JPS5872531A - Preparation of carbonyl compound - Google Patents
Preparation of carbonyl compoundInfo
- Publication number
- JPS5872531A JPS5872531A JP56171348A JP17134881A JPS5872531A JP S5872531 A JPS5872531 A JP S5872531A JP 56171348 A JP56171348 A JP 56171348A JP 17134881 A JP17134881 A JP 17134881A JP S5872531 A JPS5872531 A JP S5872531A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carrier
- rhodium
- oxygen
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はオレフィンからカルボニル化合物を製造する方
法に関し、詳しくは特定の触媒の存在下でオレフィンを
酸化して効率よくカルボニル化合物を製造する方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbonyl compounds from olefins, and more particularly to a method for efficiently producing carbonyl compounds by oxidizing olefins in the presence of a specific catalyst.
従来より、オレフィンから相当するカルボニル化合物を
製造する方法としては、ヘキスト・ワンカー法が最もよ
く知られており、エチレン、プロピレンについてはすで
に工業的にも実施されている。一般にヘキスト・ワッ\
カー法で用いられている触媒とじ−では、塩化パラジウ
ムおよび塩化第コ銅水溶液が用いられ、次のように反応
が進行することがよく知られている。Conventionally, the Hoechst-Wanker method is the most well-known method for producing the corresponding carbonyl compound from olefins, and has already been used industrially for ethylene and propylene. Hoechst Wat in general
It is well known that the catalyst binding used in the Kerr method uses an aqueous solution of palladium chloride and cupric chloride, and that the reaction proceeds as follows.
02H4+ H,、O+ Pd(J2−+ 0H3CH
O+Pd +2HaePd + 2Cu(J −+
PdC4□+ 20uCM2CuCJ+ 2HCI+
802 →2 CucJ2 +H20しかしながら、上
式より明らかなように、この反応においては再酸化触媒
としての塩化第コ銅が反応系に存在しないと、塩化パラ
ジウムか金属パ、ラジウムになったところで反応は停止
し、化学量論的な生成物(アセトアルデヒド)しか得う
れない。したがって、オレフィンの酸化を触媒反応的に
進行させるためには、再酸化触媒として多量の塩化第2
銅を用いる必要があり、その結果として塩素化物などを
生じ、複雑な精製処理を必要とするばかりか、腐食性が
著しいためにチタン、ガラスなどの高価な材料の装置を
必要とする一方、装置運転上の支障も多く大きな問題点
を有している。02H4+ H,, O+ Pd(J2−+ 0H3CH
O+Pd +2HaePd+2Cu(J −+
PdC4□+ 20uCM2CuCJ+ 2HCI+
802 →2 CucJ2 +H20 However, as is clear from the above equation, in this reaction, if cupric chloride as a reoxidation catalyst is not present in the reaction system, the reaction will stop when palladium chloride or metal palladium or radium is reached. However, only a stoichiometric product (acetaldehyde) can be obtained. Therefore, in order to progress the oxidation of olefins in a catalytic manner, it is necessary to use a large amount of chloride as a reoxidation catalyst.
Not only does it require the use of copper, which results in the production of chlorides and other complex purification processes, but it is also extremely corrosive, requiring equipment made of expensive materials such as titanium and glass. There are many problems with driving, and there are many problems.
さらに、このヘキスト・ワンカー法へは、エチレンやプ
ロピレンと比較して反応性に劣るところのブテン以上の
高級オレフィンについては、種々の障害があって工業化
されておらず、特にブテンの酸化による広い用途を有す
るメチルエチルケトンの製造には適用できない欠点があ
る。Furthermore, the Hoechst-Wanker method has not been industrialized due to various obstacles in the production of higher olefins such as butene, which have lower reactivity than ethylene and propylene, and in particular, it has not been widely used by oxidizing butene. There are drawbacks that make it inapplicable to the production of methyl ethyl ketone with
これらの欠点を解消する製造方法として、パラジウムお
よび/またはロジウムの塩を活性炭に特定された条件下
に吸着せしめた触媒を用い、実質的に再酸化剤を用いな
いでオレン、インからカルボニル化合物を製造する方法
が提案されている(特公昭1I5−576S号公報、特
公昭117−172gg号公報)。As a production method that overcomes these drawbacks, carbonyl compounds can be converted from olene and yne substantially without using a reoxidizing agent by using a catalyst in which palladium and/or rhodium salts are adsorbed on activated carbon under specified conditions. A manufacturing method has been proposed (Japanese Patent Publication No. 115-576S, Japanese Patent Publication No. 117-172gg).
しかしながら、この方法にあってもヘキスト・ワンカー
法と同様に、オレフィンがブテンの場合のように反応性
の低いものへの適用が困難であるという欠点がある。し
かもここで用いる触媒はその調製条件によって性能に著
しいばらつきがあり、また触媒強度も充分といえず、ヘ
キスト・ワンカー法のもっている多くの問題点を解消す
るまでには至っていない。However, like the Hoechst-Wanker method, this method also has the drawback that it is difficult to apply to olefins with low reactivity such as butene. Moreover, the performance of the catalyst used here varies considerably depending on its preparation conditions, and the catalyst strength is not sufficient, so that many of the problems of the Hoechst-Wanker method have not yet been solved.
本発明者らは、工業的製造法として問題点が少なく、シ
かも反応性の低いブテンの接触酸化によるメチルエチル
ケトンの製造方法について、種々の触媒あるいは°担体
について鋭意研究した結果、ロジウム塩とある種の担体
を組合せた触媒を使用することにより、再酸化剤を必要
とせずに、メチルエチルケトンを効率よく製造できるこ
とを既に見出している′−(特願昭S乙−2/377)
。The present inventors have conducted intensive research on various catalysts and supports for a method for producing methyl ethyl ketone by catalytic oxidation of butene, which has few problems as an industrial production method and has low reactivity. It has already been discovered that methyl ethyl ketone can be efficiently produced without the need for a reoxidizing agent by using a catalyst in combination with a carrier of
.
本発明は、上記方法を改良し、さらにすぐれたカルボニ
ル化1合物の製造方法を提供することを目的とするもの
であり、その構成は、ロジウム塩および周期律表第m、
■、vあるいは■族の典型元素を担体に担持してなる触
媒を用いて、オレフィンと酸素または酸素含有ガスを水
の存在下で反応させることを特徴とするカルボニル
方法である。The present invention aims to improve the above-mentioned method and provide an even better method for producing carbonylated compound 1, which consists of a rhodium salt and m-th compound of the periodic table.
This is a carbonyl method characterized by reacting an olefin with oxygen or an oxygen-containing gas in the presence of water using a catalyst comprising a typical element of group (1), (v) or (2) supported on a carrier.
本発明の方法に用いる触媒は、触媒成分を担持してなる
ものである。ここで担体としては、各種のものかあシ、
目的等に応じて適宜選定すればよいが、通常はシリカ、
アルミナ、シリカ−アルミナ、ゼオライトまたは活性炭
などが用いられ、特に比表面積30m2/ψ以上、とり
わけ30〜1000m2/?のものが好ましい。一方、
との担体に担持すべき触媒成分は、ロジウム塩および周
期律表第1,IV,Vあるいは■族の典型元素である。The catalyst used in the method of the present invention supports catalyst components. Here, as a carrier, various types of supports,
It may be selected as appropriate depending on the purpose, etc., but usually silica,
Alumina, silica-alumina, zeolite, activated carbon, etc. are used, and the specific surface area is 30 m2/ψ or more, especially 30 to 1000 m2/? Preferably. on the other hand,
The catalyst component to be supported on the carrier is a rhodium salt and a typical element of Groups 1, IV, V or II of the periodic table.
ここでロジウム塩としては、水,酸のような水溶液また
はアルコールのような有機溶媒に溶解する無機酸,有機
酸の塩なら・ばいずれを用いることもできる。例えばロ
ジウムの塩化物,臭化物。Here, as the rhodium salt, any salt of an inorganic acid or an organic acid that can be dissolved in water, an aqueous solution such as an acid, or an organic solvent such as an alcohol can be used. For example, rhodium chloride and bromide.
硫酸塩,硝酸塩,塩素酸塩などの無機塩あるいはギ酸塩
,酢酸塩,モノクロル酢酸塩,ナフテン酸塩などの有機
酸塩またはこれらの混合物があシ、これらのうちロジウ
ムのノ・ロダン化物、とりわけ塩化物が好適である。ま
た、周期律表第■+ IQ +■あるいは■族の典型元
素としては、ホウ素,アルミニウム、ガリウム、タリウ
ム、ゲルマニウム。Inorganic salts such as sulfates, nitrates, chlorates, organic acid salts such as formates, acetates, monochloroacetates, naphthenates, or mixtures thereof; Chlorides are preferred. Typical elements of group ■+IQ+■ or group ■ of the periodic table include boron, aluminum, gallium, thallium, and germanium.
スy: + 鉛+ ’)ン,アンチモン、ビスマス、テ
ルルなどかあり、そのうちタリウム、ゲルマニウム。Sy: + Lead + ') N, antimony, bismuth, tellurium, etc. Among them, thallium and germanium.
スズ、鉛,リン、テルル、ビスマスなどが特に好ましい
。これらの典型元素は通、常はこれらの元素を含む各種
化合物の形態で担持される。ここで典型元素を酸化物の
形態で用いる場合、少量の塩酸を添加することが好まし
い。Particularly preferred are tin, lead, phosphorus, tellurium, bismuth, and the like. These typical elements are usually supported in the form of various compounds containing these elements. When the typical element is used in the form of an oxide, it is preferable to add a small amount of hydrochloric acid.
触媒成分の担体への相持量は、特に制限はなくまた各種
条件により異なり一義的に定めることはできないが、通
常はロジウム塩を担体に対して金属として0.7〜10
重量%、好ましくはのり〜り重量%とすべきである。ま
た、周期律表第■〜■族の典型元素については、上記ロ
ジウム塩の金属ロジウムに対して0.2〜70倍、好ま
しくは0.り〜S倍の範囲で選定すべきである。The amount of the catalyst component supported on the carrier is not particularly limited and varies depending on various conditions and cannot be unambiguously determined, but it is usually 0.7 to 10% of the amount of rhodium salt as metal to the carrier.
It should be % by weight, preferably % by weight. Further, regarding the typical elements of groups ① to ② of the periodic table, 0.2 to 70 times, preferably 0.2 to 70 times, the metal rhodium of the above rhodium salt. It should be selected within the range of ~S times.
これらの触媒成分の担体への担持方法は、特に制限はな
く、通常の含浸法、吸着法を用いて担持する方法や触媒
成分の水溶液とコロイド状のシリカまたはアルミナを加
え濃縮固化後成形する方法を採用することができる。ま
た、上記触媒成分を担体に担持するにあたっては、ロジ
ウム塩と上記典型元素を同時に担体に担持させる一段法
によってもよく、あるいは二段もしくはそれ以上に分け
て担持させる方法によってもよい。There are no particular restrictions on the method of supporting these catalyst components on the carrier, such as a method of supporting them using a normal impregnation method or an adsorption method, or a method of adding an aqueous solution of the catalyst components and colloidal silica or alumina, concentrating and solidifying and then shaping. can be adopted. Further, in supporting the catalyst component on the carrier, a one-stage method may be used in which the rhodium salt and the above-mentioned typical elements are simultaneously supported on the carrier, or a method may be employed in which the catalyst components are supported in two or more stages.
触媒成分を担持した担体は、乾燥後10θ〜Sθ0℃、
好ましくは150〜グ00℃の温度で、空気、窒素まだ
はアルゴンなどの不活性ガス:塩素ガスなどの雰囲気下
で7〜70時間焼成することによって、活性が高くしか
も安定した触媒が得られる。After drying, the carrier supporting the catalyst component has a temperature of 10θ to Sθ0°C,
A highly active and stable catalyst can be obtained by calcining for 7 to 70 hours, preferably at a temperature of 150 to 00°C, in an atmosphere of air, nitrogen, inert gas such as argon, or chlorine gas.
上述の如く調製した触媒を用いることにより、芽レフイ
ンからそれぞれのオレフィンに相当するカルボニル化合
物を効率よく製造することができる。ここそ用いること
のできるオレフィンとしてハ、エチレン、プロピレン、
n−ブテン−/。By using the catalyst prepared as described above, carbonyl compounds corresponding to each olefin can be efficiently produced from sprout refin. Examples of olefins that can be used are ethylene, propylene,
n-butene/.
n−ブテン−,2,n−ヘキセンなどの脂肪族直鎖オレ
フィン;3−メチルブテンー/、3−メチルペ/テン−
/などの側鎖を有する脂肪族すレフイン”、/、3−デ
タジエン、シクロヘキサゾエンなどのジオレフイ/;シ
クロペンテン、シクロヘキセンなどの脂環族オレフィン
等をあげることができる。またこれらのオレフィンとし
ては、n−ブテン−/、n−プテノーコなどの混合物、
さらにはn−ブタン、イソブタンなどの飽和炭化水素や
窒素が混在したものを用いることもできる。Aliphatic linear olefins such as n-butene-, 2,n-hexene; 3-methylbutene-/, 3-methylpe/thene-
Diolefins such as /, 3-detadiene, cyclohexazoene, and alicyclic olefins such as cyclopentene and cyclohexene can be cited as examples of these olefins. mixtures such as n-butene-/, n-putenoco,
Furthermore, a mixture of saturated hydrocarbons such as n-butane and isobutane and nitrogen can also be used.
本発明における原料オレフイ/からカルボニル化合物を
製造する方法は、原料オレフィンを酸素まだは酸素含有
ガスと混合し、通常水蒸気の存在下で、5θ〜230°
C1好ましくは10θ〜/、gθ℃の温度にて、上記触
媒と接触するゝことによってカルボニル化合物を製造す
るものである。The method of producing a carbonyl compound from a raw material olefin in the present invention involves mixing the raw material olefin with oxygen or an oxygen-containing gas, usually in the presence of water vapor, at a temperature of 5θ to 230°.
C1 The carbonyl compound is produced by contacting with the above catalyst at a temperature of preferably 10θ to gθ°C.
反応方式は、固定床、流動床、移動床のいずれを用いる
こともできる。また反応は原料オレフィンによっても異
なるが、気相法、気液混合法、液相法を用いて行なわれ
るが、好ましくは気相反応中流通式にて行なう。特に気
相反応を採用することが、生7成物の分離、精製の点で
有利である。また反応圧力としては特に制限はなく50
気圧以下で行なわれる。As for the reaction method, any of fixed bed, fluidized bed, and moving bed can be used. The reaction is carried out using a gas phase method, a gas-liquid mixing method, or a liquid phase method, although the reaction differs depending on the raw material olefin, and is preferably carried out in a flow system during the gas phase reaction. In particular, it is advantageous to employ a gas phase reaction in terms of separation and purification of the product. In addition, there is no particular restriction on the reaction pressure, and 50
It is carried out below atmospheric pressure.
さらに酸素含有ガスとしては、空気または酸素と不活性
ガス(窒素など)との混合ガスなどが適当であり、水は
予熱層を通して気化し水蒸気として反応系に導入される
。Further, as the oxygen-containing gas, air or a mixed gas of oxygen and an inert gas (such as nitrogen) is suitable, and water is vaporized through the preheating layer and introduced into the reaction system as water vapor.
オレフィン、酸素または酸素含有ガス、および水蒸気の
混合比は、原料オレフィンの種類、反応条件などにより
任意に決定される。例えば、n−ブテンを用いてメチル
エチルケトンを製造する場合には、n−ブテン:酸素ま
たは酸素含有ガス:水蒸気=/:/〜コθ:/〜20の
混゛合割合(容量比)が適当である。またこれらの混合
ガスと触媒との接触時間は、3〜3θ秒程度、好ましく
は、5−N2θ秒である。The mixing ratio of olefin, oxygen or oxygen-containing gas, and water vapor is arbitrarily determined depending on the type of raw material olefin, reaction conditions, and the like. For example, when producing methyl ethyl ketone using n-butene, an appropriate mixing ratio (volume ratio) of n-butene:oxygen or oxygen-containing gas:steam =/:/~coθ:/~20 is appropriate. be. Further, the contact time between these mixed gases and the catalyst is about 3 to 3θ seconds, preferably 5-N2θ seconds.
以上の如く、本発明の方法によれば、アセトアルデヒド
、アセトン、メチルエチルケトンなど有用なカルボニル
化合物を効率よく製造することができる。特にブテンの
ような反応性の低いオレフィンから効果的にメチルエチ
ルケトンを製造することができることは、ヘキスト・ワ
ンカー法や活性炭担体を用いる従来技術にない大きな特
徴である。しかも本発明の方法はヘキスト・ワンカー法
で大きな問題となっている塩化物による腐食がなく、ま
た触媒の強度、安定性とあいまって工業的にすぐれた製
造方法を提供することを可能にするものである。As described above, according to the method of the present invention, useful carbonyl compounds such as acetaldehyde, acetone, and methyl ethyl ketone can be efficiently produced. In particular, the ability to effectively produce methyl ethyl ketone from olefins with low reactivity such as butene is a major feature not found in the Hoechst-Wanker process or conventional techniques using activated carbon carriers. Moreover, the method of the present invention does not cause corrosion due to chlorides, which is a major problem in the Hoechst-Wanker method, and together with the strength and stability of the catalyst, it makes it possible to provide an industrially excellent production method. It is.
また、本発明の方法は、使用する触媒が担体にロジウム
塩のみならず、周期律表第■〜■族の典型元素をも併せ
て担持してなるものであるため、ロジウム塩のみを担体
に担持した触媒を用いる方法に比べてカルボニル化合物
の反応収率が高く良好なSTY (空時収量)を与える
ものである。In addition, in the method of the present invention, since the catalyst used is one in which not only a rhodium salt but also typical elements of Groups 1 to 2 of the periodic table are supported on a carrier, only a rhodium salt can be used as a carrier. Compared to methods using supported catalysts, this method provides a higher reaction yield of carbonyl compounds and better STY (space-time yield).
実施例
SnC’−M465HzOO939?をSθmlの水に
溶解し、γ−Ai203成形担体(3嘔φ×3閣、比表
面積コθom27y−>tyθ2に含浸後、空気流通下
Sθθ℃でグ時間焼成した。次いで/2のRh+43・
3H20をSθmlの水に溶解し、上記担持触媒に含浸
後、空気流通下λθθ℃で3時間焼成し、 Phが7重
量% + snがθ、左重量係担持された触媒を得た。Example SnC'-M465HzOO939? was dissolved in Sθml of water and impregnated onto a γ-Ai203 molded carrier (3mmφ x 3mm, specific surface area: θom27y->tyθ2, and then calcined at Sθθ°C under air circulation for a period of 2 hours.
3H20 was dissolved in Sθml of water, impregnated into the supported catalyst, and then calcined for 3 hours at λθθ°C under air circulation to obtain a supported catalyst with a Ph of 7% by weight + sn of θ, and a left weight ratio.
得られた触媒39m1を直径、25mのガラス製管状反
応器に充填し、/−ブチ77.5%、酸素S%。39 ml of the obtained catalyst was packed into a glass tubular reactor with a diameter of 25 m, containing 77.5% of butylene and S% of oxygen.
窒素/7.5%、水70%(容量組成)からなる混合ガ
スを、/3S0C2常圧、接触時間9秒で流し表−/に
示す結果を得た。A mixed gas consisting of 7.5% nitrogen and 70% water (volume composition) was flowed at /3S0C2 normal pressure and for a contact time of 9 seconds to obtain the results shown in the table.
比較例 /
/2のRhCJV、3・3H20を3θmlの水に溶解
し、γ−A1□03成形担体(311IIIφ×311
IK、比表面積コθOm2/1)IIθ1に含浸後、空
気流通下20θ℃で3時間焼成し、Rhが/重量係担持
された触媒を調製し、実施例/と同様に反応させた結果
を表−/に示す。Comparative Example / /2 RhCJV, 3.3H20 was dissolved in 3θml of water, and γ-A1□03 molded carrier (311IIIφ×311
IK, specific surface area (θOm2/1) II After impregnating with θ1, the catalyst was calcined at 20θ°C for 3 hours under air circulation to prepare a catalyst in which Rh was supported by weight, and the results were reacted in the same manner as in Example/. - Shown in /.
実1施例 2
Sn(J4−5H20−θ、!; 9 ffおよびRh
(J3−3H20/ Pを3θmlの水にi解し、γ−
M203成形担体(31φX3101.比表面積20θ
m2/ P ) ’Iθ?に含浸後、空気流通下、20
0℃で3時間焼成し、Rhが7重量% + Snがθ、
5重量係担持された触媒を調製し、実施例/と同様に反
応させた結果を表−/に示す。Example 1 Example 2 Sn (J4-5H20-θ,!; 9 ff and Rh
(J3-3H20/P was dissolved in 3θml of water, and γ-
M203 molded carrier (31φX3101. Specific surface area 20θ
m2/P) 'Iθ? After impregnation, under air circulation, 20
Calcinate at 0℃ for 3 hours, Rh is 7% by weight + Sn is θ,
A catalyst supported at a weight of 5 was prepared and reacted in the same manner as in Example 1. The results are shown in Table 2.
実施例3〜S
Rh、Snの担持量を変えた以外は、゛実施例/と同様
に触媒を調製し、反応させた結果を表−/に示す。Example 3~S A catalyst was prepared in the same manner as in Example 3, except that the supported amounts of Rh and Sn were changed, and the reaction results are shown in Table 1.
実施例6〜g
それぞれ0.3 P 、 04. f 、 /−2’t
(7) Bi(J3ヲ3Qmlの水に溶解し、γ−A
1゜03成形担体(3Mn<6−X31EIl、比表面
積、;toom27y、以下同じ)。Examples 6-g 0.3 P, 04. f, /-2't
(7) Bi (J3 dissolved in 3Qml of water, γ-A
1°03 shaped carrier (3Mn<6-X31EIl, specific surface area; toom27y, same below).
1iotに含浸後、空気流通下、1loo℃で9時間焼
成した。次いで/1のRhcz3−3 H2Oを3θm
lの水に溶解し、上記担持触媒に含浸後、空気流通下2
00℃で3時間焼成することにより触媒を調製し、反応
させた結果を表−/に示す。After being impregnated to 1iot, it was baked at 1looo C. for 9 hours under air circulation. Then /1 Rhcz3-3 H2O was added to 3θm
After dissolving in 1 of water and impregnating the above supported catalyst,
A catalyst was prepared by firing at 00° C. for 3 hours, and the results of the reaction are shown in Table 1.
実施例9〜/θ
5n(J4−5 H20θ、Sワグの代わりに0.25
P 。Example 9~/θ 5n (J4-5 H20θ, 0.25 instead of S Wag
P.
0.51のT e O2を3θmlの濃塩酸に溶解した
こと以外は実施例/に準じて操作を行なった。その結果
を表−/に示す。The procedure in Example 1 was followed except that 0.51 T e O2 was dissolved in 3θml of concentrated hydrochloric acid. The results are shown in Table-/.
実施例 /l ・
0.73 tの町po、(8度g5%)および/1のR
hCl3.3H20を用いたこと以外は実施例コに準じ
て操作を行なった。その結果を表−/に示す。Example /l ・0.73t town po, (8 degrees g5%) and /1 R
The operation was carried out according to Example 1, except that hCl3.3H20 was used. The results are shown in Table-/.
実施例/2
0.3 g t ノGeCA4を!r Omlノ’7
セトンK i解L、r−A!203成形担体1lotに
含浸後空気流通下20θ℃で3時間焼成した。以後実施
例/に準じて操作を行なった。その結果を表−/に示す
。Example/2 0.3 g t GeCA4! r Omlノ'7
Seton K i solution L, r-A! After impregnating 1 lot of 203 molded carrier, it was baked at 20θ°C for 3 hours under air circulation. Thereafter, operations were performed according to Example/. The results are shown in Table-/.
実施例/、3 、 /1I
SnCJ−4・5 H20θ、!; 9 ffの代わり
に、それぞれθ、23 P (7) T−eCJ3.0
.2 A ? +7) Pb(J□を用いたこと、以外
は実施例/に準じて操作を行な′った。その結果を表−
/に示す。Example/, 3, /1I SnCJ-4・5 H20θ,! ; instead of 9 ff, θ, 23 P (7) T-eCJ3.0, respectively
.. 2 A? +7) The operation was carried out according to Example/, except that Pb (J□) was used.The results are shown in Table-
/ Shown in /.
比較例コーグ
S、nCl−4の代わシに、0acf2 + RhCl
2 ’ * KCJを用いたこと以外は実施例/に準じ
て操作を行なった。Comparative Example Korg S, 0acf2 + RhCl instead of nCl-4
The operation was carried out in accordance with Example/, except that 2'*KCJ was used.
その結果を表−/に示す。The results are shown in Table-/.
比較例 5
Rh(J3−3H20およびCucJV、2を用いて、
Rh 7重量% 、 C!u 2.!;重重量例なるよ
うにγ−八へ203成形担体に含浸後、空気流通下20
0℃で9時間焼成して触媒を調製し、以下は実施例/に
準じて反応を行なった。その結果を表−2に示す。Comparative Example 5 Rh (using J3-3H20 and CucJV, 2,
Rh 7% by weight, C! u2. ! ; After impregnating γ-8 into 203 molded carrier, under air circulation 20
A catalyst was prepared by calcining at 0° C. for 9 hours, and the following reaction was carried out according to Example. The results are shown in Table-2.
比較例 乙
pact□およびCucJ 2を用いて、Pd 7重量
%、鬼
Cu l、重量係になるようにγ−A1□0辷成形担体
に含浸後、空気流通下200℃で9時間焼成して触媒を
調製し、以下は実施例/に準じて反応を行なった。その
結果を表−コに示す。Comparative Example Using Otsu pact□ and CucJ 2, a γ-A1□0 roll-formed carrier was impregnated with 7% by weight of Pd, 7% by weight of OniCu l, and then baked at 200°C under air circulation for 9 hours. A catalyst was prepared, and the following reaction was carried out according to Example. The results are shown in Table C.
表−2
比較例A46.0 4B、7 22.4
*2中1 メfルエチルケ′ト/を示す。Table-2 Comparative example A46.0 4B, 7 22.4
*1 of 2 indicates methyl ethyl keto/.
$2 上記比較例5.4においては、生成物中に油状物
質が認められ、ガヌクロマトグラフ分析の結果C3,、
C4の塩化物であった。$2 In Comparative Example 5.4 above, an oily substance was observed in the product, and the result of Ganu chromatography analysis was C3.
It was C4 chloride.
第1頁の続き
0発 明 者 弘中義雄
手続補正書(自発)
昭和56年11月27日
特許庁長官島田春樹殿
1、事件の慶示
特願昭56−171548
2発明の名称
カルボニル化合物の製造方法
五補正をする者
事件との関係 特許出願人
出光興産株式金社
表代理人
〒104
東京都中央区京橋1丁目1番10号
翫補正の対象
明細書の発明の詳細な説明の欄
4補正の内容
明細書第10頁下からS行目のr Ph Jt[ph
Jに訂正する。Continued from page 1 0 Inventor Yoshio Hironaka Procedural amendment (spontaneous) November 27, 1980 Haruki Shimada, Commissioner of the Japan Patent Office 1 Keiji patent application 171548 1982 2 Name of the invention Manufacture of carbonyl compounds Method 5 Relationship with the case of the person making the amendment Patent applicant Idemitsu Kosan Co., Ltd. Representative Agent Address: 1-10 Kyobashi, Chuo-ku, Tokyo 104 4th amendment in the detailed description of the invention in the specification to be amended r Ph Jt [ph
Correct to J.
Claims (1)
族の典型元素を担体に担持してなる触媒を用いて、オレ
フィンと酸素または酸素含有ガスを水の存在下で反応さ
せることを特徴とするカルボニル化合物の製造方法。 2 反応を水の存在下、気相で行なう特許請求の範囲第
1項記載の製造方法。 3、担体が、比表面積30 m2/ f以上のシリカ。 アルミナ、シリカ−アルミナ、ゼオライトまたは活性炭
である特許請求の範囲第1項記載の製造方法。[Claims] 1 Rhodium salt and periodic table m, ■, v or ■
1. A method for producing a carbonyl compound, which comprises reacting an olefin with oxygen or an oxygen-containing gas in the presence of water using a catalyst comprising a typical element of the group supported on a carrier. 2. The production method according to claim 1, wherein the reaction is carried out in the gas phase in the presence of water. 3. The carrier is silica with a specific surface area of 30 m2/f or more. The manufacturing method according to claim 1, which is alumina, silica-alumina, zeolite or activated carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56171348A JPS5872531A (en) | 1981-10-28 | 1981-10-28 | Preparation of carbonyl compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56171348A JPS5872531A (en) | 1981-10-28 | 1981-10-28 | Preparation of carbonyl compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5872531A true JPS5872531A (en) | 1983-04-30 |
JPH0226613B2 JPH0226613B2 (en) | 1990-06-12 |
Family
ID=15921534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56171348A Granted JPS5872531A (en) | 1981-10-28 | 1981-10-28 | Preparation of carbonyl compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5872531A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595134A (en) * | 1982-06-30 | 1984-01-12 | Idemitsu Kosan Co Ltd | Preparation of carbonyl compound |
US5126490A (en) * | 1990-11-28 | 1992-06-30 | Princeton University | Process for the catalytic oxidation of olefins to carbonyl compounds |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04105113U (en) * | 1991-02-18 | 1992-09-10 | 積水樹脂株式会社 | audio generating road signs |
JPH06203296A (en) * | 1993-01-04 | 1994-07-22 | Kansai Electric Power Co Inc:The | Traffic guide robot |
-
1981
- 1981-10-28 JP JP56171348A patent/JPS5872531A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595134A (en) * | 1982-06-30 | 1984-01-12 | Idemitsu Kosan Co Ltd | Preparation of carbonyl compound |
JPS6245215B2 (en) * | 1982-06-30 | 1987-09-25 | Idemitsu Kosan Co | |
US5126490A (en) * | 1990-11-28 | 1992-06-30 | Princeton University | Process for the catalytic oxidation of olefins to carbonyl compounds |
Also Published As
Publication number | Publication date |
---|---|
JPH0226613B2 (en) | 1990-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950005750B1 (en) | Process for preparation of silver-containing catalyst | |
CN1137109C (en) | Propylene oxide process using mixed precious metal catalyst supported on alkaline earth metal carbonate | |
US4039561A (en) | Process for preparing ethylene oxide | |
JPS6155416B2 (en) | ||
JPH0691169A (en) | Catalytic composition for oxychlorination and method for oxychlorination of ethylene using said composition | |
RU2007214C1 (en) | Method of preparing of silver-containing catalyst for ethylene oxidation | |
JP2002029711A5 (en) | ||
JP2997039B2 (en) | Selective monoepoxidation of styrene, styrene analogs and styrene derivatives to the corresponding oxides with molecular oxygen | |
JP4711582B2 (en) | Sulfur-containing promoters for oxidative dehydrogenation of alkanes. | |
JPS624443A (en) | Manufacture of catalyst containing silver | |
JPS5872531A (en) | Preparation of carbonyl compound | |
JP2004528262A (en) | Direct synthesis of hydrogen peroxide in multicomponent solvent systems | |
AU614371B2 (en) | Catalyst for oxidation of ethylene to ethylene oxide | |
TW201542512A (en) | Process for producing an unsaturated hydrocarbon | |
CA1055519A (en) | Manufacture of butenediol diacetates | |
JPS61207346A (en) | Manufacture of ethane and ethylene | |
JPH10286439A (en) | Decomposing method of fluorine-containing compound | |
US3691098A (en) | Process for manufacturing oxychlorination catalysts | |
JPS6253978A (en) | Oxidation of fluorinated olefin and catalyst therefor | |
JPS58140036A (en) | Preparation of carbonyl compound | |
JPS6116374B2 (en) | ||
JPS5867636A (en) | Production of plyhydric phenol | |
JPS59163335A (en) | Vapor-phase oxidation of olefin | |
JPS6148814B2 (en) | ||
JPH0384B2 (en) |