JPS5872938A - Positive type resist resin for far ultraviolet rays - Google Patents

Positive type resist resin for far ultraviolet rays

Info

Publication number
JPS5872938A
JPS5872938A JP17159581A JP17159581A JPS5872938A JP S5872938 A JPS5872938 A JP S5872938A JP 17159581 A JP17159581 A JP 17159581A JP 17159581 A JP17159581 A JP 17159581A JP S5872938 A JPS5872938 A JP S5872938A
Authority
JP
Japan
Prior art keywords
polymer
vinyl ketone
ultraviolet rays
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17159581A
Other languages
Japanese (ja)
Inventor
Hiroyuki Uchida
内田 広幸
Jun Nakauchi
純 中内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP17159581A priority Critical patent/JPS5872938A/en
Publication of JPS5872938A publication Critical patent/JPS5872938A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Abstract

PURPOSE:To obtain a resist with high sensitivity to far ultraviolet rays by using monomers including 4-methyl phenyl vinyl ketone to prepare a polymer having a composition contg. at least 10mol% 4-methyl phenyl vinyl ketone units. CONSTITUTION:50 Parts by weight of 4-methyl phenyl vinyl ketone are mixed with 50 parts methyl methacrylate, and after adding 0.1 part polymn. catalyst and carrying out nitrogen substitution, the mixture is polymerized to prepare a polymer contg. at least 10mol% 4-methyl phenyl vinyl ketone units. The polymer is dissolved in methylcellosolve acetate to 6wt% concn. This soln. is applied to a silicon substrate under rotation with a spinner and dried to obtain a resist resin film. This film has high sensitivity to far ultraviolet rays whose wavelengths are shorter than the wavelengths of conventional ultraviolet rays, and it is used as a positive type resist film capable of being dry etched with gaseous CF4.

Description

【発明の詳細な説明】 本発明は、遠紫外用ポジ型レジスト樹脂に関する。[Detailed description of the invention] The present invention relates to a deep ultraviolet positive resist resin.

近年急速な発展を遂げつつある半導体工業の轡近の主な
開発目標は、電子回路における集積密度の向上にある。
The main development goal of the semiconductor industry, which has been rapidly developing in recent years, is to improve the integration density of electronic circuits.

この高密度集積回路技術の形成において、最も重要でか
つ基本的な技術が微細加エバターンの形成技術である。
In the formation of this high-density integrated circuit technology, the most important and fundamental technology is the formation technology of finely processed evaporators.

微細加エバターンの形成には、従来より可視光線もしく
は紫外線を用いたホトリソグラフィー技術が用いられて
いたが、2μ犠以下の加工精度が要求される超微細加工
が行なえないため、近年電子線やX線を用いたリソグラ
フィー技術の開発が進められてきた。しかしながら、こ
のような方式は、加工精度が著しく向上するものの設備
も大がかりになり、極めて高額な投資を必要とする。
Photolithography technology using visible light or ultraviolet rays has traditionally been used to form finely processed evaturns, but in recent years electron beams and The development of lithography technology using lines has been progressing. However, although such a method significantly improves processing accuracy, it requires large-scale equipment and requires extremely high investment.

このような背景から、従来のフォトリソグラフィーより
若干高い加工精度、すなわち1μ愼〜2μ講の精度な持
つ微細加工を、従来使用していた紫外線よりもより波兼
の短い、いわゆる遠紫外光を用いて、比較的低額の投資
で安価に行なおうとする試みがなされてきた。
Against this background, microfabrication with a processing accuracy slightly higher than that of conventional photolithography, that is, an accuracy of 1 to 2 micrometers, is achieved using so-called deep ultraviolet light, which has a shorter wave length than the conventionally used ultraviolet light. Therefore, attempts have been made to do this at a low cost with a relatively low investment.

この遠紫外リソグラフィーに用いられる遠紫外用ポジ型
レジストとしては、ポリメチルメタクリレート及びポリ
メチルイソプロペニルケトン等が利用されているが、こ
れらはネガ型レジストに比較して解偉力に優れている反
面、感度が低く、かつ耐ドライエツチング性が劣るとい
う欠点を有している。
Polymethyl methacrylate, polymethyl isopropenyl ketone, etc. are used as deep UV positive resists used in this deep UV lithography, but while these resists have superior resolving power compared to negative resists, It has the drawbacks of low sensitivity and poor dry etching resistance.

本発明者らは、このような状況に鑑み、高感度で耐ドラ
イエツチング性を有する遠紫外用ポジ型レジストを開発
すべく鋭意検討した結果、4−メチルフェニルビニルケ
トンを用いて重合した樹脂を使用すれば、上記の問題が
一挙に解決できることを見い出し本発明を完成した。
In view of this situation, the inventors of the present invention conducted intensive studies to develop a positive resist for deep UV rays that has high sensitivity and dry etching resistance. The inventors have discovered that the above problems can be solved all at once by using the present invention, and have completed the present invention.

即ち、本発明の要旨とするところは、4−メチルフェニ
ルビニルケトン単位を少なくとも10モル係含有する重
合体からなる遠紫外用ポジ型レジスト樹脂にある。本発
明に係るレジスト樹脂の特徴は、遠紫外線に対し高い選
択分解性を有するケトン基及び耐ドライエツチング性を
有する芳香族環を側鎖に持つ4−メチルフェニルビニル
ケトン構造をレジスト樹脂中に導入した点にある。
That is, the gist of the present invention is a deep ultraviolet positive resist resin comprising a polymer containing at least 10 moles of 4-methylphenyl vinyl ketone units. The resist resin of the present invention is characterized by introducing into the resist resin a 4-methylphenyl vinyl ketone structure having a ketone group with high selective decomposition properties against deep ultraviolet rays and an aromatic ring with dry etching resistance in the side chain. That's the point.

本発明による遠紫外用レジスト樹脂は、4−メチルフェ
ニルビニルケトン単位を少なくとも10モル−含有する
ホモ重合体又は重合体からなる。4−メチルフェニルビ
ニルケトンと共重合可能な単量体の具体例としては、フ
ェニルビニルケトン、メチルメタクリレート、フェニル
メタクリレート、t−ブチルメタクリレート、べ/ジル
メタクリレート、メチルイソグロペニルケトン、スチレ
ン等があげられるがこれらに限定されない。これらの単
量体は、単量体モル慢に換算して90モル−をこえない
範囲で、1種又は2檜以上組み合せて4−メチルフェニ
ルビニルケトンと共重合される。もし重合体中の4−メ
チルフェニルビニルケトン単位の含t カ10モルー未
満になると耐ドライエツチング性の低下、感度低下、重
合安定性の低下等の問題が起こり好ましくない。
The deep ultraviolet resist resin according to the present invention consists of a homopolymer or polymer containing at least 10 moles of 4-methylphenyl vinyl ketone units. Specific examples of monomers copolymerizable with 4-methylphenyl vinyl ketone include phenyl vinyl ketone, methyl methacrylate, phenyl methacrylate, t-butyl methacrylate, be/zyl methacrylate, methyl isogropenyl ketone, and styrene. These include, but are not limited to: These monomers are copolymerized with 4-methylphenylvinyl ketone, either singly or in combination, within a range not exceeding 90 mol in terms of monomer molar ratio. If the content of 4-methylphenyl vinyl ketone units in the polymer is less than 10 moles, problems such as a decrease in dry etching resistance, a decrease in sensitivity, and a decrease in polymerization stability are undesirable.

本発明のレジスト樹脂を構成する重合体又は共重合体の
分子量及び分子量分布KIIしては特に制限はないが、
G、P、C法によりポリスチレン換算方式によって求め
た値で数平均分子量(Mn)が4.000未満であると
製膜時に均質な皮膜を作りにくくなり、またそれが50
Q、OO,Qを越えるとレジスト溶液濾過時の作業性が
低下するので、4.000≦Mn≦500,000の範
囲を満足するように設定するのが好ましい。またG、P
、C法によるポリスチレン換算方式によって求めた重量
平均分子量(MY)  と数平均分子量(Mn)の比(
MWAin )の値が5.0以上になると、解像度が低
下する傾向にある。従って(MvAin)は40未満と
なるように重合条件を選択した方が良い。
Although there are no particular limitations on the molecular weight and molecular weight distribution KII of the polymer or copolymer constituting the resist resin of the present invention,
If the number average molecular weight (Mn) is less than 4.000 as determined by the polystyrene conversion method using the G, P, C method, it will be difficult to form a homogeneous film during film formation;
If it exceeds Q, OO, or Q, the workability during resist solution filtration will deteriorate, so it is preferable to set it to satisfy the range of 4.000≦Mn≦500,000. Also G, P
, the ratio of the weight average molecular weight (MY) and the number average molecular weight (Mn) determined by the polystyrene conversion method using the C method (
When the value of MWAin ) becomes 5.0 or more, the resolution tends to decrease. Therefore, it is better to select polymerization conditions so that (MvAin) is less than 40.

本発明の遠紫外用ポジ型レジスト樹脂の製膜時に用いら
れる溶剤類とし【は、メチルセロソルブアセテート、エ
チルアセテート、イソブチルアセテート、イソプロピル
アセテート等があげられる。
Solvents used in forming the film of the positive resist resin for deep ultraviolet of the present invention include methyl cellosolve acetate, ethyl acetate, isobutyl acetate, isopropyl acetate, and the like.

本発明に係るレジスト樹脂の現偉液としては、メチルセ
ロソルブ、エチルセロソルブ、メチルイソブチルケトン
、メチルエチルケトン及びこれらとイソプロパツール等
の貧溶剤との混合等が好ましく用いられるが、照射部、
未照射部の溶解速度差が大きい溶剤であれば他の溶剤等
も使用できるのでレジスト膜に適した溶剤系を適宜選択
して決定すべきである。
As the liquid solution for the resist resin according to the present invention, methyl cellosolve, ethyl cellosolve, methyl isobutyl ketone, methyl ethyl ketone, and mixtures thereof with poor solvents such as isopropanol are preferably used.
Other solvents can be used as long as they have a large difference in dissolution rate in the unirradiated area, so a solvent system suitable for the resist film should be selected and determined as appropriate.

以下、本発明を実施例によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 4−メチルフェニルビニルケト/は、以下に示すように
Mann1ch反応を利用して合成した。
Example 1 4-methylphenylvinylketo/ was synthesized using the Mann1ch reaction as shown below.

4−メチルアセトフェノン134.2重量部、ジメチル
アミン塩酸塩897重量部及びノくラホルムアルデヒド
45重量部をイソブチルアルコール200重量部に溶解
させ、5時間還流攪拌反応させた後、反応溶液を50℃
のアセトン2、000重量部で希釈し、0℃まで冷却し
てMannich塩を析出させた。次いで1過、乾燥後
熱分解蒸溜することにより、4−メチルフェニルビニル
ケトンを80重量部得た。この4−メチルフェニルビニ
ルケトン50重量部及びアゾビスイソブチロニトリル1
05重量部をガラスアンプル中に仕込み、窒素置換した
後アンプルをガスバーナーで封管して60℃の回転重合
槽中に投入し″′C15時間重合させた。重合物をN、
N−ジメチルアセトアミド500重量部に溶解した後、
蒸溜水中に再沈殿させ、析出した重合体をグラスフィル
ターで濾過、乾燥させてボQ 4−メチルフェニルビニ
ルケトン40m118を得た。この重合体のテトラノ・
イドロフランを用いて測定した固有粘度〔η〕はα60
 at/9  であった。このポリ4−メチルフェニル
ビニλケトンをメチルセロソルブアセテートに溶解して
7.4重量%の濃度とした彼、スピンナーでシリコン基
板上に回転塗布した。乾燥後の膜厚は195μ惰であっ
た。レジストの感度は120℃で30分間プリベークを
行なった後、コールドミラーCM250を有するキャノ
ンPL人520 F  Deep  U V露光装置を
用(・て廁光彼、メチルイソブチルケトン及びメチルエ
チルケトンの混合比が容量比で4:1からなる20℃の
現俸液に3分間浸漬することにより判定した。
134.2 parts by weight of 4-methylacetophenone, 897 parts by weight of dimethylamine hydrochloride, and 45 parts by weight of nokuraformaldehyde were dissolved in 200 parts by weight of isobutyl alcohol, and the mixture was reacted with stirring under reflux for 5 hours, and then the reaction solution was heated at 50°C.
The mixture was diluted with 2,000 parts by weight of acetone and cooled to 0° C. to precipitate Mannich salt. The mixture was then dried for one filtration and then subjected to pyrolysis distillation to obtain 80 parts by weight of 4-methylphenyl vinyl ketone. 50 parts by weight of this 4-methylphenyl vinyl ketone and 1 part of azobisisobutyronitrile
05 parts by weight was placed in a glass ampoule, and after purging with nitrogen, the ampoule was sealed with a gas burner and placed in a rotating polymerization tank at 60°C, and polymerized for 15 hours.
After dissolving in 500 parts by weight of N-dimethylacetamide,
It was reprecipitated in distilled water, and the precipitated polymer was filtered with a glass filter and dried to obtain BoQ 4-methylphenyl vinyl ketone 40ml118. This polymer has a tetrano-
The intrinsic viscosity [η] measured using hydrofuran is α60
It was at/9. This poly-4-methylphenyl vinyl λ ketone was dissolved in methyl cellosolve acetate to a concentration of 7.4% by weight, and spin-coated onto a silicon substrate using a spinner. The film thickness after drying was 195μ. The sensitivity of the resist was determined by pre-baking at 120°C for 30 minutes and then using a Canon PL 520 F Deep UV exposure system with a cold mirror CM250 (as shown in Figure 3). Judgment was made by immersing the sample in a 20°C current solution containing a ratio of 4:1 for 3 minutes.

このレジスト樹脂は照射部の膜厚がゼロとなるのに25
秒の露光量を必要とした。また同一条件で測定した市販
0DUR1014(東京応化■製)は60秒の露光量を
必要とした。このレジスト膜をCF4ガスプラズマでド
ライエツチング処理を行ったところ0DUR1014の
エツチング速度の27Sであった。
Although this resist resin has a film thickness of zero in the irradiated area, it is
It required an exposure amount of seconds. Furthermore, commercially available 0DUR1014 (manufactured by Tokyo Ohka Corporation), which was measured under the same conditions, required an exposure amount of 60 seconds. When this resist film was dry etched using CF4 gas plasma, the etching rate was 27S, which is 0DUR1014.

実施例2 実施例1と同様の方法にて合成した4−メチルフェニル
ビニルケトン50重量部、メチルメタクリレート50重
量部及びアゾビスイソブチロニトリル11重量部をガラ
スアンプル中に仕込み窒素置換した後ガスバーナーで封
管し、60℃の回転重合槽中に投入し5時間重合させた
。重合物をNN−ジメチルアセトアミド500重量部に
溶解させた後、蒸溜水中に再沈殿させ、析出した重合体
をグラスフィルターで1過、乾燥して重合体60重量部
、を得た。この重合体のテトラハイドロフランを用いて
測定した固有粘度〔η〕はt2dt/f であった。次
にこの重合体をメチルセロソルブアセテートに溶解して
6重量%の濃度とした後、スピンナーでシリコン基板上
に回転塗布し乾燥させて膜厚1μ蟻の皮膜を形成させた
。実施例1と同様の方法にて感度を調べたところ58秒
の露光時間を必要とした。またCF4ガスプラズマ中で
のエツチング速度は、市販0DUR1014の3/4で
あった。
Example 2 50 parts by weight of 4-methylphenyl vinyl ketone, 50 parts by weight of methyl methacrylate, and 11 parts by weight of azobisisobutyronitrile synthesized in the same manner as in Example 1 were charged into a glass ampoule and replaced with nitrogen gas. The tube was sealed with a burner, placed in a rotating polymerization tank at 60°C, and polymerized for 5 hours. After dissolving the polymer in 500 parts by weight of NN-dimethylacetamide, it was reprecipitated in distilled water, and the precipitated polymer was filtered once through a glass filter and dried to obtain 60 parts by weight of the polymer. The intrinsic viscosity [η] of this polymer measured using tetrahydrofuran was t2dt/f. Next, this polymer was dissolved in methyl cellosolve acetate to a concentration of 6% by weight, and then spin-coated onto a silicon substrate using a spinner and dried to form a film with a thickness of 1 μm. When the sensitivity was examined in the same manner as in Example 1, it was found that an exposure time of 58 seconds was required. Furthermore, the etching rate in CF4 gas plasma was 3/4 that of commercially available 0DUR1014.

実施例5 実施例1と同様の方法にて合成した4−メチルフェニル
ビニルケトンso重量s、フェニルビニル@ヘン50重
量部及びアゾピスイソプチロニ) hJα05重量部を
ガラスアンプル中に仕込み、窒素置換した後、ガスバー
ナーで封管し、60℃の回転重合槽中に投入し5時間重
合させた。重合物をN、N−ジメチルアセトアミド50
0重量部に溶解した後蒸溜水中に再沈殿させ、析出した
重合体をグラスフィルターで濾過、乾燥して重合体46
重量部を得た。この重合体のテトラハイドロフランを用
いて測定した固有粘度〔マ〕はαb s dt/l  
であった。この重合体をメチルセロソルブアセテートに
溶解して7.4重量%の濃度とした後スピンナーでシリ
コン基板上に回転塗布した。乾燥後の膜厚はcL96μ
であった。実施例1と同様な方法にて感度を調べたとこ
ろ、32秒の露光時間を必要とした。
Example 5 4-methylphenyl vinyl ketone so weight s, phenylvinyl@hen 50 weight parts and azopis isoptiloni) hJα0 5 weight parts synthesized in the same manner as in Example 1 were charged into a glass ampoule and replaced with nitrogen. After that, the tube was sealed with a gas burner, and the tube was placed in a rotating polymerization tank at 60° C. and polymerized for 5 hours. The polymer was converted into N,N-dimethylacetamide 50
After dissolving the polymer to 0 parts by weight, it was reprecipitated in distilled water, and the precipitated polymer was filtered with a glass filter and dried to obtain Polymer 46.
Parts by weight were obtained. The intrinsic viscosity of this polymer measured using tetrahydrofuran is αb s dt/l
Met. This polymer was dissolved in methyl cellosolve acetate to a concentration of 7.4% by weight, and then spin-coated onto a silicon substrate using a spinner. Film thickness after drying is cL96μ
Met. When the sensitivity was examined in the same manner as in Example 1, it was found that an exposure time of 32 seconds was required.

またCF、ガスプラズマ中でのエツチング速度は市販0
DUR1014の215であった。
In addition, the etching rate in CF and gas plasma is commercially available.
It was 215 of DUR1014.

Claims (1)

【特許請求の範囲】[Claims] 4−メチルフェニルビニルケトン単位を少なくとも10
モル係含有する重合体からなる遠紫外用ポジ型レジスト
樹脂
At least 10 4-methylphenyl vinyl ketone units
Far-UV positive resist resin made of polymer with molar ratio
JP17159581A 1981-10-27 1981-10-27 Positive type resist resin for far ultraviolet rays Pending JPS5872938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17159581A JPS5872938A (en) 1981-10-27 1981-10-27 Positive type resist resin for far ultraviolet rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17159581A JPS5872938A (en) 1981-10-27 1981-10-27 Positive type resist resin for far ultraviolet rays

Publications (1)

Publication Number Publication Date
JPS5872938A true JPS5872938A (en) 1983-05-02

Family

ID=15926071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17159581A Pending JPS5872938A (en) 1981-10-27 1981-10-27 Positive type resist resin for far ultraviolet rays

Country Status (1)

Country Link
JP (1) JPS5872938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115263A (en) * 2006-11-02 2008-05-22 Chisso Corp Alkali-soluble polymer and positive type photosensitive resin composition using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125415A (en) * 1980-03-10 1981-10-01 Hitachi Ltd Photosensitive copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125415A (en) * 1980-03-10 1981-10-01 Hitachi Ltd Photosensitive copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115263A (en) * 2006-11-02 2008-05-22 Chisso Corp Alkali-soluble polymer and positive type photosensitive resin composition using the same

Similar Documents

Publication Publication Date Title
US4857435A (en) Positive photoresist thermally stable compositions and elements having deep UV response with maleimide copolymer
US5059513A (en) Photochemical image process of positive photoresist element with maleimide copolymer
WO2016132722A1 (en) Polymer and positive resist composition
Kim et al. Novel photobleachable deep UV resists based on single component nonchemically amplified resist system
JPS5872938A (en) Positive type resist resin for far ultraviolet rays
JP6680292B2 (en) Polymer, positive resist composition, and method for forming resist pattern
CN113219789A (en) Star-shaped ArF photoresist film-forming resin, preparation method thereof and photoresist composition
JPH0643646A (en) Photoresist composition
JP6750317B2 (en) Copolymer and positive resist composition
JPS62240953A (en) Resist
JPS617835A (en) Resist material
US4636454A (en) Method for the preparation of a patterned photoresist layer and a photoresist composition therefor
JPH0379670A (en) Negative type radiation sensitive resin composition
WO2016132727A1 (en) Polymer and positive resist composition
Kim et al. Environmentally Friendly Negative Resists Based on Acid‐Catalyzed Acetalization for 193‐nm Lithography
JPS62223750A (en) Radiation sensitive positive type resist and such resist composition
US4617254A (en) Process for forming detailed images
JPS6349212B2 (en)
JPH01155336A (en) Radiation sensitive resin
JPS6349211B2 (en)
JPS6234908A (en) Alpha-methylstyrene polymer containing silicon and vinyl group, composition containing same and use thereof
JPS6120031A (en) Resist material and its preparation
JPS5848046A (en) Resist material for use in far ultraviolet exposure
JPH0377985B2 (en)
JPH0145611B2 (en)