JPH07102366A (en) Thin film forming device
US3219482A (en) Method of gas plating adherent coatings on silicon
US5916377A (en) Packed bed carburization of tantalum and tantalum alloy
JPH03115560A (en) Production of sliding bearing
JP4599735B2 (en) Fluid bearing parts
JPH0645455B2 (en) Method for chemically cleaning boron or its compound
JPH01165755A (en) Method for coating product sensitive to high temperature with hard layer and coated product
JPH0878375A (en) Silicon carbide-made jig cleaning method
US5624626A (en) Method of treating a ceramic body to form a wettable surface
JPS6077970A (en) Physical vapor deposition pretreatment to clean surface of material for vapor deposition
CN110923730A (en) Cleaning process for metal piece
JP3232777B2 (en) Aluminum electroless plating method
JP3143154B2 (en) Plasma vapor deposition
JPH0217624B2 (en)
JPS60174874A (en) Metallic mask
JPS61286060A (en) Jig member for soldering
UA123743C2 (en) THERMAL PROTECTIVE COVERING OF NOZZLES AND MOLDINGS OF WELDING BURNERS AND METHOD OF OBTAINING IT
JPH0280547A (en) Corrosion-resisting thermal spraying material and its production and formation of corrosion-resisting film
Lopez et al. Packed bed carburization of tantalum and tantalum alloy