JPH05142351A - Fluoroglass dosemeter reader - Google Patents

Fluoroglass dosemeter reader

Info

Publication number
JPH05142351A
JPH05142351A JP30869691A JP30869691A JPH05142351A JP H05142351 A JPH05142351 A JP H05142351A JP 30869691 A JP30869691 A JP 30869691A JP 30869691 A JP30869691 A JP 30869691A JP H05142351 A JPH05142351 A JP H05142351A
Authority
JP
Japan
Prior art keywords
build
radiation
irradiation
reading
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30869691A
Other languages
Japanese (ja)
Other versions
JP2949131B2 (en
Inventor
Toru Ikegami
徹 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP30869691A priority Critical patent/JP2949131B2/en
Publication of JPH05142351A publication Critical patent/JPH05142351A/en
Application granted granted Critical
Publication of JP2949131B2 publication Critical patent/JP2949131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To provide a fluoroglass dosemeter reader for reading a radiation dose after completing build-up even immediately after irradiation. CONSTITUTION:In a fluoroglass dosemeter reader 2 for reading radiation dose irradiated at a fluoroglass dosemeter 1, there is provided a radiation dose reading means 3 for reading radiation dose before completing the build-up of the fluoroglass dosemeter 1. In addition, there are provided a build-up correction means 5 for taking radiation dose after completing build-up by correcting the build-up by using correction coefficient previously obtained from a build-up characteristic against the radiation dose read by the radiation dose reading means 3, and a correction coefficient table 4 for obtaining correction coefficient based on at least one data of irradiation time data or environmental temperature data during irradiation, and elapsed time data after irradiation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線管理システム等
に利用される蛍光ガラス線量計読取装置に係わり、特
に、蛍光ガラス線量計に照射された放射線量を早期、か
つ高精度に読み取る蛍光ガラス線量計読取装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent glass dosimeter reading device used in a radiation control system and the like, and particularly to a fluorescent glass for reading the radiation dose applied to a fluorescent glass dosimeter early and with high accuracy. The present invention relates to a dosimeter reading device.

【0002】[0002]

【従来の技術】一般に蛍光ガラス線量計は、銀イオンを
含有したリン酸塩ガラスからなる蛍光線量計用ガラス素
子が用いられている。このガラス素子は、放射線の照射
によって活性された後、波長300〜400nmの紫外
線で励起すると蛍光を発するが、このときの蛍光強度は
被曝放射線量に比例することから、この蛍光強度を検出
することにより被曝放射線量を測定できる。
2. Description of the Related Art Generally, a fluorescent glass dosimeter uses a glass element for a fluorescent dosimeter, which is made of phosphate glass containing silver ions. This glass element emits fluorescence when excited by ultraviolet rays having a wavelength of 300 to 400 nm after being activated by irradiation of radiation, and the fluorescence intensity at this time is proportional to the radiation dose, so it is necessary to detect this fluorescence intensity. The dose of radiation can be measured by.

【0003】しかしながら、励起光を受けて蛍光を発す
るガラス素子中の蛍光成分には、放射線照射の直後では
その生成過程が完了せず、照射後の時間経過とともに増
加して飽和後に安定化するという特性がある。この特性
はビルドアップ特性と呼ばれ、一般に放射線の照射から
約24時間後に安定化する傾向にある。
However, the fluorescent component in the glass element that emits fluorescence upon receiving the excitation light does not complete its generation process immediately after irradiation with radiation, but increases with the passage of time after irradiation and stabilizes after saturation. There is a characteristic. This characteristic is called a build-up characteristic and generally tends to stabilize about 24 hours after irradiation with radiation.

【0004】図2は経過時間に対する放射線照射後の線
量読取値の変化を示すビルドアップ特性図である。同図
において、横軸は対数目盛で表した照射後の経過時間で
あり、縦軸は安定時の線量読取値を1で正規化した線量
読取値の相対値である。この線量読取値は、照射直後で
は0.6 程度であるが、時間が経過するに従って徐々に増
加して約24時間後に1.0 に到達し、その後、安定状態
となっている。
FIG. 2 is a build-up characteristic diagram showing a change in dose reading value after irradiation of radiation with respect to elapsed time. In the figure, the horizontal axis is the elapsed time after irradiation expressed on a logarithmic scale, and the vertical axis is the relative value of the dose reading value obtained by normalizing the dose reading value at the time of stability by one. This dose reading was about 0.6 immediately after irradiation, but gradually increased over time and reached 1.0 after about 24 hours, and then became stable.

【0005】従って、放射線照射直後に放射線量を読み
取る場合、ビルドアップが完了していないので実際より
低い値となることから、通常、蛍光ガラス線量計の読取
りはビルドアップの完了後である照射直後から24時間
以降に行っている。
Therefore, when the radiation dose is read immediately after the irradiation of radiation, the value is lower than the actual value because the build-up is not completed. Therefore, the reading of the fluorescent glass dosimeter is usually performed after the completion of build-up. From 24 hours onwards.

【0006】[0006]

【発明が解決しようとする課題】しかし、以上のような
蛍光ガラス読取装置では、放射線の照射直後には正確な
放射線量の読み取りができないため、放射線管理区域の
退域時に線量を読み取るような入退域管理用の線量計測
装置に利用できなかった。
However, since the fluorescent glass reader as described above cannot accurately read the radiation dose immediately after the irradiation of radiation, it is necessary to read the dose when the radiation control area is withdrawn. It could not be used as a dosimetry device for exit control.

【0007】また、ビルドアップ特性は放射線の照射条
件によって変化するので、予め基準とされるべき読取条
件から外れたときには読み取り誤差が発生し、測定精度
からも問題となる。
Further, since the build-up characteristics change depending on the irradiation conditions of radiation, a reading error occurs when the reading conditions deviate from the standard reading conditions, which causes a problem in measurement accuracy.

【0008】本発明は上記実情を考慮してなされたもの
で、照射直後でもビルドアップ完了後の放射線量を読み
取れる蛍光ガラス線量計読取装置を提供することを目的
とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a fluorescent glass dosimeter reading device capable of reading a radiation dose after completion of build-up even immediately after irradiation.

【0009】また、本発明の他の目的は、読み取りおよ
び測定時の条件が変動しても、正確にビルドアップ完了
後の放射線量を読み取れる蛍光ガラス線量計読取装置を
提供することにある。
Another object of the present invention is to provide a fluorescent glass dosimeter reading device capable of accurately reading the radiation dose after the buildup is completed, even if the reading and measuring conditions change.

【0010】[0010]

【課題を解決するための手段】先ず、請求項1に対応す
る発明は、蛍光ガラス線量計に照射された放射線量を読
み取る蛍光ガラス線量計読取装置において、前記蛍光ガ
ラス線量計のビルドアップ完了前に放射線量を読み取る
線量読取手段と、この線量読取手段で読み取った放射線
量に対して予めビルドアップ特性から求めた補正係数を
用いて補正してビルドアップ完了後の放射線量を取り出
すビルドアップ補正手段とを備える蛍光ガラス線量計読
取装置である。
First, an invention corresponding to claim 1 is a fluorescent glass dosimeter reading device for reading a radiation dose applied to a fluorescent glass dosimeter, before the completion of build-up of the fluorescent glass dosimeter. A dose reading means for reading the radiation dose, and a buildup correcting means for correcting the radiation dose read by the dose reading means by using a correction coefficient obtained in advance from the buildup characteristics to take out the radiation dose after the buildup is completed. And a fluorescent glass dosimeter reading device.

【0011】次に、請求項2に対応する発明は、ビルド
アップ補正手段は、放射線照射時間デ−タと放射線照射
中の環境温度デ−タとのいずれか1種類以上のデ−タお
よび放射線照射後の経過時間デ−タに基づいて前記補正
係数を求める補正係数テーブルを持ちいた請求項1記載
の蛍光ガラス線量計読取装置である。
Next, in the invention according to claim 2, the build-up correction means is one or more kinds of data of radiation irradiation time data and environmental temperature data during radiation irradiation, and radiation. The fluorescent glass dosimeter reading device according to claim 1, further comprising a correction coefficient table for obtaining the correction coefficient based on elapsed time data after irradiation.

【0012】[0012]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、ビルドアップ補正手段がビ
ルドアップ特性から求めた補正係数に基づいてビルドア
ップ完了前に読み取った放射線量を補正するので、照射
直後でもビルドアップ完了後の放射線量を高精度に測定
できる。
Therefore, in the invention according to claim 1, the radiation dose read by the build-up correction means before the completion of the build-up is calculated based on the correction coefficient obtained from the build-up characteristics by the means as described above. Since it is corrected, the radiation dose after completion of buildup can be measured with high accuracy even immediately after irradiation.

【0013】次に、請求項2に対応する発明は、放射線
照射時間デ−タ、放射線照射時間デ−タと放射線照射中
の環境温度デ−タとのいずれか1種類以上のデ−タおよ
び放射線照射後の経過時間デ−タに基づいて補正係数テ
ーブルが補正係数を求めるので、照射後の経過時間や照
射中の環境温度によってビルドアップ特性が変化しても
正確にビルドアップ完了後の放射線量を読み取ることが
できる。
Next, the invention according to claim 2 is directed to radiation irradiation time data, at least one of radiation irradiation time data and environmental temperature data during radiation irradiation, and The correction coefficient table calculates the correction coefficient based on the elapsed time data after irradiation, so even if the buildup characteristics change depending on the elapsed time after irradiation or the environmental temperature during irradiation, the radiation after the buildup is completed accurately. The amount can be read.

【0014】[0014]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。図1は本発明に係る蛍光ガラス線量計読
取装置のブロック構成を示す図である。同図において、
1は励起光を受けたとき照射された放射線の線量に比例
する蛍光強度の蛍光を発する蛍光ガラス線量計であっ
て、これは、例えば銀イオンを含有したリン酸塩ガラス
からなる蛍光線量計用ガラス素子と、このガラス素子を
保持するホルダーとから成る一種の放射線検出器であ
る。2は前記蛍光ガラス線量計1に照射された放射線の
線量を読み取る蛍光ガラス線量計読取装置である。この
読取装置2は、ビルドアップ完了前に前記蛍光ガラス線
量計1から発する蛍光強度から被ばく線量を読み取って
送出する線量読取手段3、外部から入力される放射線の
照射条件に基づいてビルドアップ補正係数を求める補正
係数テーブル4、線量読取手段3の読取り線量および前
記補正係数を受けて当該読取り線量を補正するビルドア
ップ補正手段5およびこの補正手段5にて補正された線
量を表示する表示部6から構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a block configuration of a fluorescent glass dosimeter reading device according to the present invention. In the figure,
Reference numeral 1 is a fluorescent glass dosimeter that emits fluorescence having a fluorescence intensity proportional to the dose of radiation irradiated when it receives excitation light. For example, this is for a fluorescent dosimeter made of phosphate glass containing silver ions. It is a kind of radiation detector consisting of a glass element and a holder for holding the glass element. Reference numeral 2 denotes a fluorescent glass dosimeter reading device for reading the dose of radiation applied to the fluorescent glass dosimeter 1. This reading device 2 is a dose reading means 3 for reading and transmitting an exposure dose from the fluorescence intensity emitted from the fluorescent glass dosimeter 1 before the completion of buildup, and a buildup correction coefficient based on an irradiation condition of radiation inputted from the outside. From the correction coefficient table 4 for determining the read dose of the dose reading means 3 and the buildup correction means 5 for correcting the read dose by receiving the correction coefficient, and the display section 6 for displaying the dose corrected by the correction means 5. It is configured.

【0015】前記線量読取手段3は、例えば、窒素ガス
レーザ等の励起光源と、この励起光源から発生する励起
光を反射光と透過光の2つに分光する半透鏡と、この反
射光を受けて予め照射された所定の放射線照射線量に比
例する蛍光を発する標準蛍光ガラス素子と、この標準蛍
光ガラス素子が発生する蛍光を受けて第1の電気信号に
変換する第1の光電変換素子と、前記透過光を前記蛍光
ガラス線量計1に入射し、この蛍光ガラス線量計1から
の蛍光を受けて第2の電気信号に変換する第2の光電変
換素子と、前記第1および第2の電気信号を受けて蛍光
ガラス線量計1に照射された放射線量を算出して前記補
正手段5に送出する演算回路とを備えている。
The dose reading means 3 receives, for example, an excitation light source such as a nitrogen gas laser, a semi-transparent mirror for splitting the excitation light generated from the excitation light source into reflected light and transmitted light, and the reflected light. A standard fluorescent glass element that emits fluorescence that is proportional to a predetermined irradiation dose of radiation that has been previously irradiated; a first photoelectric conversion element that receives the fluorescence generated by this standard fluorescent glass element and converts it into a first electric signal; A second photoelectric conversion element that allows transmitted light to enter the fluorescent glass dosimeter 1 and receives fluorescence from the fluorescent glass dosimeter 1 to convert it into a second electric signal; and the first and second electric signals. In response to this, an arithmetic circuit for calculating the radiation dose applied to the fluorescent glass dosimeter 1 and sending it to the correction means 5 is provided.

【0016】前記補正係数テーブル4は、予め経過時間
に対する放射線照射後の線量読取値変化のデ−タ、いわ
ゆるビルドアップ特性に係るデ−タを保持し、放射線照
射時間デ−タと放射線照射中の環境温度デ−タとのいず
れか1種類以上のデ−タおよび放射線照射後の経過時間
デ−タに基づいて、それらのデ−タに対応したビルドア
ップ特性から補正係数を求めて出力する機能をもってい
る。
The correction coefficient table 4 holds in advance data of changes in the dose readings after irradiation of radiation with respect to elapsed time, that is, data relating to so-called build-up characteristics. Based on any one or more kinds of environmental temperature data and the elapsed time data after irradiation of radiation, a correction coefficient is obtained from the build-up characteristics corresponding to the data and is output. It has a function.

【0017】次に、このような蛍光ガラス線量計読取装
置の動作について説明する。先ず、放射線を照射された
蛍光ガラス線量計1を、蛍光ガラス線量計読取装置2の
線量読取手段3にセットする。この線量読取手段3で
は、ビルドアップ完了前に蛍光ガラス線量計1に励起光
を照射して発生する蛍光の強度を第2の光電変換素子で
検出して第2の電気信号に変換するとともに半透鏡によ
り標準蛍光ガラス素子にも励起光を照射して、このとき
発生する蛍光の強度を第1の光電変換素子で検出して第
1の電気信号に変換し、この第1の電気信号で前記第2
の電気信号を補正して、前記蛍光ガラス線量計1に照射
された被ばく放射線量を読み取る。
Next, the operation of such a fluorescent glass dosimeter reading device will be described. First, the fluorescent glass dosimeter 1 irradiated with radiation is set in the dose reading means 3 of the fluorescent glass dosimeter reading device 2. In this dose reading means 3, the intensity of fluorescence generated by irradiating the fluorescent glass dosimeter 1 with excitation light before the buildup is completed is detected by the second photoelectric conversion element and converted into a second electric signal. The excitation light is also applied to the standard fluorescent glass element through the transparent mirror, and the intensity of the fluorescence generated at this time is detected by the first photoelectric conversion element and converted into a first electric signal. Second
Is corrected to read the exposure radiation dose applied to the fluorescent glass dosimeter 1.

【0018】一方、補正係数テーブル4は、外部から放
射線照射時間デ−タと放射線照射中の環境温度デ−タと
のいずれか1種類以上のデ−タおよび放射線照射後の経
過時間デ−タを受けて、予め保持したビルドアップ特性
に係るデ−タから補正係数を求める。例えば図2に示す
如く、放射線照射後の経過時間デ−タをt、この経過時
間デ−タtに対応する線量読取値の相対値をF(t)と
すると、経過時間tに対応する補正係数H(t)は
(1)式により求まる。 H(t)=1/F(t) …(1)
On the other hand, the correction coefficient table 4 contains one or more kinds of data from the outside, ie, radiation irradiation time data and environmental temperature data during radiation irradiation, and elapsed time data after radiation irradiation. In response to this, the correction coefficient is obtained from the data relating to the build-up characteristics held in advance. For example, as shown in FIG. 2, when the elapsed time data after radiation irradiation is t and the relative value of the dose reading value corresponding to this elapsed time data t is F (t), the correction corresponding to the elapsed time t The coefficient H (t) is obtained by the equation (1). H (t) = 1 / F (t) (1)

【0019】この補正係数を求めるためのデ−タには放
射線照射後の経過時間デ−タの他に放射線照射時間デ−
タおよび放射線照射中の環境温度デ−タなどがあるが、
次にそれらのデ−タにより補正係数を求める過程につい
て説明する。先ず、放射線の照射時間の長いものは、始
めに照射した放射線に係る蛍光成分のビルドアップが終
了に近づいているので、図2のビルドアップ特性と比べ
て、経過時間tが零のときに対応する線量読取値の相対
値(初期値)が高くなる傾向がある。このような傾向の
ビルドアップ特性に係るデ−タを放射線照射時間デ−タ
の大きさ別に予め保持し、該当する放射線照射時間デ−
タの入力により当該ビルドアップ特性に係るデ−タを選
択し、さらに放射線照射後の経過時間デ−タから(1)
式を用いて補正係数を求める。
As data for obtaining this correction coefficient, in addition to the elapsed time data after radiation irradiation, radiation irradiation time data is also included.
Data and environmental temperature data during radiation irradiation,
Next, the process of obtaining the correction coefficient from these data will be described. First, since the buildup of the fluorescent component related to the radiation that was initially irradiated is nearing the end for the one with a long irradiation time of the radiation, compared to the buildup characteristics of FIG. 2, it corresponds to when the elapsed time t is zero. The relative value (initial value) of the dose reading to be performed tends to be high. The data relating to the build-up characteristics having such a tendency is held in advance according to the size of the radiation irradiation time data, and the corresponding radiation irradiation time data is stored.
Select the data related to the build-up characteristics by inputting the data, and from the elapsed time data after irradiation (1)
The correction coefficient is calculated using the formula.

【0020】また、放射線照射中の環境温度が高いもの
は、前記蛍光成分が早く活性化されるので、図2のビル
ドアップ特性の様子と比べて初期値が高く全体的に底上
げされて、24時間を待たなくても相対値が1.0 となっ
て安定する傾向がある。このような傾向のビルドアップ
特性に係るデ−タを予め放射線照射中の環境温度デ−タ
の大きさ別に保持し、該当する放射線照射中の環境温度
デ−タの入力により当該ビルドアップ特性に係るデ−タ
を選択し、さらに放射線照射後の経過時間デ−タから
(1)式を用いて補正係数を求める。
Further, in the case where the ambient temperature during irradiation of radiation is high, the fluorescent component is activated earlier, so that the initial value is higher than that of the build-up characteristics shown in FIG. The relative value tends to 1.0 and stabilizes without waiting for time. The data relating to the build-up characteristics of such a tendency is held in advance according to the size of the environmental temperature data during radiation irradiation, and the relevant build-up characteristics are set by inputting the environmental temperature data during the corresponding radiation irradiation. Such data is selected, and the correction coefficient is calculated from the elapsed time data after irradiation of the radiation by using the equation (1).

【0021】このようにして求めた補正係数と、前記線
量読取手段3が読み取った放射線量とを受けて補正手段
5は前記放射線量をビルドアップ完了後の値に補正す
る。この補正は線量読取手段3が読み取った放射線量に
補正係数を乗じて行う。その後、表示部6は補正手段5
が求めたビルドアップ完了後の放射線量を表示する。
In response to the correction coefficient thus obtained and the radiation dose read by the dose reading means 3, the correction means 5 corrects the radiation dose to the value after the buildup is completed. This correction is performed by multiplying the radiation dose read by the dose reading means 3 by a correction coefficient. After that, the display unit 6 displays the correction means 5
The radiation dose after completion of build-up obtained by is displayed.

【0022】従って、以上のような実施例の構成によれ
ば、ビルドアップ完了前に読み取った蛍光ガラス線量計
1の被ばく放射線量を、補正係数テーブル4で求めた補
正係数を用いてビルドアップ補正手段5がビルドアップ
完了後の放射線量に補正するので、照射直後のようにビ
ルドアップ完了前の読み取りでもビルドアップ完了後の
被ばく線量を知ることができる。また、照射直後の読取
りでもビルドアップ完了後の被ばく線量を知ることがで
きるので、放射線管理区域の入退域管理用の線量読取装
置に利用できる。
Therefore, according to the configuration of the above embodiment, the exposure dose of the fluorescent glass dosimeter 1 read before the completion of the build-up is corrected by the build-up correction using the correction coefficient obtained in the correction coefficient table 4. Since the means 5 corrects the radiation dose after completion of build-up, the exposure dose after completion of build-up can be known even by reading before completion of build-up, such as immediately after irradiation. Further, since the exposure dose after completion of build-up can be known even by reading immediately after irradiation, it can be used as a dose reading device for entrance / exit control of radiation control areas.

【0023】さらに、補正係数テーブル4に、放射線照
射時間デ−タおよび放射線照射中の環境温度デ−タで表
されるビルドアップ特性に係るデ−タを保持させ、これ
らのデ−タの1種類以上と放射線照射後の経過時間デ−
タとに基づいて補正係数を求めるようにしたので、放射
線照射時間や放射線照射中の環境温度等によって変化す
るビルドアップ特性を反映して、正確にビルドアップ完
了後の放射線量を読み取ることができる。
Further, the correction coefficient table 4 is made to hold the data relating to the build-up characteristics represented by the radiation irradiation time data and the environmental temperature data during radiation irradiation, and 1 of these data is stored. More than one type and the elapsed time after irradiation
Since the correction coefficient is calculated based on the data, it is possible to accurately read the radiation dose after the build-up is completed by reflecting the build-up characteristics that change depending on the irradiation time and the environmental temperature during irradiation. ..

【0024】本発明は上述したように、放射線照射後の
経過時間デ−タの関数として補正係数を求める過程を説
明したが、放射線管理区域の入退域管理用等のように経
過時間デ−タにばらつきが少ないときは放射線照射後の
経過時間デ−タを入力せずに予め所定の値にしても同様
に実施できる。放射線照射時間デ−タおよび放射線照射
中の環境温度デ−タについても所定の値として同様に実
施できる。
As described above, the present invention has explained the process of obtaining the correction coefficient as a function of the elapsed time data after irradiation of the radiation, but the elapsed time data is used for the entrance / exit control of the radiation control area. When there is little variation in the data, the same operation can be performed by setting a predetermined value in advance without inputting the elapsed time data after radiation irradiation. The radiation irradiation time data and the environmental temperature data during radiation irradiation can be similarly set to predetermined values.

【0025】また、補正係数の定めかたによっては補正
手段による算出過程が加算や除算等となるが、同様に実
施できる。その他、本発明はその要旨を逸脱しない範囲
で種々変形して実施できる。
Further, the calculation process by the correction means may be addition or division depending on how the correction coefficient is determined, but the same process can be performed. Besides, the present invention can be variously modified and implemented without departing from the scope of the invention.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、次
のような効果を奏する。
As described above, the present invention has the following effects.

【0027】請求項1の発明においては、ビルドアップ
補正手段がビルドアップ特性から求めた補正係数に基づ
いてビルドアップ完了前に読み取った放射線量を補正す
るので、照射直後でもビルドアップ完了後の放射線量を
読み取れる蛍光ガラス線量計読取装置を提供できる。
According to the first aspect of the present invention, since the build-up correction means corrects the radiation dose read before the build-up is completed based on the correction coefficient obtained from the build-up characteristics, the radiation after the build-up is completed even immediately after the irradiation. A fluorescent glass dosimeter reader capable of reading a quantity can be provided.

【0028】次に、請求項2の発明は、放射線照射時間
デ−タと放射線照射中の環境温度デ−タとのいずれか1
種類以上のデ−タおよび放射線照射後の経過時間デ−タ
に基づいて補正係数テーブルが補正係数を求めるので、
読み取りおよび測定時の条件が変動しても、正確にビル
ドアップ完了後の放射線量を読み取れる蛍光ガラス線量
装置を提供できる。
Next, the invention of claim 2 is characterized in that any one of the radiation irradiation time data and the environmental temperature data during radiation irradiation.
Since the correction coefficient table calculates the correction coefficient based on the data of more than one kind and the elapsed time data after irradiation of radiation,
It is possible to provide a fluorescent glass dose device that can accurately read the radiation dose after completion of build-up even if the conditions during reading and measurement change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る蛍光ガラス線量計読取装置のブロ
ック構成を示す図。
FIG. 1 is a diagram showing a block configuration of a fluorescent glass dosimeter reading device according to the present invention.

【図2】蛍光ガラス線量計のビルドアップ特性を表す
図。
FIG. 2 is a diagram showing build-up characteristics of a fluorescent glass dosimeter.

【符号の説明】[Explanation of symbols]

1…蛍光ガラス線量計、2…蛍光ガラス線量計読取装
置、3…線量読取手段、4…補正係数テーブル、5…補
正手段。
1 ... Fluorescent glass dosimeter, 2 ... Fluorescent glass dosimeter reading device, 3 ... Dose reading means, 4 ... Correction coefficient table, 5 ... Correction means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蛍光ガラス線量計に照射された放射線量
を読み取る蛍光ガラス線量計読取装置において、 前記蛍光ガラス線量計のビルドアップ完了前に放射線量
を読み取る線量読取手段と、 この線量読取手段で読み取った放射線量に対して予めビ
ルドアップ特性から求めた補正係数を用いて補正してビ
ルドアップ完了後の放射線量を取り出すビルドアップ補
正手段とを備えることを特徴とする蛍光ガラス線量計読
取装置。
1. A fluorescent glass dosimeter reading device for reading the radiation dose applied to a fluorescent glass dosimeter, comprising: a dose reading means for reading the radiation dose before the completion of build-up of said fluorescent glass dosimeter; and this dose reading means A fluorescent glass dosimeter reading device, comprising: a built-up correction unit that corrects the read radiation dose using a correction coefficient obtained in advance from a build-up characteristic and extracts the radiation dose after completion of the build-up.
【請求項2】 ビルドアップ補正手段は、放射線照射時
間デ−タと放射線照射中の環境温度デ−タとのいずれか
1種類以上のデ−タおよび放射線照射後の経過時間デ−
タに基づいて前記補正係数を求める補正係数テーブルを
用いた請求項1記載の蛍光ガラス線量計読取装置。
2. The build-up correction means includes one or more kinds of data of radiation irradiation time data and environmental temperature data during radiation irradiation, and elapsed time data after radiation irradiation.
The fluorescent glass dosimeter reading device according to claim 1, wherein a correction coefficient table for obtaining the correction coefficient based on the data is used.
JP30869691A 1991-11-25 1991-11-25 Fluorescent glass dosimeter reader Expired - Lifetime JP2949131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30869691A JP2949131B2 (en) 1991-11-25 1991-11-25 Fluorescent glass dosimeter reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30869691A JP2949131B2 (en) 1991-11-25 1991-11-25 Fluorescent glass dosimeter reader

Publications (2)

Publication Number Publication Date
JPH05142351A true JPH05142351A (en) 1993-06-08
JP2949131B2 JP2949131B2 (en) 1999-09-13

Family

ID=17984185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30869691A Expired - Lifetime JP2949131B2 (en) 1991-11-25 1991-11-25 Fluorescent glass dosimeter reader

Country Status (1)

Country Link
JP (1) JP2949131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424177A (en) * 2019-07-18 2019-11-08 马鞍山市智新纳米材料有限公司 A kind of ceramic creping doctor component of paper production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424177A (en) * 2019-07-18 2019-11-08 马鞍山市智新纳米材料有限公司 A kind of ceramic creping doctor component of paper production

Also Published As

Publication number Publication date
JP2949131B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JPH11508352A (en) Modular measurement system for high-speed digital signal processing of luminescence
US4459044A (en) Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
US4128339A (en) Automatically-adjusting photometer
EP0306337B1 (en) Spectrophotometer
JPS6061634A (en) Temperature measuring apparatus
US5059806A (en) Gas dosimeter reading method and apparatus
JP2949131B2 (en) Fluorescent glass dosimeter reader
US20060040401A1 (en) Method and equipment for measuring the concentration of antiseptic solution
JPS58137723A (en) Apparatus for measuring temperature
JP2857296B2 (en) Glass dosimeter
JPS59190681A (en) Method and apparatus for measuring glass dose
JP2737102B2 (en) Fluorescent glass dosimeter measuring device
JP2971756B2 (en) Fluorescent glass dosimeter measuring device
JPS58180922A (en) Temperature measuring device
JP2971772B2 (en) Fluorescent glass dosimeter measuring device
JP3108625B2 (en) Fluorescent glass dosimeter measuring device and measuring method
JPH041536A (en) Optical power meter
JPS62118227A (en) Optical fiber temperature sensor
JPH09222482A (en) Fluorescent glass dosemeter measuring device
JPH06323907A (en) Temperature-drift correction device used in optical analyzer
Lomaev et al. Calculation of absolute values of the spectral energy density of polychromatic radiation
JPS58144768A (en) Thermofluorescence dose reader
JPS63159736A (en) Concentration measuring method for uranium or plutonium
JPH0627816B2 (en) Glass dose measuring method and measuring apparatus therefor
JPH0943056A (en) Instrument for measuring intensity of light

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080709

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080709

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100709