JPS58731A - Electrostatic capacity type pressure sensor - Google Patents

Electrostatic capacity type pressure sensor

Info

Publication number
JPS58731A
JPS58731A JP9949881A JP9949881A JPS58731A JP S58731 A JPS58731 A JP S58731A JP 9949881 A JP9949881 A JP 9949881A JP 9949881 A JP9949881 A JP 9949881A JP S58731 A JPS58731 A JP S58731A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure sensor
substrate
metal case
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9949881A
Other languages
Japanese (ja)
Other versions
JPS6412329B2 (en
Inventor
Osamu Makino
治 牧野
Toru Ishida
徹 石田
Seiji Oikawa
及川 清司
Jun Yasuda
純 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9949881A priority Critical patent/JPS58731A/en
Publication of JPS58731A publication Critical patent/JPS58731A/en
Publication of JPS6412329B2 publication Critical patent/JPS6412329B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce floating capacity, and also to elevate both adjustment and a mass-production property, by forming an electrode on a surface where a substrate and a diaphragm are opposed to each other, storing it in a metallic case holding its airtightness, and forming a capsule part. CONSTITUTION:A capsule part 1 is formed byproviding thin film electrodes 13 which are both opposed to one surface of an alumina substrate 11 and one surface of an alumina substrate 12 forming a diaphragm, printing glass layers 14, joining together and seal-sticking them between said surfaces, subsequently, covering them with an aluminum case 2 through a silicone rubber ring 3, and caulking them mechanically. After that, it is incorporated in a housing 21 together with a circuit part 22 for converting the capacity to voltage, by which an electrostatic capacity type pressure sensor is formed. Accordingly, since the capsule part 1 is cased in advance, its floating capacity can be reduced, also durability of its structure is elevated, and its adjustment and mass production can be executed easily.

Description

【発明の詳細な説明】 本発明は、圧力によるダイヤフラムの変位を静電容量の
変化として検出する静電容量式圧力センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitive pressure sensor that detects displacement of a diaphragm due to pressure as a change in capacitance.

圧力によるダイヤフラムの変位を、対向して設けた電極
を介して静電容量変化として検出するいわゆる静電容量
式圧力センサは、その原理的な安定性と使用材料の持つ
安定性から耐久性に優れている。このため、特に使用条
件の厳しい自動用の圧力センサとして広く用いられてい
る。
The so-called capacitive pressure sensor, which detects the displacement of a diaphragm due to pressure as a change in capacitance through opposing electrodes, has excellent durability due to its fundamental stability and the stability of the materials used. ing. For this reason, it is widely used as a pressure sensor for automatic applications, which have particularly severe usage conditions.

第1図はこのような従来の静電容鼠式匡カセンサの構造
を示す断面図であり、図において、11は絶縁性基板、
12Lriダイヤフラム、13は基板11およびダイヤ
フラム12の内面に形成された静電容量を検出するため
の電極、14はグイヤフラム12と基板11との間に所
定のギャップを設け、かつ外界との機密を保持するため
のガラス層、22ij容量変化を電気的信号(一般には
直流電圧)に変換する回路部、21はカプセル部1およ
び回路部22を収容するハウジングである。カプセル部
1は、リード線4によって回路部22に電気的に接続さ
れており、またリング16によって外界用との機密性が
保たれている。
FIG. 1 is a cross-sectional view showing the structure of such a conventional capacitive mouse type sensor, and in the figure, 11 is an insulating substrate;
12Lri diaphragm; 13 is an electrode for detecting capacitance formed on the inner surface of the substrate 11 and the diaphragm 12; 14 is a predetermined gap provided between the guiaphragm 12 and the substrate 11, and maintains confidentiality from the outside world; a glass layer 22ij for converting a capacitance change into an electrical signal (generally a DC voltage); 21 is a housing that accommodates the capsule part 1 and the circuit part 22; The capsule portion 1 is electrically connected to the circuit portion 22 by a lead wire 4, and is kept airtight from the outside world by a ring 16.

上記した従来の静電容量弐匡カセンサは、圧力変化を直
接電気信号として検出するのではなく、圧力を容量に変
換した後これを電rFE(千カに対応した直流電圧)に
変換して検出するものであり、圧力を容量に変換するカ
プセル部1と容f k ’R[Eに変換する回路部22
とは独立に組立てられ、最後に両者を一体にするのが一
般的である。すなわち、製造面ではカプセル部1j11
、体の容量測定をしてこの段階である程度選別し、回路
部22と共にハウジングに組み込まれてから、今度は回
路部220機能修正をするなど比較的繁雑な工程を踏ま
なければならなかった。特に、この圧力センサの変化容
量域が数10pFと極めて小さいため、カプセル容量測
定時の浮遊容量や、)・ウジフグ組込時の浮遊容量など
の影響を敏感に受ける。このような理由から、従来の圧
力センサは、カプセル部1および回路部22の複雑な選
別と調整を経て初めて、仕様を満足する圧力センサが得
られるものであった。
The conventional capacitance sensor described above does not directly detect pressure changes as electrical signals, but converts pressure into capacitance and then converts this into electric rFE (DC voltage corresponding to 1,000 volts). It consists of a capsule section 1 that converts pressure into volume and a circuit section 22 that converts pressure into volume f k 'R[E.
Generally, they are assembled independently from each other, and then the two are brought together at the end. In other words, in terms of manufacturing, the capsule part 1j11
At this stage, the capacitance of the body was measured, a certain degree of selection was made, and the circuit part 22 was assembled into the housing, and then the function of the circuit part 220 had to be modified, which was a relatively complicated process. In particular, since the capacitance variation range of this pressure sensor is extremely small, at several tens of pF, it is sensitive to the effects of stray capacitance when measuring capsule capacitance, and stray capacitance when incorporating ). For these reasons, in the conventional pressure sensor, a pressure sensor that satisfies the specifications can only be obtained through complicated selection and adjustment of the capsule portion 1 and the circuit portion 22.

また、上記した従来の圧力センサは、構造的に見た時、
第1図に示すように、測定圧と回路部(大気用)との機
密性は、例えば0リング15のみによって保たれていた
ためいくつかの問題点を持っていた。例えば、カプセル
10組み込み時の0リングとの位置ずれや、0リングの
劣化等によって測定圧の機密性が容易に失なわれる。ま
た、測定圧の汚染雲間%(ガソリン蒸気、湿度)によっ
て回路が劣化する危険性もあった。
Furthermore, when viewed structurally, the conventional pressure sensor described above has
As shown in FIG. 1, the airtightness between the measured pressure and the circuit section (for the atmosphere) was maintained only by, for example, the O-ring 15, which caused several problems. For example, the confidentiality of the measured pressure is easily lost due to misalignment with the O-ring when the capsule 10 is installed, deterioration of the O-ring, and the like. There was also a risk that the circuit would deteriorate due to the contamination cloud percentage (gasoline vapor, humidity) of the measured pressure.

このように、従来の圧力センサは、製造面、および構造
面で大きな問題点を抱えているのが現状であった6 本発明は上記した従来の欠点を除去した静電容量弐匡カ
センサ[d供するものであり、カプセル部側面を、ハウ
ジング也は別にケーシングする事により、調整が容易で
量産性に適しかつ、信頼性の高い[F、力センサを提供
するものである。
As described above, conventional pressure sensors currently have major problems in terms of manufacturing and structure.6 The present invention is a capacitive sensor [d By casing the side surface of the capsule part and the housing separately, it provides a force sensor that is easy to adjust, suitable for mass production, and highly reliable.

以下、本発明の一実施例につき、図面を用いて詳細に説
明する。第2図は、本発明の一実施例におけるIFEカ
センサのハウジング組込み後の断面図を示したものであ
る。第1図と同一機能を有する部分には同一番号を付し
である3、 実施例1 以下この圧力センサのカプセル部の製造工程を具体的に
説明する。直径30編、厚み21ybの96%アルミナ
基板11の一方の面と、直径30M、厚み0.58の同
じアルミナ基板12の一方の而に、円形薄膜電極13を
1役け、一方の電極面側の同辺に、所定のギャップを設
けるだめのガラス層14全印刷し、両者を合わせ、封着
した。ここでガラス層14を両方の面に印刷しても良い
。この時のガラスの封着温度は、使用する基板材料、ガ
ラス材料によっても異なるが、400〜7oo℃の温度
で10〜30分程度で行なうのが適している。この様に
してカプセル部1を形11yシた後、電極と電気的に接
続するためのリード線4を設ける。、次いで、シリコン
系ゴムリング3に介して、アルミのケース2でおおい、
ゴムリングを機械的にかしめた。さらに、回路22と共
に、ハウジング21中に組み込み、FE力中ンサを得た
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. FIG. 2 shows a sectional view of the IFE sensor according to an embodiment of the present invention after it is assembled into a housing. Parts having the same functions as those in FIG. 1 are given the same numbers. 3. Example 1 The manufacturing process of the capsule portion of this pressure sensor will be specifically explained below. A circular thin film electrode 13 was placed on one side of a 96% alumina substrate 11 with a diameter of 30 mm and a thickness of 21 yb, and on the other side of the same alumina substrate 12 with a diameter of 30 m and a thickness of 0.58. The entire glass layer 14 was printed on the same side with a predetermined gap, and both were brought together and sealed. Here, the glass layer 14 may be printed on both sides. The glass sealing temperature at this time varies depending on the substrate material and glass material used, but it is suitable to carry out the sealing at a temperature of 400 to 70° C. for about 10 to 30 minutes. After the capsule portion 1 is shaped 11y in this manner, lead wires 4 for electrical connection to the electrodes are provided. , then covered with an aluminum case 2 via a silicone rubber ring 3,
The rubber ring was mechanically caulked. Furthermore, it was incorporated into the housing 21 together with the circuit 22 to obtain an FE force sensor.

実施例2 第3図は本発明の他の実施例の[I:、力センサのカプ
セル部の断面図であり、以下第3図の11テカセンサの
カプセル部を製造工程に従って具体的に説明する。実施
例1と同じ手順で、基板11およびり゛イヤフラム12
の片面にそれぞれ円形電極13を設け、次に、両者の電
極のないもう一方の面のI、’、1辺に、Py−系厚膜
導体 5をそれぞれ幅2Mのリング状に印刷して乾燥し
、850℃X10分の条件で焼付けた。さらに実施例1
と同じ手11(Ciで、封イ11′ガラス層14を設け
、カプセル部1を得、リード線4を設けた。次にカプセ
ル両面の厚i層5に、ハンダペーストを印刷し、銅製の
ケーシング2/でおおい、ハングを溶融させ厚膜層5を
ケーシングにハング付けした。さらに、実施例1と同じ
様にハウジング部に組込み[rカ センサを得た。
Embodiment 2 FIG. 3 is a cross-sectional view of a capsule portion of a force sensor according to another embodiment of the present invention.Hereinafter, the capsule portion of the 11-teca sensor shown in FIG. 3 will be specifically explained according to the manufacturing process. The substrate 11 and the diaphragm 12 are prepared in the same manner as in Example 1.
A circular electrode 13 is provided on one side of each, and then a Py-based thick film conductor 5 is printed in a ring shape with a width of 2M on each side of I, ', and the other side without electrodes, and dried. Then, it was baked at 850°C for 10 minutes. Furthermore, Example 1
Using the same method as 11 (Ci), a seal 11' glass layer 14 was provided, a capsule part 1 was obtained, and a lead wire 4 was provided.Next, solder paste was printed on the thick i layer 5 on both sides of the capsule, and a copper The thick film layer 5 was covered with a casing 2/, and the hang was melted to attach the thick film layer 5 to the casing.Furthermore, in the same manner as in Example 1, it was assembled into a housing part [r] to obtain a sensor.

上記した本発明の圧力センサは、カプセル部を予め金属
ケースでシールドしているために、測定系の浮遊容量の
影響を受けにくくなる。第1表にカプセル単体の容量値
と、ハウジングに組込み時の容量値とのに:、(△C)
を示す。この表から、本発明の[I:、力センサのカプ
セル部は、カプセル部のみ全シールドしているため、回
路組込時の、カブ士ルーハウジング間の浮遊容量の影響
全受は難くかつ、これによって、特性調整も一段と容易
になる。つまり、カプセル部を、あたかも、カプセル部
をあたかも、完全な容量変化を持つ部品として取り扱え
るため生産時の管理が容易となる。加えて、本発明の構
造によりカプセル部の機密性全独立させた、すなわち、
測定[−1三の機密が二重に施しであるため、センサと
しての耐久性が非常ケこ向上する。また、金属ケース部
を有するカプセル部を1つの部品として自由に取扱える
市から、・・ウジングの構造もrll、純に設イノー出
来る。
In the pressure sensor of the present invention described above, since the capsule portion is shielded in advance with a metal case, it is less susceptible to the influence of stray capacitance of the measurement system. Table 1 shows the capacitance value of the capsule alone and the capacitance value when assembled into the housing: (△C)
shows. From this table, it can be seen that the capsule part of the force sensor of the present invention is completely shielded, so it is difficult to fully receive the influence of stray capacitance between the cover and housing when the circuit is installed, and This further facilitates characteristic adjustment. In other words, the capsule part can be handled as if it were a part with a complete change in capacity, which facilitates management during production. In addition, the structure of the present invention makes the capsule part completely independent, that is,
The durability of the sensor is greatly improved because the measurement [-1] and the third secrecy are double-layered. In addition, since the capsule part with the metal case part can be freely handled as a single component, the structure of the Uzing can also be easily installed.

以上の様に、本発明の静電容量式1Fカセンサはカプセ
ル部を予めケーシングしているため、カプセル部の浮遊
容量の低下や、構造間での耐久性が向上させることが出
采るため、従采の圧力センサに比べ、量産性に優れ、且
つ性能的にも安定したセンサを提供出来るものである。
As described above, since the capacitive 1F capacitive sensor of the present invention has the capsule part cased in advance, it is possible to reduce the stray capacitance of the capsule part and improve the durability between the structures. Compared to secondary pressure sensors, it is possible to provide a sensor that is superior in mass production and has stable performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力センサの断面図、第2図、および第
3図は本発明の一実施例における[(:力センサの例の
断面図である。 1・・・・・・カプセル部、2および2′・・・・・・
金属ケース、3・−・・・・ゴムリング、4・・・・・
・リード線、6・・・・・・厚膜焼付は層、11・・・
・・・磁器基板、12・・・・・・ダイヤフラム、13
・−・−・・電極、14・・・・・・封着ガラス層、2
1・・・・・・ハウジング、22・・・・・・回路板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 @31m
FIG. 1 is a sectional view of a conventional pressure sensor, and FIGS. 2 and 3 are sectional views of an example of a force sensor according to an embodiment of the present invention. 1... Capsule portion , 2 and 2'...
Metal case, 3...Rubber ring, 4...
・Lead wire, 6... Thick film baking is layer, 11...
...Porcelain substrate, 12...Diaphragm, 13
・-・-・Electrode, 14...Sealing glass layer, 2
1...Housing, 22...Circuit board. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 @31m

Claims (1)

【特許請求の範囲】 (1)  磁器基板と、この基板の一方の而に所定の間
隙を保って配設された絶縁性薄板からなるダイヤフラム
を有し、このダイヤプラムの圧力による変位を前記基板
とダイヤフラムの相対する而に設けられた対向電極向の
静電容量の変化として検出するように構収し、かつ、少
なくとも前記基板およびダイヤフラムの側面部の機密性
を保持する金属ケースを有する事を特徴とする静電容量
式圧力センサ。 (2、特許請求の範囲第1項において、測定圧力を導入
するパイプを取り付ける受は口を上記金属ケースのダイ
ヤガム面側に設けた事を特徴とする静電容量式圧力セン
サ。 (3)特許請求の範囲第1項もしくは第2項において、
基板およびダイヤフラムの同辺部にゴムリングを介して
かしめられた金属ケースを有する事を特徴とする静電容
量式圧力センサ。 1すa4t−7−請求の範囲第1項tt<+1第2項に
おいて、基板およびダイヤフラムの周辺部に、厚膜焼付
層を介してハンダ付けされた金属ケースを有する事を特
徴とする静電容量式圧力センサ。
[Scope of Claims] (1) A ceramic substrate and a diaphragm made of an insulating thin plate arranged at a predetermined distance between one of the substrates, and the displacement due to the pressure of the diaphragm is controlled by the substrate. and a metal case configured to detect a change in capacitance toward a counter electrode provided opposite to the diaphragm, and to maintain airtightness of at least the side surface of the substrate and the diaphragm. Characteristic capacitance pressure sensor. (2. A capacitive pressure sensor according to claim 1, characterized in that a receiving port for attaching a pipe for introducing measurement pressure is provided on the diamond rubber surface side of the metal case. (3) Patent In claim 1 or 2,
A capacitive pressure sensor characterized by having a metal case caulked to the same side of a substrate and a diaphragm via a rubber ring. 1sa4t-7 - Claims 1st item tt<+1 In the 2nd item, the electrostatic charger is characterized by having a metal case soldered to the periphery of the substrate and the diaphragm through a thick film baking layer. Capacitive pressure sensor.
JP9949881A 1981-06-25 1981-06-25 Electrostatic capacity type pressure sensor Granted JPS58731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9949881A JPS58731A (en) 1981-06-25 1981-06-25 Electrostatic capacity type pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9949881A JPS58731A (en) 1981-06-25 1981-06-25 Electrostatic capacity type pressure sensor

Publications (2)

Publication Number Publication Date
JPS58731A true JPS58731A (en) 1983-01-05
JPS6412329B2 JPS6412329B2 (en) 1989-02-28

Family

ID=14248948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9949881A Granted JPS58731A (en) 1981-06-25 1981-06-25 Electrostatic capacity type pressure sensor

Country Status (1)

Country Link
JP (1) JPS58731A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262944U (en) * 1985-10-11 1987-04-18
JPS62170538U (en) * 1986-04-18 1987-10-29
JPS6319527A (en) * 1986-05-05 1988-01-27 テキサス インスツルメンツ インコ−ポレイテツド Pressure sensor with capacitive pressure transducer
JPS63228038A (en) * 1985-11-26 1988-09-22 Nippon Denso Co Ltd Semiconductor pressure transducer
US4896676A (en) * 1986-06-11 1990-01-30 Signal Technology Co., Ltd. Blood pressure measuring unit
JPH02190731A (en) * 1988-12-08 1990-07-26 Texas Instr Inc <Ti> High pressure package for pressure converter
US5561247A (en) * 1993-03-30 1996-10-01 Honda Motor Co., Ltd. Pressure sensor
JP2001133479A (en) * 2000-09-21 2001-05-18 Mitsubishi Electric Corp Inertia force sensor and method of manufacturing the same
WO2002018896A1 (en) * 2000-09-01 2002-03-07 Endress + Hauser Gmbh + Co. Kg Pressure measuring cell
JP2007502416A (en) * 2003-08-11 2007-02-08 アナログ デバイシーズ インク Capacitive sensor
JP2010197057A (en) * 2009-02-23 2010-09-09 Kyocera Corp Base substance for pressure detection device and the pressure detection device
WO2014086512A1 (en) * 2012-12-03 2014-06-12 Robert Bosch Gmbh Pressure sensor module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118283A (en) * 1978-01-23 1979-09-13 Motorola Inc Electromechanical pressure transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118283A (en) * 1978-01-23 1979-09-13 Motorola Inc Electromechanical pressure transducer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262944U (en) * 1985-10-11 1987-04-18
JPH0435778Y2 (en) * 1985-10-11 1992-08-25
JPS63228038A (en) * 1985-11-26 1988-09-22 Nippon Denso Co Ltd Semiconductor pressure transducer
JPS62170538U (en) * 1986-04-18 1987-10-29
JPS6319527A (en) * 1986-05-05 1988-01-27 テキサス インスツルメンツ インコ−ポレイテツド Pressure sensor with capacitive pressure transducer
US4896676A (en) * 1986-06-11 1990-01-30 Signal Technology Co., Ltd. Blood pressure measuring unit
JPH02190731A (en) * 1988-12-08 1990-07-26 Texas Instr Inc <Ti> High pressure package for pressure converter
US5561247A (en) * 1993-03-30 1996-10-01 Honda Motor Co., Ltd. Pressure sensor
WO2002018896A1 (en) * 2000-09-01 2002-03-07 Endress + Hauser Gmbh + Co. Kg Pressure measuring cell
JP2001133479A (en) * 2000-09-21 2001-05-18 Mitsubishi Electric Corp Inertia force sensor and method of manufacturing the same
JP2007502416A (en) * 2003-08-11 2007-02-08 アナログ デバイシーズ インク Capacitive sensor
JP2010197057A (en) * 2009-02-23 2010-09-09 Kyocera Corp Base substance for pressure detection device and the pressure detection device
WO2014086512A1 (en) * 2012-12-03 2014-06-12 Robert Bosch Gmbh Pressure sensor module
US9664579B2 (en) 2012-12-03 2017-05-30 Robert Bosch Gmbh Pressure sensor module

Also Published As

Publication number Publication date
JPS6412329B2 (en) 1989-02-28

Similar Documents

Publication Publication Date Title
EP0003387B1 (en) Improved electromechanical pressure transducer
US4388668A (en) Capacitive pressure transducer
US4151578A (en) Capacitive pressure transducer
US4426673A (en) Capacitive pressure transducer and method of making same
US4207604A (en) Capacitive pressure transducer with cut out conductive plate
EP0210843B1 (en) Pressure transducers and methods of converting a variable pressure input
US6457368B1 (en) Noise reduced pressure sensor
US5257542A (en) Sensor for a capacitance pressure gauge
CA1141185A (en) Differential pressure transducer
EP0893676B1 (en) Combined pressure responsive transducer and temperature sensor apparatus
US4204244A (en) Electromechanical pressure transducer
US4660407A (en) Gas sensor
JPS58731A (en) Electrostatic capacity type pressure sensor
EP0325050B1 (en) Hygrometer
JPS60501177A (en) pressure sensor
US5925824A (en) Capacitive differential pressure detector
EP2873958B1 (en) Capacitive pressure sensors for high temperature applications
US6148674A (en) Shielded capacitive pressure sensor
JP3399688B2 (en) Pressure sensor
JP4863571B2 (en) Pressure sensor
US5440931A (en) Reference element for high accuracy silicon capacitive pressure sensor
JPH10300609A (en) Electrostatic capacitance type pressure sensor
JPS6029629A (en) Semiconductor capacity type pressure sensor
JPH086275Y2 (en) Capacitive load sensor
JPH01146379A (en) Electrostrictive element assembly