JPS587529A - Optical temperature measuring method - Google Patents

Optical temperature measuring method

Info

Publication number
JPS587529A
JPS587529A JP10600681A JP10600681A JPS587529A JP S587529 A JPS587529 A JP S587529A JP 10600681 A JP10600681 A JP 10600681A JP 10600681 A JP10600681 A JP 10600681A JP S587529 A JPS587529 A JP S587529A
Authority
JP
Japan
Prior art keywords
intensity
time point
light
photoluminescence
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10600681A
Other languages
Japanese (ja)
Inventor
Masao Hirano
平野 正夫
Mitsutaka Kato
加藤 充孝
Hirohiko Yasuda
安田 博彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP10600681A priority Critical patent/JPS587529A/en
Publication of JPS587529A publication Critical patent/JPS587529A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light

Abstract

PURPOSE:To make it possible to perform highly accurate temperature measurement, by measuring the afterglow characteristic, with a changing point of the intensity of the emitted light of photoluminescence itself as a reference. CONSTITUTION:A light emitting device 1 generates excited light pulses E. The intensity of the excited light of the pulses E suddenly changes stepwise in the middle. The pulses are irradiated on a phosphorescent and fluorescent body 4 through an optical system 3. The fluorescent body 4 generates the photoluminescence F, and its intensity responses the sudden change of the excited light intensity and changes stepwise. A time point P' of said change corresponds to a time point P of the change of the pulse E. A constant difference in steps in the intensity of the emitted light is formed with said time point P' as a boundary. Said time point P' is imparted to a control circuit 2 through an optical system 5 and a light receiving device 6 and detected. Then the stable intensity of the emitted light Io is obtained. With the decrease in the intensity Io after the stop of the excitation, a time point Q at 90% of the intensity Io and a time point R at 10% are detected. Then with the time point P' as time reference, delay time t1 and attenuation time t2 are obtained, and the afterglow characteristic is obtained.

Description

【発明の詳細な説明】 この発明呟ホトル電ネツセンスの残光41111に温度
依存性があることを利用する光学釣温直針一方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for optical thermostatic adjustment that utilizes the temperature dependence of afterglow 41111 of photovoltaic electronics.

従来、被測温体の温度雰囲気中に配設され九シん螢光体
に#射光パルスを照射して、轟蚊りん螢光体にホトル之
ネツセンスを発生させ、皺ホトルミネッセンスの残光特
性から温直管計橢する装置として1例えば第1図に示す
ようなものが知られている。第1図において1発光器1
は制御回路2かも電気信号としての励起パルスム(第2
図に示す)に駆動されて、この励起パルスムに近似し九
励起光パルス(図示せず)を発生し%この励起光パ、ル
スはレンズ等を含む光学系3を介して〉ん螢光体4に照
射されるようになっている。りん螢光体4は励起光パル
ス和光刺激されて第2111に示す$ ) ル# 委ツ
竜ンスCを発生し、このホトルζネツセノスC呟光学系
5を介して受光lI6に導かれる。このとき、りん螢光
体4轄被−温体の温1雰囲気7中に配設され、その影響
を受けるようになっている。従って、ホトル電ネツ七ン
スC韓残光特性が変化し、受光器6で電気変換され免液
形C(第2WJ呟受光器6の検出信号波形を示している
)には、被−温体の温度情報が含まれて−ることになる
。制御回路2では、励起パルスムの立ち上がリ、また立
ち下がシを起点として、タイマーを起動させ、受光器6
から入力されたホトルミネッセンスCの残光特性(遅れ
時間と減衰時間)を測定し、その結果から対応するI!
度を求めている。
Conventionally, a light pulse is irradiated to a phosphor placed in the temperature atmosphere of the object to be measured to generate photoluminescence in the phosphor, and the afterglow characteristics of wrinkle photoluminescence are measured. For example, a device as shown in FIG. 1 is known as a device for controlling temperature straight pipes. In Figure 1, 1 emitter 1
is the control circuit 2 or the excitation pulse as an electric signal (second
(shown in the figure) generates nine excitation light pulses (not shown) approximating this excitation pulse, and these excitation light pulses and pulses pass through an optical system 3 including lenses, etc. to the phosphor. It is designed to be irradiated at 4. The phosphor 4 is stimulated by an excitation light pulse and generates a photoreceptor C shown at 2111, which is guided to a light receiver lI6 via an optical system 5. At this time, the phosphor phosphor 4 is placed in the warm atmosphere 7 of the heated body and is influenced by it. Therefore, the afterglow characteristic of the photovoltaic device 7th C changes and is electrically converted in the receiver 6. temperature information will be included. The control circuit 2 starts a timer at the rising edge or falling edge of the excitation pulse, and activates the light receiver 6.
The afterglow characteristics (delay time and decay time) of photoluminescence C input from I! are measured, and based on the results, the corresponding I!
I'm looking for degree.

しかしながら、このような従来の方法では、電気信号で
ある励起パルスAを基準として、残光特性を測定するよ
う(しているため、発光器1における電気−光変換、り
ん螢光体4における光−光変換、さらに受光器6におけ
る光−電気変換(それぞれ遅れがあシ、これら遅れが相
加されて誤差要因となり、高精度な温度計測ができてい
ない。
However, in such conventional methods, the afterglow characteristic is measured using the excitation pulse A, which is an electric signal, as a reference. - Optical conversion, and further optical-to-electrical conversion in the light receiver 6 (each has a delay, and these delays add up to cause errors, making it impossible to measure temperature with high precision.

この発明はこのような従来の問題点Kllみてなされ友
ものであシ、ホトルミネッセンス自身を基準(残光特性
を計測することにより高精度な光学的温度計測方法を提
供することを目的としている。
The present invention was made in view of these conventional problems, and aims to provide a highly accurate optical temperature measurement method by measuring the afterglow characteristic of photoluminescence itself.

この発明は前記目的を達成するため、夛ん螢光体を照射
する励起光パルスの波形を階段状とし、励起途中で励起
光強度を急変させ、これに対応して変化するホトルミネ
ッセンスの発光強度の変化点を検出して、これを時間基
準点として当該ホトルミネッセンスの残光特性を時間的
に測定するようにしたことを特徴とする。
In order to achieve the above-mentioned object, this invention makes the waveform of the excitation light pulse that irradiates the fluorophore step-like, abruptly changes the excitation light intensity during the excitation, and the emission intensity of photoluminescence changes correspondingly. It is characterized in that the afterglow characteristic of the photoluminescence is measured over time by detecting a change point of the photoluminescence and using this as a time reference point.

以下、この発明の実施例を添付図面に基づいて詳細KI
2BAする。なお、第1図と同一部分には同一符号を付
してその説明を省略する。
The following is a detailed description of the embodiments of this invention based on the accompanying drawings.
2BA. Note that the same parts as in FIG. 1 are designated by the same reference numerals and their explanations will be omitted.

第3図および第4図はこの発明の第1実施例を示す図で
ある。この実施例で使用する温度計測装置の構成は第1
図で説明した従来のものと同じKしである。異なるとこ
ろは、発光a1を駆動する電気信号は、階段状の急変す
る波形を有することであシ、この実施例では下り階段と
なるような波形になっている。従って、発光器1は第4
図に示すような励起光パルスEを発生する。すなわち、
励起光強度が励起途中(おいて段階状に急変する。
FIGS. 3 and 4 are diagrams showing a first embodiment of the present invention. The configuration of the temperature measuring device used in this example is the first one.
This is the same K as the conventional one explained in the figure. The difference is that the electric signal that drives the light emitting a1 has a waveform that suddenly changes stepwise, and in this embodiment, the waveform is a downward step. Therefore, the light emitter 1 is the fourth
An excitation light pulse E as shown in the figure is generated. That is,
The excitation light intensity suddenly changes stepwise during the excitation.

その結果、りん螢光体4はホトルミネッセンスFを発生
するが、そのホトルミネッセンスFは上述の励起光強度
の急変に応答し、その強度が段階状に変化する。ホトル
ミネッセンスFの発光強度の変化時点P′は励起光パル
スEの変化時点Pに対応しており(残光特性(より変化
時点P′は変化時点Pより遅れて生じる)、この変化時
点P′を境として発光強IRK一定の役差ができている
。従って、制御回路2において、公知のサンプリング技
術などによってこの変化時点P′を検出する。
As a result, the phosphor 4 generates photoluminescence F, and the photoluminescence F responds to the sudden change in the intensity of the excitation light described above, and its intensity changes stepwise. The time point P' when the emission intensity of the photoluminescence F changes corresponds to the time point P when the excitation light pulse E changes (because of the afterglow characteristic (due to the afterglow characteristic, the change time point P' occurs later than the change time point P), and this change time point P' There is a fixed difference in the light emission intensity IRK with the boundary between IRK and IRK.Therefore, in the control circuit 2, this change point P' is detected by a known sampling technique or the like.

そして、変化時点P′後に発光強度のレベルが安定する
のを待ち、安定した発光器III・を検出する。次に、
励起が停止した後、発光強度が工・より徐々(減少して
いくのを測定し、そのレベルがI・の90嘩になった時
点Q、およびI・の10憾(なった時点Rを検出する。
Then, it waits until the level of the light emission intensity becomes stable after the change point P', and detects the stable light emitter III. next,
After the excitation has stopped, the emission intensity is measured to gradually decrease from 1 to 1, and the time point Q when the level reaches 90 degrees of I, and the point R when it reaches 10 degrees are detected. do.

これらの結果から、変化時点P′を時間基準として、遅
れ時間t1  と減衰時間t2が容易に求められる。
From these results, the delay time t1 and the decay time t2 can be easily determined using the change point P' as a time reference.

仁のように、ホトルミネッセンス自身の発光強度の変化
点を基準として、その残光特性を測定するよう(したの
で、従来のような誤差要因は含まれず、高精度な温度計
測ができる。特に、発光器lや受光器6の光−電気の変
換特性忙無関係であるから、レスポンスの遅い発光器や
受光器でも当該計測が可能であろう 次(、第5図杜この発明の第2実施例を示す図である。
Like Jin, the afterglow characteristics of photoluminescence are measured based on the change point of the emission intensity of the photoluminescence itself (therefore, there are no error factors as in conventional methods, and highly accurate temperature measurement is possible.In particular, Since the light-to-electricity conversion characteristics of the light emitter 1 and the light receiver 6 are unrelated, the measurement may be possible even with a light emitter or a light receiver that has a slow response. FIG.

この実施例では、励起光パルスGの階段状波形を上シ階
段としであるので、ホトルミネッセンスHの計測に係る
部分は発光強度が大きくなっている。従って、S/Nの
高い温度計測ができる。
In this embodiment, since the step-like waveform of the excitation light pulse G is upper stepwise, the light emission intensity is high in the portion related to the measurement of photoluminescence H. Therefore, temperature measurement with high S/N can be performed.

さらに、第6図は温蜜計濶装黄の他の構成例を示す図で
ある。この構成例では、往復の光学系を1本の光7アイ
パ10で構成し、励起光パルスE(tたdG)とホトル
ミネッセンスF(またけ■)の波長が異なることを利用
して、両者をビームスプリッタ11で分離している。
Furthermore, FIG. 6 is a diagram showing another example of the configuration of the warm honey meter. In this configuration example, the reciprocating optical system is configured with one light 7 eyeper 10, and by taking advantage of the fact that the wavelengths of the excitation light pulse E (tdG) and the photoluminescence F (straddle ■) are different, both are separated by a beam splitter 11.

なお、励起光としては高周波変調された光であっても、
その高周波がりん螢光体の残光時間(比べ充分短い波長
の信号であれば、前述した実施例と同様に本発明を適用
できる。
Note that even if the excitation light is high-frequency modulated light,
As long as the high frequency is a signal with a sufficiently short wavelength compared to the afterglow time of the phosphor phosphor, the present invention can be applied in the same manner as in the embodiments described above.

以上詳細に説明したように、この発明によれば。As described in detail above, according to the present invention.

励起途中で励起光強度を急変させて、これ(応答するホ
トルきネツセンス自身の発光強度変化時点を基準として
、その残光特性を測定するようにしたので、高精度な温
度計測ができる。
The intensity of the excitation light is suddenly changed during the excitation, and the afterglow characteristics are measured using the time point at which the emitted light intensity of the responding photoreceptor itself changes as a reference, making it possible to measure temperature with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の光学的温度計測方法を説明
する温度計測装置の概略構成図およびホトルミネッセン
スの残光特性図、第3図はこの発明に係る温度計測装置
の概略構成図、第4図はこの発明の第1実施例を示すそ
の作用説明図、第5図はこの発明の第2実施例を示すそ
の作用説明図、第6図はこの発明(係るl!度計測装置
の他の構成例を示すその概略構成図である。 4・・・・・・・・・ りん螢光体 g、G−・・・・・励起光パルス F 、 H−−・・・・ホトルミネッセンスP′・・・
・−・−・発光強度の変化点t、ta・・・・・・残光
の遅れ時間 t!・・・・・・・・・残光の減衰時間特許出願人  
・立石電機株式会社 第3図 第4図 第5図
1 and 2 are a schematic configuration diagram of a temperature measurement device and a photoluminescence afterglow characteristic diagram explaining a conventional optical temperature measurement method, and FIG. 3 is a schematic configuration diagram of a temperature measurement device according to the present invention, FIG. 4 is an explanatory diagram of the operation of the first embodiment of the present invention, FIG. 5 is an explanatory diagram of the operation of the second embodiment of the invention, and FIG. It is a schematic configuration diagram showing another configuration example. 4... Phosphorescent material g, G--Excitation light pulse F, H--... Photoluminescence P'...
・・・・Change point of luminescence intensity t, ta・・・・Afterglow delay time t!・・・・・・Afterglow decay time patent applicant
・Tateishi Electric Co., Ltd. Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 口) 被測温体に近接して配設され九夛ん螢光体を励起
光パルスで光刺激をしたとき、りん螢光体が発光するホ
トkiネッ竜ンスの残光4I性に温度依存性があること
を利用する光学的温寂針一方法において、前記励起光パ
ルスによる励起途中にて励起光強度を階段的に急変させ
、この励匍光強変の急変に応答して前記ホトルンネツセ
ンスの発光強1!が変化する時点を検出し、との検出時
点を基準として励起停止後の轟該ホト#建ネツ−に3/
スの残光骨性を時間的に一定するよう(しえことを特徴
とする光学的温度計測方法。
(1) When a large number of phosphors placed close to the body to be measured are optically stimulated with an excitation light pulse, the afterglow 4I characteristic of the photoki energy emitted by the phosphor phosphor is temperature dependent. In one method, the intensity of the excitation light is abruptly changed stepwise during the excitation by the excitation light pulse, and in response to the sudden change in intensity of the excitation light, the photoluminescence is Netsense luminescence strength 1! Detect the time point at which the change occurs, and use the detected time point as a reference to determine the value of the current value after the excitation stops.
An optical temperature measurement method that is characterized by keeping the afterglow bone quality of the water constant over time.
JP10600681A 1981-07-07 1981-07-07 Optical temperature measuring method Pending JPS587529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10600681A JPS587529A (en) 1981-07-07 1981-07-07 Optical temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10600681A JPS587529A (en) 1981-07-07 1981-07-07 Optical temperature measuring method

Publications (1)

Publication Number Publication Date
JPS587529A true JPS587529A (en) 1983-01-17

Family

ID=14422590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10600681A Pending JPS587529A (en) 1981-07-07 1981-07-07 Optical temperature measuring method

Country Status (1)

Country Link
JP (1) JPS587529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058312A (en) * 1983-08-30 1985-04-04 グローリー工業株式会社 Method of banding paper money

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058312A (en) * 1983-08-30 1985-04-04 グローリー工業株式会社 Method of banding paper money

Similar Documents

Publication Publication Date Title
JP3249820B2 (en) Modular measurement system for high-speed digital signal processing of luminescence
EP0203992B1 (en) Optical temperature measurement techniques
US4789992A (en) Optical temperature measurement techniques
US7339173B2 (en) Method for stabilizing the temperature dependency of light emission of an LED
US5600147A (en) Temperature measuring system having improved signal processing and multiple optical sensors
JPH0663841B2 (en) Device and method for measuring fluorescence characteristics of sample
JPH0638060B2 (en) Optical temperature measuring device using fiber
JPS634653B2 (en)
SE435967B (en) FIBEROPTICAL LUMINISCENSMETON
JPS6061634A (en) Temperature measuring apparatus
JPS587529A (en) Optical temperature measuring method
JP2635732B2 (en) Optical fiber sensing method
JPS58137723A (en) Apparatus for measuring temperature
GB2224832A (en) Measuring light waveform eg fluorescence curve
JPS585622A (en) Optical temperature measuring method
JPS587530A (en) Optical temperature measuring device
JPS6035230A (en) Temperature measuring device
SU1141335A1 (en) Method of determination of cotton fibre grade
RU165992U1 (en) AUTHENTICATION DEVICE FOR PROTECTIVE LABEL CONTAINING LUMINOPHOR
JPH0410574B2 (en)
JPH05142351A (en) Fluoroglass dosemeter reader
JPS585621A (en) Optical temperature measuring method
JPH034051Y2 (en)
JPH1123456A (en) Method and apparatus for measuring moisture quantity in hydraulic fluid
JPS60164225A (en) Temperature detecting device