JPS5873771A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS5873771A
JPS5873771A JP17015181A JP17015181A JPS5873771A JP S5873771 A JPS5873771 A JP S5873771A JP 17015181 A JP17015181 A JP 17015181A JP 17015181 A JP17015181 A JP 17015181A JP S5873771 A JPS5873771 A JP S5873771A
Authority
JP
Japan
Prior art keywords
target
substrate
sputtering
materials
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17015181A
Other languages
Japanese (ja)
Inventor
Tsunekazu Iwata
岩田 恒和
Masaru Igarashi
賢 五十嵐
Masayoshi Asahi
朝日 雅好
Hidefumi Asano
秀文 浅野
Takayuki Nakamura
貴幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17015181A priority Critical patent/JPS5873771A/en
Publication of JPS5873771A publication Critical patent/JPS5873771A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain thin films of multielement alloys of arbitrary compsns. by an extremely simple method by controlling the relative position relations between a piece of electrode target consisiting of plural pieces of blank materials and a substrate and sputtering speed synchronously. CONSTITUTION:After a vacuum tank 1 is evacuated with a pump 2, a sputtering gas is introduced therein from a cylinder 3 through a flow rate controlling valve 4 and DC voltage is applied between the substrate 5 held on a mechanism 6 and the target 7 on an electrode mechanism 8 by an electric power source 10, whereby the substrate is sputtered. A shutter 13 and a shielding plate 9 are disposed between the target 7 and the substrate 5. Here, a disc consisting of semicircular blank materials A, B is used for the target 7, and is rotated by a moving mechanism 11. In synchronization with the rotation thereof, discharge electric power is changed by a synchronizing mechanism 12. Then the materials A, B are exposed periodically to the opening part of the plate 9, whereby sputtering is accomplished.

Description

【発明の詳細な説明】 本発明は任意組成の多元合金薄膜を製造するスパッタ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sputtering apparatus for producing a multi-component alloy thin film of arbitrary composition.

従来、多元合金薄膜の製造法としては共蒸着法、気相還
元法(CVD法)、多元スパッタ法、合金ターケラトス
バッタ法が知らnている。共蒸着法は独立に温度制御し
た被数個の蒸発源から蒸発させた原料を基板上に合金化
して堆積させる方法である。この方法は%原料の蒸着速
度上独立に制御する心安かあり、鍋価な制御系を多数必
費とすること、各蒸発源と基板の相対的位置関係の差に
よる基板上での組成変化があることなどの欠点がめった
Conventionally, known methods for producing multi-component alloy thin films include co-evaporation, vapor phase reduction (CVD), multi-component sputtering, and alloy turquoise sputtering. The co-evaporation method is a method in which raw materials evaporated from several evaporation sources whose temperatures are independently controlled are alloyed and deposited on a substrate. This method requires independent control of the evaporation rate of the raw materials, but it requires a large number of expensive control systems, and composition changes on the substrate due to differences in the relative position of each evaporation source and the substrate. There are some shortcomings that are rare.

気相還元法は金属のハロゲン化物等の蒸気を水素ガスに
よって還元することによって基板上に合金を析出ゼしあ
るものである。この方法においては還元に情する温度か
700〜1000℃と高く、基板材料、が耐熱性及び反
応生成物である強酸性ガスVC対する耐食性を会費とす
ること、避らには合金原料が安定なハロゲン化物を作る
ものに限定されるなどの欠点を有する。
In the gas phase reduction method, an alloy is deposited on a substrate by reducing vapors of metal halides and the like with hydrogen gas. In this method, the temperature required for reduction is as high as 700 to 1000°C, and the substrate material must be heat resistant and corrosion resistant to strongly acidic gas VC, which is a reaction product, and the alloy raw material must be stable. It has drawbacks such as being limited to those that produce halides.

多元スパッタ法は複数個のスパッタ電極上に配置し次タ
ーゲット材料の上を基板が周期的に移動するもので、谷
合金元素の周期的多層構造膜を堆積しつつ、基板加熱に
よる原子拡散によって合金化するものである。この方法
は11固のターゲット電極と電源を心安とす/b7’(
め装置が複雑かつ高価となる欠点を有する。
In the multi-source sputtering method, the substrate is placed on multiple sputtering electrodes and then moves periodically over the target material. While depositing a periodic multilayer structure film of valley alloying elements, the alloy is formed by atomic diffusion due to heating of the substrate. It is something that becomes. This method requires 11 fixed target electrodes and power supply /b7'(
This has the disadvantage that the device is complicated and expensive.

合金ターゲットスパッタ法は合金組成のターゲット材料
を用いて基板上に合金薄膜を堆積させる方法である。こ
の方法では薄膜の組成はターゲット組成によって決まり
、任意組成のものを一つのターゲットから作製すること
は出来ないという欠点を有する。
The alloy target sputtering method is a method of depositing an alloy thin film on a substrate using a target material having an alloy composition. This method has the disadvantage that the composition of the thin film is determined by the target composition, and a film of arbitrary composition cannot be produced from a single target.

本発明は以上述べた従来法の欠点を解決し、任意組成の
多元合金薄膜t−極めて簡便な方法で、製造することt
目的とし、スパッタ法において複数個の素材から成る1
個の電極ターゲットと基板全対向させ一1両者の相対的
位置関係とスパッタ速度を同期して制御する事によって
任意の組成の合金薄膜製造を可能としたものである。以
上図面について本発明を詳細に#51.明する0“ 第1図は本発明の実施例であって、直流スパッタリング
における基本的な装置構成を示したもの:、:′ である。1は真空槽であシ、・2は真空排気ポンプであ
る。3はユパツタガオー多ぺであり、ア、ゴン勢不活性
ガスおよび窒化物合金るるいは酸化物合金t−m造する
必要のある場合には不活性ガスとwi素める−は酸素等
の混合ガスを用いる。スノくツタガスは流量調節弁4に
よりA9僧1に導入され、真空排気ポンプ2と平衡する
ことによって、真空槽1はδf足の圧力に保たnる0基
板5は基板保持機構6にL−)て保持さn1スパッタ電
極機構8の上に設置したターゲット7と対向する0ター
グ4ツトと基板の閾にはシャッター13と遮蔽板9が配
置さnる0ター“ケラト7は厘流電餘10により負にバ
イアス賂nるようにスパッタ電圧が印加さnる0こtL
ta通常の直流スパッタ装置と伺ら異なるものではなく
、基板保持機構には基板加熱片ヒーター、基板冷却用水
冷シャケラ)Zどの付加機能會持たせ得るものである。
The present invention solves the above-mentioned drawbacks of the conventional method, and makes it possible to produce a multi-component alloy thin film of arbitrary composition by an extremely simple method.
1 made of multiple materials in the sputtering method
By synchronously controlling the relative positional relationship between the two electrode targets and the substrate and the sputtering speed, it is possible to manufacture an alloy thin film of any composition. The present invention will be described in detail with reference to the drawings in #51. Figure 1 shows an embodiment of the present invention and shows the basic equipment configuration for DC sputtering. 1 is a vacuum chamber, and 2 is a vacuum pump. 3 is an inert gas, and when it is necessary to produce a nitride alloy or an oxide alloy, an inert gas and oxygen are used. A mixed gas such as . A shutter 13 and a shielding plate 9 are arranged on the four targets facing the target 7 held by the substrate holding mechanism 6 and installed on the sputtering electrode mechanism 8, and on the threshold of the substrate. A sputtering voltage is applied to the Kerat 7 so as to have a negative bias voltage by a current voltage 10.
It is not different from a normal DC sputtering apparatus, and the substrate holding mechanism can be equipped with additional functions such as a substrate heating piece heater and a water cooling shaker for cooling the substrate.

本発明では以上の装置構成に加えて、さらにターゲット
移動せしめるためのターゲット移動機構11およびター
ゲットの移動に同期して放電電力を変化させる同期機構
12′?!:持つ。
In addition to the above device configuration, the present invention further includes a target moving mechanism 11 for moving the target and a synchronizing mechanism 12' for changing the discharge power in synchronization with the movement of the target. ! : have.

第21轄ター1オツド部の構成の拡大図である。It is an enlarged view of the configuration of the 21st control unit 1 side.

ターゲット部の□′1構成及び形状は後述するように棟
11゜ 種の組み合わせを持たせ得るが、本実施例では敢も単純
な構成例として、ターゲット素材数を2種とし、ターゲ
ット形状を円形としfcoターケット素材は素材A及び
Bの板材を半円状に加工し全体が円板となるよう電極上
に配置される0以上のような素材の複合構造よシなるタ
ーゲット電極扛軸15t−中心としてターゲット移動機
構11によって回転運動する。回転運動によってターゲ
ット上に配置した遮蔽板の開口部には素材AおよびBが
周期的にさらされ、スパッタさnる0ターゲツト型状と
しては、矩形、楕円形勢の平面形あるいは球面。
Although the structure and shape of the target part can have various combinations of 11° ridges as described later, in this example, as a deliberately simple structural example, the number of target materials is two types, and the target shape is circular. The fco target material is a composite structure of 0 or more materials, which is formed by processing the plates of materials A and B into a semicircular shape and placing them on the electrode so that the whole becomes a disk. The target moving mechanism 11 rotates the target as shown in FIG. The materials A and B are periodically exposed to the openings of the shielding plate placed above the target by rotational movement, and the target shape for sputtering is rectangular, elliptical, planar, or spherical.

円柱側面の一部を用いることが・可能であるOこれらの
ターゲット形状に対応した移動モードとして前者は面内
の往復運動、後者は自車中心を中心とする振子運動會与
えることによって同房の効果を得ることができ−る0 本実施例ではターゲット素材としてNbおよびGe t
−用い、不活性ガスとしてArt用いた0真空槽1−1
0−’ Paに排気した後、Arガスを流量調節弁4よ
り導入し、真空槽圧力を5 Paとした0絖いて直流電
圧を印加し、グロー放電音発生せしめる0放電電力は同
期機構[によってターゲットの回転運動に同期して制御
されるO印加電力は所望の膜組成によって異なるか、1
例を第3図に示す。遮蔽板開口部にターゲットのNb素
材があるときは200W、Ge素材のめるときは40W
o電力が印加される。
It is possible to use a part of the cylindrical side surface.O As the movement mode corresponding to these target shapes, the former is a reciprocating motion in the plane, and the latter is a pendulum motion centered on the center of the own vehicle to achieve the same cell effect. In this example, Nb and Get
-0 vacuum chamber 1-1 using Art as an inert gas
After exhausting to 0-' Pa, Ar gas was introduced through the flow rate control valve 4, the vacuum chamber pressure was set to 5 Pa, a DC voltage was applied, and the zero discharge power to generate glow discharge sound was controlled by a synchronization mechanism The O applied power, which is controlled in synchronization with the rotational movement of the target, varies depending on the desired film composition.
An example is shown in FIG. 200W when the target Nb material is in the opening of the shield plate, 40W when the Ge material is inserted.
o Power is applied.

NbとGeの境界部が遮蔽板−口s’1skbする間に
電カレペルを切侠える。図中Nb 、 Ge 、 Nb
とあるは遮蔽板開口部のターゲット素材を示す。また、
境界部でのスパッタをでける方が良い場合にはシャッタ
ー13に同期運鯛會させることによシ、境界部の通過時
にシャッターを閉じさせることも可能であるが1本実施
例ではその必gl!を認めなかった。
The electric current can be cut while the boundary between Nb and Ge is between the shielding plate and the opening s'1skb. In the figure, Nb, Ge, Nb
The mark indicates the target material for the opening of the shield plate. Also,
If it is better to avoid spatter at the boundary, it is possible to close the shutter when the boundary passes by synchronizing the shutter 13, but this is not necessary in this embodiment. ! was not recognized.

この方法によって製造したNb−Ge合金薄膜の組成t
オージェ電子分光法で分析した。面内の中心点からの距
離による組成の変化を第4図に示す。″また、第4図に
はターゲット移動及び電力同期をせずに、NbおよびG
eの分割ターゲットと基板のみを対向させてスパッタし
た薄膜の分析結果も対比のために示To本発明による合
金組成の面内一様性は本発明の機構を持たないものに比
べ、極めて浚tていることが明らかでめる0 次に1印加電力を遮蔽板開口部に冷素材のめるときに2
00W、Go素材のあるとき扛スパッタ開始時の20W
から終了時80Wまで連続的に増加させそ製造した膜の
分析結果を第5図に示す。膜の組成分析は表面からアル
ゴンイオン銃でイオンビームス゛バッタで膜をけずりつ
つ、表面層のオージェ電子分光を行って求めたものであ
って、横軸は表面からの距離で示される。歯とGe’の
組成比は、膜厚方向において、堆積初期から連続的に減
少している。このように本発明によれば任意の組成のa
aV製造することが可能である。
Composition t of the Nb-Ge alloy thin film produced by this method
It was analyzed by Auger electron spectroscopy. FIG. 4 shows the change in composition depending on the distance from the in-plane center point. ``Also, Figure 4 shows Nb and G without target movement and power synchronization.
For comparison, the analysis results of a thin film sputtered with only the divided target and the substrate facing each other are also shown. 0 Next, when applying 1 power and placing the cold material into the opening of the shield plate, 2
00W, 20W at the start of sputtering when Go material is present
FIG. 5 shows the analysis results of a film produced by increasing the power consumption continuously from 80 W to 80 W at the end. The compositional analysis of the film was determined by performing Auger electron spectroscopy on the surface layer while scratching the film from the surface with an ion beam scatterer using an argon ion gun, and the horizontal axis shows the distance from the surface. The composition ratio of teeth to Ge' continuously decreases in the film thickness direction from the initial stage of deposition. As described above, according to the present invention, a of any composition can be used.
It is possible to produce aV.

以上の実施例においては、直流スパッタ法による製造例
を示したが、高周波スパン鼻法、バイアススパッタ法、
−マグネトロジスバッタ法などいかなるスパッタ法を用
いても実施例と同様な効果の得らnることは明白である
。また、ターゲット素材は純金属に限定されるもので□
はなく、合金あるいゆイte*−r:4*□□、8ムヶ
。5.□−ゲット素材の数が3個以上であっても、ター
ゲット電極の移動と印加電力の同期が可能な範囲であれ
ば同様な効果が期待される。また、ターゲット電極の移
動に変えて基板及び遮蔽板を移動する拳、あるいは両者
が相対的な移動をすることによっても同様の効果が期待
されることは明らかである0 以上説明したように、本発明によれは任意の組成の1l
lkkきわめて簡便なスパッタ機構によって製造できる
利点を持つとともに、膜の堆積時に、その組成変化を制
御するという、従来のスパッタ法ではなし得なかった新
たな機能を持つ大きな利点がある。
In the above examples, manufacturing examples using the DC sputtering method were shown, but high frequency span nose method, bias sputtering method,
- It is clear that the same effects as in the embodiments can be obtained using any sputtering method such as the magnetology sputtering method. In addition, the target material is limited to pure metal.
There is no alloy, it is te*-r: 4*□□, 8mm. 5. □-Even if the number of target materials is three or more, the same effect can be expected as long as the movement of the target electrode and the applied power can be synchronized. It is also clear that a similar effect can be expected by using a fist that moves the substrate and shielding plate instead of moving the target electrode, or by moving the two relative to each other. According to the invention, 1 liter of any composition
lkk has the advantage that it can be manufactured using an extremely simple sputtering mechanism, and also has the great advantage of having a new function that cannot be achieved with conventional sputtering methods, such as controlling changes in the composition during film deposition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例、第2図はターゲットお
よびその移動機構部分の拡大図、第3図はターゲットの
N転角に同期して放電時に印加した電力値を回転角に対
してプロットした図、第4図は第3図の印加、−力条件
で製造しfc Nb−Ge 谷金薄膜の膜面内谷位1.
ニアeの組成を、本発明機構を用いずに製造した同種合
金薄膜の場合との比較で示した図、第5図は本発明装w
tヲ用い、陽の放電電力t 200 W一定とし、Ge
について120Wからsowまで連続的に増加させつつ
スパッタしたNb−Go薄膜の膜厚方向での歯とGoの
組成比を示す。 1・・・・・・真空槽、2・・・・・・真空排気ポンプ
、3・・・・・・スパッタガスボンベ、4・・・・・・
fiffii4jIl 5・・・・・・基板、6・・・
・・・基板保持機構、7・・・・・・ターゲット、9゛
。 8・・・・・・スパッタ電極機構、9・・・・・・遮蔽
板、10・・・・・・直流電源、11・・・・・・ター
ゲット移動機構、ν・・・す・同期機構、 13・i・
・・・シャッター特許中願人 日本電信電話公社 第1図 第3図 第4図 1木ε中1αつ゛う/)工区^区   (mm)第5図 長dD<1′う/)シ朶さくJJm)
Figure 1 shows an example of the device of the present invention, Figure 2 is an enlarged view of the target and its moving mechanism, and Figure 3 shows the electric power applied during discharge in synchronization with the N rotation angle of the target. Figure 4 shows the in-plane valley height of the fc Nb-Ge valley metal thin film produced under the applied and -force conditions shown in Figure 3.
Figure 5 is a diagram showing the composition of near e in comparison with the case of a thin film of the same type of alloy produced without using the mechanism of the present invention.
Using t, the positive discharge power t is constant at 200 W, and Ge
The graph shows the tooth-to-Go composition ratio in the film thickness direction of an Nb-Go thin film sputtered while increasing the power continuously from 120 W to sow. 1... Vacuum chamber, 2... Vacuum exhaust pump, 3... Sputtering gas cylinder, 4...
fiffii4jIl 5... Board, 6...
...Substrate holding mechanism, 7...Target, 9゛. 8... Sputter electrode mechanism, 9... Shielding plate, 10... DC power supply, 11... Target moving mechanism, ν... Synchronization mechanism , 13・i・
... Shutter patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 3 Figure 4 Figure 1 Tree ε Medium 1 α Tsuu/) Construction area ^ Ward (mm) Figure 5 Length dD<1'U/) Shisaku JJm )

Claims (1)

【特許請求の範囲】[Claims] 複数個の素材から成るターゲットを有し、ターゲットあ
るいは基板のいずれか一方の、あるいは双方の移動によ
p、周期的にその相対的位置を変化しうる移動機構と、
ターゲットと基板′め相対的位置変動に同期するスパッ
タ速度制御機構とを備え、任意組成の多元合金薄膜を製
造しうろことを特徴とするスパッタ装置。
A moving mechanism that has a target made of a plurality of materials and can periodically change its relative position by moving either the target or the substrate, or both;
A sputtering apparatus is equipped with a sputtering speed control mechanism that synchronizes with relative positional fluctuations between a target and a substrate, and is capable of producing a multi-component alloy thin film of arbitrary composition.
JP17015181A 1981-10-26 1981-10-26 Sputtering device Pending JPS5873771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17015181A JPS5873771A (en) 1981-10-26 1981-10-26 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17015181A JPS5873771A (en) 1981-10-26 1981-10-26 Sputtering device

Publications (1)

Publication Number Publication Date
JPS5873771A true JPS5873771A (en) 1983-05-04

Family

ID=15899618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17015181A Pending JPS5873771A (en) 1981-10-26 1981-10-26 Sputtering device

Country Status (1)

Country Link
JP (1) JPS5873771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088441A (en) * 2005-08-23 2007-04-05 Canon Inc Piezoelectric, piezoelectric element, liquid ejection head, liquid ejector and process for producing piezoelectric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088441A (en) * 2005-08-23 2007-04-05 Canon Inc Piezoelectric, piezoelectric element, liquid ejection head, liquid ejector and process for producing piezoelectric

Similar Documents

Publication Publication Date Title
JP6118258B2 (en) Soft sputtering magnetron system
Geetha Priyadarshini et al. Structural and morphological investigations on DC-magnetron-sputtered nickel films deposited on Si (100)
USH1933H1 (en) Magnetron sputter-pulsed laser deposition system and method
US5196101A (en) Deposition of thin films of multicomponent materials
WO1992001081A1 (en) Method and apparatus for co-sputtering and cross-sputtering homogeneous films
JP2006052461A (en) Magnetron sputtering device, cylindrical cathode, and method of coating thin multicomponent film on substrate
JP2009041040A (en) Vacuum vapor deposition method and vacuum vapor deposition apparatus
JPS5873771A (en) Sputtering device
JP2003155556A (en) Method of producing wedge-shaped film
JPH0625846A (en) Composite sputtering device
JP2971586B2 (en) Thin film forming equipment
JP2020084260A (en) Film deposition method and film deposition apparatus
JPH03101033A (en) Manufacture of thin film
JPH08269710A (en) Reactive sputtering device and reactive sputtering method as well as reactive vapor deposition device and reactive vapor deposition method
JP2002294446A (en) Sputter source and film forming apparatus
JP3261179B2 (en) Thin film manufacturing equipment
JP2844779B2 (en) Film formation method
JPS63114966A (en) Apparatus for producing thin film
JP2000038663A (en) Magnetron sputtering device
JP2710988B2 (en) Film forming equipment
JP2001115259A (en) Magnetron sputtering system
JPS61104071A (en) Vapor depositing method and device therefor
JP2000212730A (en) Thin film forming device
JPH01319671A (en) Multielement sputtering device
JPS639583B2 (en)