JPS5871904A - Improved linear medium-to-low density polyethylene composition - Google Patents

Improved linear medium-to-low density polyethylene composition

Info

Publication number
JPS5871904A
JPS5871904A JP56168725A JP16872581A JPS5871904A JP S5871904 A JPS5871904 A JP S5871904A JP 56168725 A JP56168725 A JP 56168725A JP 16872581 A JP16872581 A JP 16872581A JP S5871904 A JPS5871904 A JP S5871904A
Authority
JP
Japan
Prior art keywords
density polyethylene
low density
linear medium
modified
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56168725A
Other languages
Japanese (ja)
Other versions
JPS6242921B2 (en
Inventor
Kisoo Moriguchi
森口 基十雄
Isaburo Fukawa
府川 伊三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15873265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPS5871904(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56168725A priority Critical patent/JPS5871904A/en
Priority to US06/427,202 priority patent/US4465812A/en
Priority to EP82305555A priority patent/EP0079687B1/en
Priority to DE8282305555T priority patent/DE3276941D1/en
Publication of JPS5871904A publication Critical patent/JPS5871904A/en
Publication of JPS6242921B2 publication Critical patent/JPS6242921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/802Heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Abstract

PURPOSE:To obtain titled polymer composition, while retaining original merits, of improved transparency, melt tension, melt elasticity, etc., by incorporating a radical initiator in linear medium-to-low density polyethylene with specific density and melt index followed by melt kneading. CONSTITUTION:Titled polymer composition with a ratio (MI)2/(MI)1 of 0.05-0.9 can be obtained[where (MI)1 and (MI)2 are the melt indices of the original and improved polyethylene, respectively]by incorporating 0.0005-0.1wt% of a radical initiator in linear medium-to-low density polyethylene having a density of 0.90-0.94g/cm<3> followed by homogeneously melt kneading at a temperature between the melting point and thermal decomposition point of the original polyethylene. For said radical initiator, di-t-butyl peroxide is preferably used.

Description

【発明の詳細な説明】 本発明は、改良された特性を有する線状中低密度ポリエ
チレン組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to linear medium-low density polyethylene compositions having improved properties.

エチレンとα−オレフィンの共重合によって製造される
線状中低密度ポリエチレンは、高圧法ラジカル重合によ
って製造される高分岐度低密度ポリエチレンに比較して
、引張り強度、耐衝撃性、剛性、耐環境応力亀裂(ES
CR)および耐熱性々とに優れている。したがって、こ
の線状中低密度ポリエチレンを用いて成形したフィルム
、あるいは射出、中空、押出、回転成形などによって成
形された各種製品は、軽量、薄肉にしても、高分岐度低
密度ポリエチレンからつくられた製品と十分対抗でき、
省資源、資エネルギーの観点から工業的価値が高い。ま
たさらに、線状中低密度ポリエチレンは、上記の如く各
種の特性で優れているために、高分岐度低密度ポリエチ
レンに比較し、よシ厳しい条件での使用を可能にし、機
能性の高い製品とすることができ、この点からも工業的
価値が高い。
Linear medium-low density polyethylene produced by copolymerization of ethylene and α-olefin has higher tensile strength, impact resistance, rigidity, and environmental resistance than highly branched low-density polyethylene produced by high-pressure radical polymerization. Stress crack (ES)
CR) and heat resistance. Therefore, films molded using this linear medium-low density polyethylene, and various products molded by injection, hollow, extrusion, rotary molding, etc., are made from highly branched low density polyethylene, even if they are lightweight and thin. It can compete well with other products,
It has high industrial value from the viewpoint of resource conservation and energy consumption. Furthermore, because linear medium-low density polyethylene is superior in various properties as mentioned above, it can be used under more severe conditions than highly branched low-density polyethylene, making it a highly functional product. From this point of view as well, it has high industrial value.

しかしながら、かかる線状中低密度ポリエチレンは、高
分岐度低密度ポリエチレンに比較し、次のような欠点を
有している。透明性が悪く、外観的に商品価値が劣り、
また、溶融張力が低く、溶融弾性が低いことから、中空
成形、押出成形、フィルム成形等において、多様な成形
品がつくシにく\、加工成形の条件を狭い条件に調整し
なければならない等工業的に不利な点があシ、また、そ
れらの欠点を克服するためには、加工機械を特殊な仕様
に改良しなければならない等、経済的に不利である。
However, such linear medium-low density polyethylene has the following drawbacks compared to highly branched low-density polyethylene. Poor transparency, poor commercial value in terms of appearance,
In addition, due to the low melt tension and low melt elasticity, it is difficult to produce a variety of molded products in blow molding, extrusion molding, film molding, etc., and the processing and molding conditions must be adjusted to narrow conditions. There are industrial disadvantages, and in order to overcome these disadvantages, processing machines must be improved to special specifications, which is economically disadvantageous.

本発明者らは、線状中低密度ポリエチレンの優れた特性
を損なうとと々く、欠点を改良する方法および改良され
た組成物kmるため研究を進めた結果、本発明を完成す
るに到ったのである。
The present inventors have carried out research to improve the excellent properties of linear medium-low density polyethylene and to develop an improved composition, and as a result, they have completed the present invention. That's what happened.

すなわち、本発明は、線状中低密度ポリエチレンにラジ
カル発生剤を0.0005 n量チ以上0.1π1量チ
未満混合した混合物を、該線状中低密度ポリエチレンの
融点以上熱分解温度未満の温度で均一に溶融混練するこ
とによシ変性された線状中低密度ポリエチレン組成物で
あって、 (1)線状中低密度ポリエチレンの布置が口、ci o
 y/cnt以上0.94 ylct1未満であり、(
11)変性前の該線状中低密度ポリエチレンのメルト・
インデックスを(MI)1%変性されて得られた線状中
低密度ポリエチレン組成物のメルト・インデックスを(
MI)2としたとき、(MI)!/(MI)1の値が0
.05以上0.9以下の範囲にあるように変性して成る
ポリエチレン組成物に係るものである。
That is, in the present invention, a mixture of linear medium-low density polyethylene and a radical generator in an amount of 0.0005 n or more and less than 0.1 A linear medium-low density polyethylene composition modified by uniformly melt-kneading at a temperature, the composition comprising: (1) a linear medium-low density polyethylene composition having an opening, cio
y/cnt or more and less than 0.94 ylct1, (
11) Melt of the linear medium-low density polyethylene before modification.
The melt index of the linear medium-low density polyethylene composition obtained by modifying the index (MI) by 1% is (MI).
MI) When set to 2, (MI)! /(MI)1 value is 0
.. This relates to a polyethylene composition that has been modified to have a molecular weight of 0.05 or more and 0.9 or less.

本発明によれば、線状中低密度ポリエチレンの優れた引
張シ強度、耐衝撃性、剛性、ESCRおよび耐熱性を有
し、かつ線状中低密度ポリエチレンの欠点である性質、
例えば透明性が劣ること、低溶融張力、低溶融弾性等が
改良された工業的価値の高いポリエチレン組成物が得ら
れる。
According to the present invention, linear medium-low density polyethylene has excellent tensile strength, impact resistance, rigidity, ESCR, and heat resistance, and properties that are disadvantageous to linear medium-low density polyethylene,
For example, a polyethylene composition of high industrial value with improved transparency, low melt tension, low melt elasticity, etc. can be obtained.

ポリエチレンにラジカル発生剤を加えて溶融混練すると
、ポリマーの分子間結合が起り、架橋反応が生成し、そ
の溶融粘弾性挙動、機械的性質あるいは熱的性質が変化
する。これを利用して、架橋ポリエチレンが各種の用途
、例えば電線被覆、発泡成形品に利用されていることは
公知である。
When a radical generator is added to polyethylene and melt-kneaded, intermolecular bonding of the polymer occurs, a crosslinking reaction occurs, and its melt viscoelastic behavior, mechanical properties, or thermal properties change. It is well known that crosslinked polyethylene is utilized in various applications such as electric wire coatings and foamed molded products.

また、ポリエチレンを化学的に架橋する技術は古くから
開発され、特公昭33−6095、特公昭37−144
82等があり、その後も種々の改良技術が提案され、例
えば特公昭39−18546、= 5− 特公昭4B−1711、特公昭49−18101、特公
昭50−23063等多数存在する。
In addition, the technology of chemically crosslinking polyethylene has been developed for a long time, and has been developed since ancient times.
82, etc., and various improved techniques have been proposed since then, such as Japanese Patent Publication No. 39-18546, = 5- Japanese Patent Publication No. 4B-1711, Japanese Patent Publication No. 49-18101, Japanese Patent Publication No. 50-23063, etc.

しかしながら、従来から行なわれているこれらの技術は
、ポリエチレンを高度に架橋し、キシレン等の溶媒中で
膨潤が起こる程度に(ゲル化が起こる状態まで)架橋す
ることが基本になっている。
However, these conventional techniques are based on highly crosslinking polyethylene to such an extent that swelling occurs (to a state where gelation occurs) in a solvent such as xylene.

そして、架橋前のポリエチレンが本発明のような特定の
線状中低布置ポリエチレンの場合に、効呆が顕著に発現
するというととについては全く開示されていない。
Furthermore, there is no disclosure whatsoever that when the polyethylene before crosslinking is a specific linear medium-low laid polyethylene as in the present invention, the effectiveness is significantly manifested.

本願発明においては、特定の線状中低密度ポリエチレン
を用いていること、および架橋の度合が軽度で、キシレ
ン等の溶媒中で膨潤が起ら々い程度に、すなわち、ゲル
化が起らない程度の軽度な架橋、または分子間結合(本
発明においては、この軽度な架橋または分子間結合を一
般的な強度な架橋と区別するため、とくに、変性と称す
る)を生成させることを特徴とするものである。
In the present invention, specific linear medium-low density polyethylene is used, and the degree of crosslinking is slight, and swelling in solvents such as xylene is unlikely to occur, that is, gelation does not occur. It is characterized by generating a slight degree of crosslinking or intermolecular bonding (in the present invention, to distinguish this mild crosslinking or intermolecular bonding from general strong crosslinking, it is particularly referred to as denaturation). It is something.

一方、特定のポリエチレンをラジカル発生剤とともに、
押出機で溶融温度以上の温度で処理し、 6− 高いダイスウェルのポリエチレンを得る方法が特公昭5
0−14672で提案されている。しかしながら、この
方法においては、変性前のポリエチレンとして、本発明
のようなとくに線状中低密度ポリエチレンが、本発明に
示すように変性によって諸性質が際立った改良効果を示
すことについての技術認識はみられない。そして、本発
明に比較して、使用されるラジカル発生剤の量が非常に
多く、得られる効果も異なっている。
On the other hand, when certain polyethylene is used together with a radical generator,
A method of obtaining polyethylene with high die swell by processing it in an extruder at a temperature higher than the melting temperature was introduced in the 1970s.
0-14672. However, in this method, as the polyethylene before modification, there is no technical recognition that especially linear medium-low density polyethylene as shown in the present invention shows remarkable improvement effects in various properties by modification as shown in the present invention. I can't see it. Moreover, compared to the present invention, the amount of radical generator used is much larger, and the obtained effects are also different.

特公昭36−14034にも、特定のポリエチレンとラ
ジカル発生剤とを反応せしめポリエチレンの性質を改質
する方法が提案されている。しかしながら、この方法は
、エチレン−αオレフィン共重合体のとくにαオレフイ
ン含有量の低い、すなわち、密度が高いエチレン−αオ
レフィン共重合体に関するもので、αオレフィンの含有
量の高い、、t[の低いエチレン−αオレフィン共重合
体については全く開示されていない。
Japanese Patent Publication No. 36-14034 also proposes a method of modifying the properties of polyethylene by reacting a specific polyethylene with a radical generator. However, this method is concerned with ethylene-α-olefin copolymers, especially those with a low α-olefin content, that is, with high density; There is no disclosure of low ethylene-alpha olefin copolymers.

また、特公昭50−14672、同56−14054の
いずれにおいても、ポリエチレン中の二重結合の量が重
要な鍵となっているが、本発明においては、二重結合の
量はそれほど重要ではない。何故ならば、本発明では、
共重合成分であるαオレフィンの量が比較的多いため、
第3級炭素の数が多く、この第3級炭素がラジカル発生
剤によりラジカルを形成させ、分子間結合を生成するた
めに、二重結合がそれほど重要な意義をもたないものと
考えられる。
Furthermore, in both Japanese Patent Publications No. 50-14672 and No. 56-14054, the amount of double bonds in polyethylene is an important key, but in the present invention, the amount of double bonds is not so important. . This is because in the present invention,
Because the amount of α-olefin, which is a copolymerization component, is relatively large,
The number of tertiary carbons is large, and the tertiary carbons form radicals using a radical generator to form intermolecular bonds, so it is thought that the double bond does not have much significance.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の線状中低密度ポリエチレンとは、シリカ、アル
ミナを担体とE7た酸化クロム触媒等の遷移金属酸化物
系触媒、ハロゲン化チタンまたはハロゲン化バナジウム
などのような第1V〜■族の遷移金属ハロゲン化物と、
アルギルアルミニウムーマグネシウム錯体、アルギルア
ルコキシアルミニウムーマグネシウム錯体などのような
有機アルミニウムーマグネシウム錯体やアルキルアルミ
ニウムあるいはアルキルアルミニウムクロライド等のよ
うな有機アルミニウム等のI〜III族の有機金属化合
物との組合せからなる配位触媒など、ラジカル発生剤系
危熾以外の触媒を使用し、懸濁重合、溶液重合、気相重
合、および1000〜300θ気圧、150〜300℃
で重合を行なう高圧重合などの各種のプロセスによって
製造される、エチレンとプロピレン、フテンー1、ペン
テン−1、ヘキセン−1,4メチルペンテン−1、オク
テン−1、デセン−1等のα−オレフィン類の1棹以上
との共重合体であり、密度が0.90977以上0.9
4 y/c−r/1未満のものを言う。該線状中低密度
ポリエチレン中のα−オレフィンの量は、2.6重量%
以上25重量%以下である。本発明において、より好ま
しい密度の範囲は、0.91 y/cr/1以上0,9
35グ/7以下であシ、密度がこの範囲にあるとき、本
発明のラジカル発生剤による変性の効果は最高に発揮さ
れ、物理的、化学的、機械的、熱的、光学的性質等の諸
性質の改良効果は最も大きくなる。
The linear medium-low density polyethylene of the present invention refers to a transition metal oxide catalyst such as an E7 chromium oxide catalyst using silica or alumina as a carrier, or a transition metal oxide catalyst such as a titanium halide or a vanadium halide. metal halide;
From combinations with organoaluminum-magnesium complexes such as algylaluminum-magnesium complexes, argylalkoxyaluminum-magnesium complexes, organoaluminiums such as alkylaluminiums or alkylaluminum chlorides, and other organometallic compounds of groups I to III. Suspension polymerization, solution polymerization, gas phase polymerization, and 1000 to 300 θ atmospheric pressure, 150 to 300°C using catalysts other than dangerous radical generators, such as coordination catalysts.
α-olefins such as ethylene and propylene, phthene-1, pentene-1, hexene-1,4 methylpentene-1, octene-1, and decene-1, which are produced by various processes such as high-pressure polymerization using It is a copolymer with one or more rods, and the density is 0.90977 or more and 0.9
Refers to less than 4 y/c-r/1. The amount of α-olefin in the linear medium-low density polyethylene is 2.6% by weight.
The content is 25% by weight or less. In the present invention, a more preferable density range is 0.91 y/cr/1 or more 0.9
When the density is within this range, the effect of modification by the radical generator of the present invention is maximized, and physical, chemical, mechanical, thermal, optical properties, etc. The effect of improving various properties is greatest.

本発明において使用されるラジカル発生剤としては、ベ
ンゾイルパーオキサイド、ジ−t−ブチルパーオキサイ
ド、ジ−クミルパーオキサイド、2.5−ジメチル−2
,5−ジ(t−ブチルパーオキシ) 9− ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチル
パーオキシ)ヘキシン、1.6〜ビス(t−ブチルパー
オキシイソプロビル)ベンゼン、t−ブチル−ハイドロ
パーオキサイド、キュメンハイドロパーオキサイド、ラ
ウロイルパーオキサイド、ジ−t−ブチル−シバ−オキ
シフタレート、t−ブチルパーオキシマレイン酸、イン
プロピルパーカーボネート等の有機過酸化物、アゾビス
イソブチロニトリルの如きアゾ化合物、過硫酸アンモニ
ウムの如き無機過酸化物等が挙けられ、これらは1種ま
たは2種以上の組合せを使用してさしつがえない。また
、これらの中でも、半減期1分での分解温度が170℃
から200℃の間にあるジ−t−ブチルパーオキサイド
、ジ−クミルパーオキサイド、2.5−ジメチル−2,
5ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメ
チル−2,5ジ(t−ブチルパーオキシ)ヘキシン、1
.3−ビス(t−ブチルパーオキシイソプロビル)ベン
ゼンがとくに好ましい。
Examples of the radical generator used in the present invention include benzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2
, 5-di(t-butylperoxy) 9-hexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, 1.6-bis(t-butylperoxyisopropyl)benzene , t-butyl hydroperoxide, cumene hydroperoxide, lauroyl peroxide, di-t-butyl-shiba-oxyphthalate, t-butyl peroxymaleic acid, inpropyl percarbonate, and other organic peroxides, azobis Examples include azo compounds such as isobutyronitrile, inorganic peroxides such as ammonium persulfate, and these may be used alone or in combination of two or more. Also, among these, the decomposition temperature at a half-life of 1 minute is 170°C.
di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,
5 di(t-butylperoxy)hexane, 2,5-dimethyl-2,5di(t-butylperoxy)hexane, 1
.. 3-bis(t-butylperoxyisopropyl)benzene is particularly preferred.

ラジカル発生剤による変性の方法としては、該−10− 線状中低密度ポリエチレンに、該ラジカル発生剤を加え
て、リボンブレンダー、ヘンシェルミキサー等の攪拌器
で十分混合して得られる混合物を、押出機、混線機など
で均一に溶融混練する方法である。混線に使用される押
出機、混線機としては、シングルスクリユー、ダブルス
クリユータイプのいずれでもよいが、より均一な混線、
変性度を得るためには、ダブルスクリユータイプがより
好ましい。ダブルスクリユータイブとしては、日本製鋼
所製CIM、ファレル社gFcM、DSM、バンバリー
ミキサ−等がある。
As a method for modification with a radical generator, the radical generator is added to the -10- linear medium-low density polyethylene, and the resulting mixture is thoroughly mixed with a stirrer such as a ribbon blender or a Henschel mixer, and the resulting mixture is extruded. This is a method of uniformly melting and kneading using a mixer or mixer. The extruder and mixer used for cross-conducting may be either single-screw or double-screw types, but more uniform cross-conductors,
In order to obtain a degree of modification, a double screw type is more preferable. Examples of the double screw type include CIM manufactured by Japan Steel Works, Farrell gFcM, DSM, and Banbury mixer.

溶融混練の条件は、原料となる該線状中低密度ポリエチ
レンの融点以上熱分解点未満の温度で、好ましくは14
0℃から250℃の範囲で、約1〜5分の時間で混練す
る条件が挙けられる。また、溶融混線の雰囲気は、でき
るだけ酸素濃度の低い雰囲気、例えば窒素シール等をし
た雰囲気が均一なポリマー構造を生成し、あるいは酸化
反応等を起こさないために好ましい。
The melt-kneading conditions are a temperature higher than the melting point and lower than the thermal decomposition point of the linear medium-low density polyethylene used as the raw material, preferably 14
Examples of conditions include kneading at a temperature in the range of 0°C to 250°C for about 1 to 5 minutes. Further, the atmosphere for melting and cross-talk is preferably an atmosphere with as low an oxygen concentration as possible, for example, an atmosphere sealed with nitrogen, since this produces a uniform polymer structure or does not cause oxidation reactions.

本発明の実施にあたっては、変性(軽度の架橋反応)の
度合の調節が重要である。該線状中低密度ポリエチレン
をラジカル発生剤の存在下で、上記混練温度で混練する
と分子間結合が起り、メルト・インデックス(MI)が
低下する。
In carrying out the present invention, it is important to control the degree of modification (mild crosslinking reaction). When the linear medium-low density polyethylene is kneaded in the presence of a radical generator at the above-mentioned kneading temperature, intermolecular bonds occur and the melt index (MI) decreases.

本発明においては、該線状中低密度ポリエチレンの変性
前のMlを(MI)lとし、変性後(ラジカル発生剤を
入れて混練し、変性したあと)のMIを(MI)2とし
たとき、(MI)2/ (MI)lの値が0.05から
0.9の範囲にあるように変性度を調節することである
。(MI )t/(MI )lの値が0.9を越えると
、実用特性の改良の度合が小さい。寸だ、0.05未満
のときは、変性度が進みすぎ、ゲル状ポリマーが生成し
、ポリマー構造が不均一になシ、また成形加工性が悪く
なるなど、実用的に好ましくない。
In the present invention, when the Ml of the linear medium-low density polyethylene before modification is (MI)l, and the MI after modification (after kneading with a radical generator and modification) is (MI)2. , (MI)2/(MI)l is in the range of 0.05 to 0.9. When the value of (MI)t/(MI)l exceeds 0.9, the degree of improvement in practical characteristics is small. On the other hand, when it is less than 0.05, the degree of modification progresses too much, a gel-like polymer is formed, the polymer structure becomes non-uniform, and molding processability deteriorates, which is practically undesirable.

変性度の調節は、該ラジカル発生剤の種類、濃度、混線
方法および条件を変性前の該線状中低密度ポリエチレン
の特性、添加剤等を勘案しながら、適宜選択することに
よって行なわれる。実施される条件としては、該ラジカ
ル発生剤の濃度が0.0005重量%以上0.1重量%
未満の範囲にあることが必要である。上記(MI)t/
(MI)lの値が0.05以上0.9以下の範囲にあっ
ても、ラジカル発生剤の量が0.1重量%以上のときは
、ゲル状物が生成、ポリマーが不均質になることなどが
あり、あるいはラジカル発生剤の分解物などのために、
成形加工性、機械的性質が不良になることがあり好まし
くない。捷た、変性後の線状中低密度ポリエチレンを厚
さが0.111111以下の薄いフィルムの用途に使う
場ばは、優れた溶融延伸性を付与し、微細なフィッシュ
アイを少なくするために、(MI)2/(Ml)lの値
が0.5を越え0.9以下にある。このような変性度を
得るためには、該ラジカル発生剤の量は通常0.3重量
%未満にある。押出のシート、パイプ等、中空成形用の
ポリマーとしてとくに好ましい範囲は、(MI)Iが3
以下であって、(Ml)2/(MI)lの値が0.05
から0.7の範囲にある。溶融張力、ダイ・スウェル、
衝撃強度、ESCRなど、とくに重要な特性(成形加工
性、機械的性質)が最高のレベルでバランスする。
The degree of modification is adjusted by appropriately selecting the type and concentration of the radical generator, the cross-crossing method, and the conditions, taking into consideration the characteristics of the linear medium-low density polyethylene before modification, additives, etc. The conditions for implementation include that the concentration of the radical generator is 0.0005% by weight or more and 0.1% by weight.
It is necessary to be within the range below. Above (MI)t/
Even if the value of (MI)l is in the range of 0.05 to 0.9, if the amount of radical generator is 0.1% by weight or more, a gel-like substance will be formed and the polymer will become inhomogeneous. or due to decomposition products of radical generators, etc.
This is not preferable since moldability and mechanical properties may become poor. When using twisted and modified linear medium-low density polyethylene for thin films with a thickness of 0.111111 or less, in order to impart excellent melt drawability and reduce fine fish eyes, The value of (MI)2/(Ml)l is more than 0.5 and less than 0.9. To obtain such a degree of modification, the amount of the radical generator is usually less than 0.3% by weight. A particularly preferable range for polymers for blow molding such as extruded sheets and pipes is that (MI)I is 3.
or less, and the value of (Ml)2/(MI)l is 0.05
It is in the range of 0.7. Melt tension, die swell,
Impact strength, ESCR, and other important properties (formability, mechanical properties) are balanced at the highest level.

−13一 本発明の変性された線状中低密度ポリエチレン組成物に
は、勿論通常の安定剤、紫外線吸収剤、帯電防止剤、ブ
ロッキング防止剤、顔料、無機捷たは有機の充填剤、ゴ
ムその他の少量のポリマーなど、通常ポリオレフィンに
添加される物質は添加することができる。しかしながら
、該ラジカル発生剤と面接反応を起こすような物質、例
えば、通常の安定剤、紫外m吸収剤などは、変性反応前
に添加することは可能であるが、変性反応完了後に添加
することが好ましい。これら添加物質の例としては、B
HT、シェル社アイオノツクヌ330、グツドリッチ社
製グツドライト3114、チバガイギー社製イルガノッ
クス1010.1076、ナスビン32ノ、三共製薬社
製すノールLS 770、DMTP。
-13 - The modified linear medium-low density polyethylene composition of the present invention includes, of course, conventional stabilizers, ultraviolet absorbers, antistatic agents, antiblocking agents, pigments, inorganic or organic fillers, rubbers, etc. Other materials normally added to polyolefins, such as small amounts of polymers, can be added. However, although it is possible to add substances that cause an interface reaction with the radical generator, such as ordinary stabilizers and ultraviolet m absorbers, before the modification reaction is completed, it is not possible to add them after the modification reaction is completed. preferable. Examples of these additive substances include B
HT, Ionotsukunu 330 manufactured by Shell, Gutudryte 3114 manufactured by Gutdrich, Irganox 1010.1076 manufactured by Ciba Geigy, Nasvin 32no manufactured by Sankyo Pharmaceutical Co., Ltd., Nor LS 770 manufactured by Sankyo Pharmaceutical Co., Ltd., DMTP.

DLTDP、ステアリン酸カルシウム、ステアリン酸亜
鉛、チタンホワイト、炭酸カルシウム、タルク、スチレ
ン−ブタンジエンラバー、エチレン−酢ヒ共重合体等が
挙げられる。
Examples include DLTDP, calcium stearate, zinc stearate, titanium white, calcium carbonate, talc, styrene-butane diene rubber, ethylene-acetic acid copolymer, and the like.

以下、実施例を挙げて説明するが、本発明は、これらの
実施例によって何ら制限されるものでは−14− ない。なお、実施例で用いられている用語の意味は下記
のとおりである、 (1)MI;メルト・インデックスを表わし、ASTM
D−1238にしたがい、温度190℃、荷重2.16
kgの条件下で測定した。
The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. The meanings of the terms used in the examples are as follows: (1) MI: stands for melt index, and is based on ASTM
According to D-1238, temperature 190℃, load 2.16
The measurement was carried out under the condition of kg.

(H)MIR; MI測定条件において、荷重21.6
kgで測定した値をMIで除した商を意味する。流動性
の一つの尺度である。MIRが高いほど実用成形加工で
流動性が良い。
(H) MIR; under MI measurement conditions, load 21.6
It means the quotient of the value measured in kg divided by MI. It is a measure of liquidity. The higher the MIR, the better the fluidity in practical molding processing.

(iii)密度; ASTMD−1505にしたがって
測定した。
(iii) Density: Measured according to ASTM D-1505.

(IV)二重結合;圧縮成形により作成した薄いフィル
ムサンプルを用い、赤外吸収分析法で測定した。
(IV) Double bond: Measured by infrared absorption analysis using a thin film sample made by compression molding.

トランスビニレン、末端ビニル、ビニリデンの各結合を
それぞれ964.908.888crn″′I凛j区か
ら求め、それらの総計で表わした。
The transvinylene, terminal vinyl, and vinylidene bonds were determined from 964.908.888crn'''Irinj, respectively, and expressed as their total.

Mコモノマー含有量;重合体中に含まれる共重合成分の
量は、C”NMRにより測定した。
M comonomer content: The amount of copolymer component contained in the polymer was measured by C''NMR.

(vD溶融張力;レオ・メーターで、190’Cの温度
、プランジャースピード2 、Ornu/minで押出
し、このストランドを10 m /minで引き伸ばし
、そのときの張力を溶融張力とする。
(vD Melt tension: Extrude using a rheometer at a temperature of 190'C, plunger speed 2, Ornu/min, stretch this strand at 10 m/min, and let the tension at that time be the melt tension.

(■1)ダイスウェル;外径16111111.内径1
o朋の中空成形用ダイを用い、温度170℃で押出した
パリソン20Crn当シの重量で表わされる。
(■1) Dice well; outer diameter 16111111. Inner diameter 1
It is expressed as the weight of a 20Cr parison extruded at a temperature of 170°C using a blow molding die manufactured by O.

帆)引張衝撃強さ; ASTMD−1822にしたがっ
て測定した。
Sail) Tensile impact strength: Measured according to ASTM D-1822.

(IX)ESCR;環境応力破壊抵抗性を示す。AST
MD−1693に準じて測定した。たたし、温度は80
℃、ノニオン系界面活性剤の濃度は100チとした。
(IX) ESCR: Indicates environmental stress fracture resistance. AST
Measured according to MD-1693. Tatami, temperature is 80
℃, and the concentration of nonionic surfactant was 100°C.

試験片の50係の個数が破壊するまでの時間で表わされ
る。
It is expressed as the time required for the 50th factor number of test pieces to break.

(×)鍍度; ASTMD−1003にしたがって、厚
さ0.04H11Nの圧縮成形シートを用いて測定した
(x) Plating degree: Measured using a compression molded sheet with a thickness of 0.04H11N according to ASTM D-1003.

(Xi)フィルム製膜性;301径の押出機、ダイギャ
ップ1.51nIAX幅150 #1IIIのTダイお
よびロール冷却機から構成されるフィルム製膜機を使用
し、押出温度170℃で押出し、フィルムの引取り速度
を徐々に上けて行き、フィルムの製膜性とフィルム中の
フィッシュアイを測定した。製膜性の判定は、20μ以
下の厚さ1で製膜可能なとき「良」、21ないし100
μの厚さでフィルムが切れる場合を1普通」、101μ
以上の厚さしか製膜できないときを[不良−1とした。
(Xi) Film forming properties: Using a film forming machine consisting of an extruder with a diameter of 301, a die gap of 1.51nIAX width 150, a #1III T die, and a roll cooler, the film was extruded at an extrusion temperature of 170°C. The take-up speed was gradually increased, and the film formability and fish eyes in the film were measured. Film formability is judged as "good" when a film can be formed with a thickness of 20μ or less, and 21 to 100.
If the film is cut at a thickness of μ, 1 normal” is 101μ.
The case where the film could only be formed to a thickness above the above was designated as [defective -1].

フィッシュアイはスポットゲージで照合し、0.211
11+1φ以上のものの数を測定し、フィルムの重量1
002当りに換算し、10個以下を「少」、11〜10
0個を「中」、101個以上を「多」とした。
The fish eye was checked with a spot gauge and was 0.211.
Measure the number of items larger than 11+1φ, and calculate the weight of the film 1
002, 10 or less is "small", 11-10
0 was considered "medium" and 101 or more was considered "high."

本発明の実施例、比較例は、各種の触媒、重合方法によ
るポリエチレン、エチレン−αオレフィン共重合体につ
いてなされた。はじめに、実施例、比較例で使用した重
合体の触媒、重合方法について説明する。
Examples and comparative examples of the present invention were carried out on polyethylene and ethylene-α-olefin copolymers using various catalysts and polymerization methods. First, the polymer catalyst and polymerization method used in Examples and Comparative Examples will be explained.

(11固体触媒のa成 後記の実施例および比較例で用いる固体触媒の合成’i
i、10tのオートクレーブを用いて実施した。
(11 Synthesis of solid catalyst a) Synthesis of solid catalyst used in the following Examples and Comparative Examples
It was carried out using a 10t autoclave.

(1)固体触媒A オートクレーブの内部の酸素と水分を乾燥窒素によって
除去した後、ヘキサン4tを導入し、−17− −20℃に冷却した。A104sMg(”  C4I(
0)2.451.2m0tを含有するヘキサン2tおよ
び四塩化チタン1 motとモノブトギシバナジルクロ
リド1motを含有するヘキサン2tを別々の添加口よ
り、−20℃で、痺拌下に両成分を同時に1時間かけて
滴下し、さらに2時間この温度で反応させた。反応混合
物をθj過し、ヘキサンで洗浄した。これを固体触媒A
と称する。
(1) Solid Catalyst A After removing oxygen and moisture inside the autoclave with dry nitrogen, 4 tons of hexane was introduced and the autoclave was cooled to -17--20°C. A104sMg(”C4I(
0) 2 tons of hexane containing 2.451.2 m0t and 2 tons of hexane containing 1 mot of titanium tetrachloride and 1 mot of monobutyvanadyl chloride were added simultaneously at -20°C under stirring at -20°C. The mixture was added dropwise over 1 hour, and the reaction was continued at this temperature for an additional 2 hours. The reaction mixture was filtered through θj and washed with hexane. This solid catalyst A
It is called.

(11)  固体剛シ媒B (C2H3X n−C4H[l ) Mgと粘度15七
ンチストークスのヒドロメチルポリシロキサンとのSi
/Mg=1,0/1.0の反応物3.0mo7と四塩化
チタン3.omotとを、ヘキサン6tとともにオート
クレーブに入れ、−10℃にて3時間反応せしめた。固
体触媒Aの場合と同様に反応混合物を後処理し、固体触
媒を得た。これを固体触媒Bと称する。
(11) Solid rigidity medium B (C2H3X n-C4H[l) Si of Mg and hydromethylpolysiloxane with a viscosity of 157 inches
/Mg=1.0/1.0 reactant 3.0mo7 and titanium tetrachloride 3. omot was placed in an autoclave with 6 tons of hexane and reacted at -10°C for 3 hours. The reaction mixture was post-treated in the same manner as in the case of solid catalyst A to obtain a solid catalyst. This is called solid catalyst B.

(iii)固体触媒C (sec −CIH9) (n−C,Ho)Mg 2.
Omotオヨヒ三塩化バナジル1.5motと四塩化チ
タン1.5 mob ト(r) a合物を、ヘキサン6
tとともにオートクレーブに−18− 入れ、−20℃で4時間反応せしめた。固体触媒Aの場
合と同様に反応混合物を処理し、固体触媒を得た。これ
を固体触媒Cと称する。
(iii) Solid catalyst C (sec -CIH9) (n-C,Ho)Mg 2.
Omot Oyohi Vanadyl trichloride 1.5 mot and titanium tetrachloride 1.5 mob (r) a compound, hexane 6
-18- was placed in an autoclave with t and reacted at -20°C for 4 hours. The reaction mixture was treated in the same manner as in the case of solid catalyst A to obtain a solid catalyst. This is called solid catalyst C.

(1い固体触媒D 11化マグネシウム500グおよび四塩化チタン5tを
オートクレーブに仕込み、110℃で3時間反応させた
。反応混合物を沖過し、固体触媒を単離し、ヘキサンで
洗浄した。これを固体触媒りと称する。
(1) Solid Catalyst D 500 grams of magnesium 11ide and 5 tons of titanium tetrachloride were placed in an autoclave and reacted at 110°C for 3 hours. The reaction mixture was filtered, the solid catalyst was isolated, and washed with hexane. It is called a solid catalyst.

(2)  ポリマーの製造 200tの容量の反応機を用い、連続重合の条件でポリ
マーの製造を実施した。第1表に示す重合温度に保ちつ
つ、該表に示す条件で固体触媒、有機アルミニウム化合
物、α−オレフィン、水素を反応機へ供給し、溶媒を5
0 t/Hr 、エチレンをポリマーの生成量6〜10
 kg/Hrに保つのに必要な量供給しつつ重合を行な
った。なお、重合温度が100℃以下の場合は、溶媒と
してイソブタンを用い、重合圧力20 kg/mの条件
、重合温度が120℃以上の場合は、溶媒としてヘキサ
ンを用い、重合圧力30 kg/cr/lの条件で重合
を実施した。
(2) Production of polymer A reactor with a capacity of 200 tons was used to produce a polymer under continuous polymerization conditions. While maintaining the polymerization temperature shown in Table 1, the solid catalyst, organoaluminum compound, α-olefin, and hydrogen were supplied to the reactor under the conditions shown in the table, and the solvent was
0 t/Hr, ethylene polymer production amount 6-10
Polymerization was carried out while supplying the amount necessary to maintain kg/Hr. When the polymerization temperature is 100°C or less, isobutane is used as the solvent and the polymerization pressure is 20 kg/m, and when the polymerization temperature is 120°C or higher, hexane is used as the solvent and the polymerization pressure is 30 kg/cr/m. Polymerization was carried out under the following conditions.

各実施例、比較例で使用したポリエチレンおよびエチレ
ン−αオレフィン共重合体は、上記の触媒、重合方法を
使用し、さらに詳しくは、各々の例について第1表に基
く条件で製造した。
The polyethylene and ethylene-α olefin copolymer used in each Example and Comparative Example were produced using the catalyst and polymerization method described above, and more specifically, under the conditions shown in Table 1 for each example.

実施例1 tll  i性のベースとなるエチレン−αオレフィン
共重合体の製造 上記の重合設備、重合方法に基き、さらに、第1表の実
施例1の該当欄に記載する触媒、重合条件により、エチ
レンとブテン−1との共重合体を製造した。この共重合
体を下記の方法で変性し、各種の特性値を測定した。な
お、この共重合体中のブテン−1の濃度は7.6重量%
、二重結合は0.38個/1000Cであった。
Example 1 Production of ethylene-α olefin copolymer as a base for tll i properties Based on the above polymerization equipment and polymerization method, and further using the catalyst and polymerization conditions described in the relevant column of Example 1 in Table 1, A copolymer of ethylene and butene-1 was produced. This copolymer was modified by the method described below, and various characteristic values were measured. The concentration of butene-1 in this copolymer is 7.6% by weight.
, the number of double bonds was 0.38/1000C.

+21  変性ポリエチレン組成物の製造illにより
y造した共重合体のペレットに、ラジカル発生剤として
2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ
)ヘキサンのハキ9フ10液を噴霧し、ヘンシェルミキ
サーで攪拌し、次いでヘキサンを蒸発させて、該共重合
体と該ラジカル発生剤の混合物をつくった。該ラジカル
発生剤の濃度は該共重合体に対し20111’lに々る
ようにした。この混合物をスクリュー径6 0 mIn
φのシングルスクリユー押出機で、220℃の温度、約
35に9/Hrの押出速度で、窒素ガスでシールをL1
混練押出した。この場合、押出機内の樹脂の平均滞留時
間は2分40秒であった。このようにして変性されたエ
チレン−ブテン−1共重合体に、BHT500ppm,
ステアリン酸カルシウム5 0 0 pillを加え、
再度、上と同じ条件で押出し、安定剤入り変性共重合体
組成物を製造した。
+21 Manufacture of modified polyethylene composition Spray 9F10 liquid of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane as a radical generator onto pellets of the copolymer produced by ill. The mixture was stirred in a Henschel mixer, and then the hexane was evaporated to form a mixture of the copolymer and the radical generator. The concentration of the radical generator was adjusted to 20111'l with respect to the copolymer. This mixture was prepared using a screw with a screw diameter of 60 mIn.
In a φ single screw extruder, seal L1 with nitrogen gas at a temperature of 220 °C and an extrusion speed of about 35 to 9/Hr.
Kneaded and extruded. In this case, the average residence time of the resin in the extruder was 2 minutes and 40 seconds. The thus modified ethylene-butene-1 copolymer was added with 500 ppm of BHT,
Add 500 pills of calcium stearate,
Extrusion was performed again under the same conditions as above to produce a stabilizer-containing modified copolymer composition.

実施例2 実施例1において、ラジカル発生剤の量を100p−に
した以外は、全て実施例1と同様の方法、条件で変性共
重合体組成物を製造した。
Example 2 A modified copolymer composition was produced in the same manner and under the same conditions as in Example 1, except that the amount of radical generator was changed to 100 p-.

比較例1 実施例1において、ラジカル発生剤の量を1500p−
にした以外は、全て実施例1と同様の方法、条件で変性
共重合体組成物を製造した。
Comparative Example 1 In Example 1, the amount of radical generator was changed to 1500 p-
A modified copolymer composition was produced in the same manner and under the same conditions as in Example 1, except for the following.

= 2 1 − 比較例2 実施例1で重合して得られた共重合体に、BHT500
ppl、ステアリン酸カルシウム5 0 0 ppmを
加え、ラジカル発生剤による変性はしないで、実施例1
と同様の条件で混練押出して、未変性の安定剤入り共重
合体を製造した。
= 2 1 - Comparative Example 2 BHT500 was added to the copolymer obtained by polymerizing in Example 1.
Example 1 by adding 500 ppm of calcium stearate and no modification with a radical generator.
An unmodified stabilizer-containing copolymer was produced by kneading and extrusion under the same conditions as above.

比較例3 第1表に示す重合条件で、高密間のエチレン−ブテン−
1共重合体をつくシ、実施例1と同様に安定剤を加え、
未変性の安定剤入り共重合体を製造した。なお、この共
重合体中のブテン−1濃度は0.8重量%、二重結合は
0.47個/ 1. 0 0 0 Cであった。
Comparative Example 3 Under the polymerization conditions shown in Table 1, high-density ethylene-butene-
1. To prepare the copolymer, add a stabilizer in the same manner as in Example 1,
An unmodified stabilized copolymer was prepared. The butene-1 concentration in this copolymer was 0.8% by weight, and the number of double bonds was 0.47/1. It was 0 0 0 C.

比較例4 比較例3で重合した共重合体を実施例1と同様にして変
性し、さらに安定剤を加え、変性共重合体組成物を製造
した。この場合、ラジカル発生剤の量は変性後のMIが
実施例2における変性共重合体のMIと同じになるよう
に調整したが、その量は9011p1であった。
Comparative Example 4 The copolymer polymerized in Comparative Example 3 was modified in the same manner as in Example 1, and a stabilizer was further added to produce a modified copolymer composition. In this case, the amount of the radical generator was adjusted so that the MI after modification was the same as the MI of the modified copolymer in Example 2, and the amount was 9011p1.

− 2 2 = 比較例5 通常の高圧法で製造された低密度ポリエチレン(旭ダウ
M1B20)の特性を測定した。
- 2 2 = Comparative Example 5 The characteristics of low density polyethylene (Asahi Dow M1B20) manufactured by a normal high pressure method were measured.

比較例6 比較例5で使用した低密度ポリエチレンを実施例1と同
様にして変性した。ただし、ラジカル発生剤の量は変性
後のMIが実施例2における変性共重合体のMlと同じ
になるように調整したが、その量け2901111閣で
あった。
Comparative Example 6 The low density polyethylene used in Comparative Example 5 was modified in the same manner as in Example 1. However, the amount of the radical generator was adjusted so that the MI after modification was the same as that of the modified copolymer in Example 2, but the amount was 2901111%.

比較例7 第1表に示す重合条件で、実施例2における変性共重合
体とほとんど等しいMI、MIR1密度を有するエチレ
ン−ブテン−1共重合体を製造し、次いで比較例2と同
様にして、未変性の安定剤入り共重合[−製造した。
Comparative Example 7 Under the polymerization conditions shown in Table 1, an ethylene-butene-1 copolymer having almost the same MI and MIR1 density as the modified copolymer in Example 2 was produced, and then in the same manner as in Comparative Example 2, Unmodified stabilized copolymerization [- produced.

上記実施例1,2および比較例1,2,3,4,5゜6
.7の特性値を第2表に示す。
Above Examples 1 and 2 and Comparative Examples 1, 2, 3, 4, 5゜6
.. The characteristic values of No. 7 are shown in Table 2.

実施例3 第1表に示す重合条件で、エチレン−オクテン−1共重
合体を製造した。次いで、この共重合体を、ラジカル発
生剤として2.5−ジメチル−2,5ジ(t−〕゛チチ
ルパーオキシキシン501’l’l、混練押出温度を2
00℃にした以外は、全て実施例1の混練、押出条件等
と同様にして変性した。さらに、実施例1と同様に安定
剤を加え、安定剤入り変性共重合体を製造した。
Example 3 An ethylene-octene-1 copolymer was produced under the polymerization conditions shown in Table 1. Next, this copolymer was mixed with 501'l'l of 2,5-dimethyl-2,5di(t-]'tityl peroxyxin as a radical generator, and the kneading and extrusion temperature was set to 2.
Modification was carried out in the same manner as in Example 1, such as kneading and extrusion conditions, except that the temperature was 00°C. Furthermore, a stabilizer was added in the same manner as in Example 1 to produce a stabilizer-containing modified copolymer.

実施例4 実施例3において、ラジカル発生剤の量を200卿にし
た以外は、全て実施例3と同様にして、安定刺入シ変性
共重合体組成物を製造した。
Example 4 A stable stab-modified copolymer composition was produced in the same manner as in Example 3, except that the amount of the radical generator was changed to 200 μm.

比較例8 実施例3において、ラジカル発生剤の量を1200μに
した以外は、全て実施例3と同様にして、安定剤入り変
性共重合体組成物を製造した。
Comparative Example 8 A stabilizer-containing modified copolymer composition was produced in the same manner as in Example 3, except that the amount of radical generator was changed to 1200μ.

比較例9 実施例うで製造した共重合体に、比較例2と同様にラジ
カル発生剤による変性はし寿いで、安定剤のみを添加し
、安定剤入り未変性共重合体組成物を製造した。なお、
該共重合体のオクテン−1の濃度は8.4重量%、二重
結合は0.09個/1000Cであった。
Comparative Example 9 A stabilizer-containing unmodified copolymer composition was produced by adding only a stabilizer to the copolymer produced in Example 2 after the modification with a radical generator in the same manner as in Comparative Example 2. . In addition,
The concentration of octene-1 in the copolymer was 8.4% by weight, and the number of double bonds was 0.09/1000C.

実施例5 比較例9で製造した安定剤入り未変性共重合体組成物を
実施例3と同様に変性した。ただし、ラジカル発生剤の
量は、実施例6による変性共重合体のMIと同じになる
ように調節した。その量は701191であった。
Example 5 The stabilizer-containing unmodified copolymer composition produced in Comparative Example 9 was modified in the same manner as in Example 3. However, the amount of the radical generator was adjusted to be the same as the MI of the modified copolymer according to Example 6. The amount was 701,191.

実施例6 比較例9で製造した安定剤入り未変性共重合体組成物を
実施例3と同様に変性した。ただし、ラジカル発生剤の
量は6509i11とした。
Example 6 The stabilizer-containing unmodified copolymer composition prepared in Comparative Example 9 was modified in the same manner as in Example 3. However, the amount of radical generator was 6509i11.

比較例10 比較例9で製造した安定剤入り未変性共重合体組成物を
実施例6と同様に変性した。ただし、ラジカル発生剤の
量はLloopIImとした。
Comparative Example 10 The stabilizer-containing unmodified copolymer composition produced in Comparative Example 9 was modified in the same manner as in Example 6. However, the amount of the radical generator was LloopIIm.

比較例11 第1表に示す重合条件で、高密度のエチレン−オクテ/
−1共重合体を製造し、次いで比較例2と同様に安定剤
を加え、安定剤入り未変性共重合体組成物を製造した。
Comparative Example 11 High-density ethylene-octe/
-1 copolymer was produced, and then a stabilizer was added in the same manner as in Comparative Example 2 to produce a stabilizer-containing unmodified copolymer composition.

この共重合体のオクテン−1の濃度は2.3重量%、二
重結合の量は0.11個/ 1o o OCであった。
The concentration of octene-1 in this copolymer was 2.3% by weight, and the amount of double bonds was 0.11/1o OC.

比較例12 比較例11で製造した共重合体を実施例6と同様に変性
した。ただし、変性後のMlが実施例3による変性共重
合体組成物のMIとほとんど同じになるようにラジカル
発生剤の量を調節した。その量は55 ppllであっ
た。次いで、実施例3と同様に安定剤を加えた。
Comparative Example 12 The copolymer produced in Comparative Example 11 was modified in the same manner as in Example 6. However, the amount of the radical generator was adjusted so that the Ml after modification was almost the same as the MI of the modified copolymer composition according to Example 3. The amount was 55 ppll. A stabilizer was then added as in Example 3.

比較例13 第1衣に示す重合条件で、実施例6による変性共重合体
組成物とほとんど同じMI、λ”R;密度を有するエチ
レン−オクテン−1共重合体を製造した。この共重合体
に実施例3と同様に安定剤を加えた。
Comparative Example 13 Under the polymerization conditions shown in the first coating, an ethylene-octene-1 copolymer having almost the same MI and λ''R; density as the modified copolymer composition according to Example 6 was produced. A stabilizer was added in the same manner as in Example 3.

上記実施例3,4,5.6および比較例8,9,10゜
11.12.13の特性値を第3表に示す。
Table 3 shows the characteristic values of Examples 3, 4, 5.6 and Comparative Examples 8, 9, 10°11, 12, and 13.

実施例7 第1表に示す重合条件で、エチレン−ヘキセン−1共重
合体を製造した。この共重合体を実施例1で使用したラ
ジカル発生剤200 ppmで、他は実流側1と同様に
して変性し、次いで安定剤を加えた。
Example 7 An ethylene-hexene-1 copolymer was produced under the polymerization conditions shown in Table 1. This copolymer was modified with 200 ppm of the radical generator used in Example 1 in the same manner as in Actual Flow Side 1, and then a stabilizer was added.

比較例14 実施例7による共重ば体を比較例2と同様に変性しない
で安定剤を加え、安定剤入り未変性共重合体組成物を製
造した。々お、この共重合体中のヘキセン−1の濃度は
14重量%、二重結合の量FiO,33個71000 
Cであった。
Comparative Example 14 A stabilizer was added to the copolymer of Example 7 without modification in the same manner as in Comparative Example 2, to produce a stabilizer-containing unmodified copolymer composition. The concentration of hexene-1 in this copolymer is 14% by weight, the amount of double bonds FiO, 33, 71000
It was C.

比較例15 第1表に示す重合条件で、高密度ポリエチレンを製造し
た。次いで、比較例2と同様に変性しないで安定剤を加
え、安定剤入り高密度ポリエチレン組成物を製造した。
Comparative Example 15 High density polyethylene was produced under the polymerization conditions shown in Table 1. Next, a stabilizer was added without modification in the same manner as in Comparative Example 2 to produce a stabilizer-containing high-density polyethylene composition.

なお、このポリエチレン中の二重結合の量は0.48個
/ 1000 Cであった。
The amount of double bonds in this polyethylene was 0.48/1000C.

比較例16 比較例15による高密度ポリエチレンを実施例1で使用
したラジカル発生剤200 ppmで、他は実施例1と
同様にして変性し、次いで安定剤を加え、安定刺入シ変
性ポリエチレン組成物を製造した。
Comparative Example 16 High-density polyethylene according to Comparative Example 15 was modified with 200 ppm of the radical generator used in Example 1 in the same manner as in Example 1, and then a stabilizer was added to form a stable stab-modified polyethylene composition. was manufactured.

比較例17 通常の高圧法による低密度ポリエチレン(旭ダウL 1
850 A )について特性を調べた。
Comparative Example 17 Low density polyethylene produced by ordinary high pressure method (Asahi Dow L 1
850 A).

比較例18 比較例17で使用した低密度ポリエチレンを実施例1と
同様にして変性した。ただし、変性後のMIが実施例7
による変性ポリエチレン組成物のMIとほとんど同じに
なるように、ラジカル発生剤の量を調節した。必要なそ
の量は450 ppmであった。
Comparative Example 18 The low density polyethylene used in Comparative Example 17 was modified in the same manner as in Example 1. However, MI after denaturation is Example 7
The amount of the radical generator was adjusted so that the MI of the modified polyethylene composition was almost the same as that of the modified polyethylene composition. The amount required was 450 ppm.

上記実施例7および比較例14,15,16,17゜1
8の特性値を第4表に示す。
The above Example 7 and Comparative Examples 14, 15, 16, 17゜1
The characteristic values of No. 8 are shown in Table 4.

第2表、第3表、第4表の各側の特性値から次のことが
言える。
The following can be said from the characteristic values on each side in Tables 2, 3, and 4.

a 実施例1,2と比較例2との比較、実施例5.4,
5.6と比較例9との比較、実施例7と比較例14との
比較から、本発明による変性共重合体組成物は、未変性
の共重合体に比較して、溶融張力、ダイ・スウェル、引
張衝撃強さ、ESCR。
a Comparison of Examples 1 and 2 and Comparative Example 2, Example 5.4,
From the comparison between 5.6 and Comparative Example 9 and the comparison between Example 7 and Comparative Example 14, the modified copolymer composition according to the present invention has lower melt tension and die strength than the unmodified copolymer. Swell, tensile impact strength, ESCR.

艙度なと多くの特性が著しく改良されていることが判る
It can be seen that many characteristics, such as the degree of comfort, have been significantly improved.

b 比較例1,8.10から、ラジカル発生剤の量が1
oooppaを越えて多量に使用しても、ダイ・スウェ
ルは100011111未満の場合より改良効果が小さ
く、また、フィルムの製膜性、フィッシュアイなどが悪
くなる等、成形加工性が未変性の共重合体に比較しかえ
って悪くなる。
b From Comparative Examples 1, 8.10, the amount of radical generator is 1
Even if a large amount is used in excess of oooppa, the improvement effect on die swell will be smaller than in the case of less than 100011111, and in addition, the molding processability will deteriorate, such as poor film formability and fish eyes. It only gets worse compared to the combination.

clQ施例流側比較例7との比較、実施例3と比較例1
3との比較から、単に重合でつくったMl、MIR,密
度が同じ共重合体(比較例)は、本発明による変性共重
合体組成物(実施例)に比較して、溶融張力、ダイ・ス
ウェル、鎗度の特性が= 63− = 32− 劣る。
Comparison with clQ Example Stream Side Comparative Example 7, Example 3 and Comparative Example 1
3, a copolymer with the same Ml, MIR, and density (comparative example) made by simple polymerization has lower melt tension, die strength, and die strength than the modified copolymer composition according to the present invention (example). The characteristics of swell and sharpness are = 63- = 32- inferior.

捷た、本発明のラジカル発生剤による改良効果ハ、線状
中低密度ポリエチレン(エチレン−αオレフィン共重合
体)の場合が、高密度ポリエチレンの場合(比較例3,
4,11,12,15.16)および高圧法による高分
岐度低密度ポリエチレンの場合(比較例5 、6 、 
’17 、18 )に比較してとくに顯著である。この
ことを判り易くするために、第2.3.4表から関連デ
ータを抜粋し第5表に1とめた。
The improved effect of the radical generator of the present invention was observed in the case of linear medium-low density polyethylene (ethylene-α olefin copolymer), and in the case of high-density polyethylene (Comparative Example 3,
4, 11, 12, 15, 16) and highly branched low density polyethylene produced by high pressure method (Comparative Examples 5, 6,
This is particularly impressive compared to '17, 18). In order to make this easier to understand, related data has been extracted from Table 2.3.4 and placed in Table 5.

−34− 以上説明したとおり、本発明による変性された線状甲低
密度ポリエチレン組成物は、従来の線状中低密度ポリエ
チレンに比較し、優れた溶融張力、ダイ・スウェル、透
明性などを有し、多汎な用途、商品に好適である。
-34- As explained above, the modified linear low-density polyethylene composition of the present invention has superior melt tension, die swell, transparency, etc. compared to conventional linear medium-low density polyethylene. It is suitable for a wide variety of uses and products.

−36− 43− −35−-36- 43- -35-

Claims (1)

【特許請求の範囲】 1、線状中低密度ポリエチレンにラジカル発生剤を0.
0005重量%以上0.1重量%未満混合した混合物を
、該線状中低密度ポリエチレンの融点以上熱分解温度未
満の温度で均一に溶融混練することにより変性された線
状中低密度ポリエチレン組成物であって、 (1)線状中低密度ポIJ エチレンの密度が0.90
 f/c1以上0.94 t/Crd未満であり、(1
1)変性前の該線状中低密度ポリエチレンのメルト・イ
ンデックスを(Ml)1、変性されて得られた線状中低
密度ポリエチレン組成物のメルト・インデックスを(M
l)tとしたとき、(MI)!/(MI)1の値が0.
05以上0.9以下の範囲にあるように変性して成る変
性線状中低密度ポリエチレン組成物。 2、  (Mi)、/(Ml)、の値が0.5を越え0
.9以下の範囲に入るように変性して成る、とくにフィ
ルムに適した特許請求の範囲第1項記載の組成物。 3、  (MI)、が32/10i以下であって、(M
I)t/(MI)Iの値が0.05以上0.7以下の範
囲に入るように変性して成る、とくに押出、中空成形に
適した特許請求の範囲第1項記載の組成物。 4、線状中低密度ポリエチレンの密度が0.9 ’1 
p 7crtt以上0,935 f/C−d以下である
特許請求の範囲第1項ないし第6項記載の組成物。 5、ラジカル発生剤が、ジ−t−ブチルパーオキサイド
、ジ−クミルパーオキサイド、2,5−ジメチル−2,
5ジ(1−ブチルパーオキシ)ヘキサン、2.5−ジメ
チル−2,5ジ(t−ブチルパーオキシ)ヘキシン、1
.3−ビス(1−プチルパーオキシイソグロビル)ベン
ゼンである特許請求の範囲第1項ないし第4項記載の組
成物。
[Claims] 1. Adding 0.0% radical generator to linear medium-low density polyethylene.
A linear medium-low density polyethylene composition modified by uniformly melt-kneading a mixture of 0005% by weight or more and less than 0.1% by weight at a temperature higher than the melting point of the linear medium-low density polyethylene and lower than the thermal decomposition temperature. (1) Linear medium-low density polyethylene ethylene has a density of 0.90
f/c1 or more and less than 0.94 t/Crd, (1
1) The melt index of the linear medium-low density polyethylene before modification is (Ml) 1, and the melt index of the linear medium-low density polyethylene composition obtained by modification is (Ml).
l) When t, (MI)! /(MI)1 value is 0.
1. A modified linear medium-low density polyethylene composition which has been modified to have a polyethylene content in the range of 0.05 or more and 0.9 or less. 2. The value of (Mi), /(Ml) exceeds 0.5 and becomes 0.
.. 9. The composition according to claim 1, which is particularly suitable for use as a film, and is modified to fall within the range of 9 or less. 3. (MI) is less than or equal to 32/10i, and (M
I) The composition according to claim 1, which is modified so that the value of t/(MI)I falls within the range of 0.05 or more and 0.7 or less, and is particularly suitable for extrusion and blow molding. 4. The density of linear medium-low density polyethylene is 0.9'1
7. The composition according to claim 1, wherein p is 7 crtt or more and 0,935 f/C-d or less. 5. The radical generator is di-t-butyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,
5 di(1-butylperoxy)hexane, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane, 1
.. 5. The composition according to claims 1 to 4, which is 3-bis(1-butylperoxyisoglobil)benzene.
JP56168725A 1981-10-23 1981-10-23 Improved linear medium-to-low density polyethylene composition Granted JPS5871904A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56168725A JPS5871904A (en) 1981-10-23 1981-10-23 Improved linear medium-to-low density polyethylene composition
US06/427,202 US4465812A (en) 1981-10-23 1982-09-29 Linear medium- or low-density polyethylene composition
EP82305555A EP0079687B1 (en) 1981-10-23 1982-10-19 Improved linear medium or low-density polyethylene composition
DE8282305555T DE3276941D1 (en) 1981-10-23 1982-10-19 Improved linear medium or low-density polyethylene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168725A JPS5871904A (en) 1981-10-23 1981-10-23 Improved linear medium-to-low density polyethylene composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3458887A Division JPS62187733A (en) 1987-02-19 1987-02-19 Modified ethylene/alpha-olefin copolymer

Publications (2)

Publication Number Publication Date
JPS5871904A true JPS5871904A (en) 1983-04-28
JPS6242921B2 JPS6242921B2 (en) 1987-09-10

Family

ID=15873265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168725A Granted JPS5871904A (en) 1981-10-23 1981-10-23 Improved linear medium-to-low density polyethylene composition

Country Status (4)

Country Link
US (1) US4465812A (en)
EP (1) EP0079687B1 (en)
JP (1) JPS5871904A (en)
DE (1) DE3276941D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501782A (en) * 1984-04-09 1986-08-21 ビ−ピ− ケミカルズ リミテツド Modification of LLDPE by peroxide treatment
JPS6465146A (en) * 1987-09-04 1989-03-10 Idemitsu Petrochemical Co Modified linear polyethylene composition of medium to low density
JP2010150304A (en) * 2008-12-24 2010-07-08 Japan Polyethylene Corp Polyethylene-based resin for extrusion molding and method for producing the same, and extrusion molded article obtained thereby

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578430A (en) * 1984-12-19 1986-03-25 Shell Oil Company Controlled degradation or cracking of alpha-olefin polymers
US4703093A (en) * 1985-01-16 1987-10-27 Colonial Rubber Works, Inc. Method of preparing a polymer for cross-link rotational molding and a polymer prepared by said method
US4797235A (en) * 1987-04-16 1989-01-10 W. R. Grace & Co. Process for enhanced orientation of polymeric films
US5089352A (en) * 1987-04-16 1992-02-18 W. R. Grace & Co.-Conn. Cross-linked multilayer heat-shrinkable oriented polymeric film
US5110870A (en) * 1989-01-06 1992-05-05 Mitsubishi Kasei Corporation Extensible film or sheet and process for producing the same
US5073598A (en) * 1989-06-21 1991-12-17 Mobil Oil Corporation Method for improving the processing characteristics of polyethylene blends
US5405917A (en) * 1992-07-15 1995-04-11 Phillips Petroleum Company Selective admixture of additives for modifying a polymer
US5486575A (en) * 1994-03-08 1996-01-23 Quantum Chemical Corporation High performance blow molding resins and process for their preparation
AU2510295A (en) * 1994-05-09 1995-11-29 Dow Chemical Company, The Medium modulus film and fabrication method
US5792534A (en) * 1994-10-21 1998-08-11 The Dow Chemical Company Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus
US5589551A (en) * 1995-02-22 1996-12-31 Mobil Oil Corporation Swell reduction of chromium catalyzed HDPE resins by controlled degradation using high temperature peroxides
DE69619603T2 (en) * 1995-07-28 2002-09-26 Tosoh Corp Molding compound, composition containing this molding compound and process for its production
US9701823B2 (en) 2011-11-16 2017-07-11 Chevron Phillips Chemical Company Lp Polymeric blends and methods of using same
WO2017001384A1 (en) * 2015-06-29 2017-01-05 Sabic Global Technologies B.V. Use of a free radical initiator composition for the reduction of gels in polyethylene materials
JP6536280B2 (en) * 2015-08-18 2019-07-03 キョーラク株式会社 Resin for foam molding, method for producing foam molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014672A (en) * 1973-05-15 1975-02-15
DE2442230A1 (en) * 1974-09-04 1976-03-18 Basf Ag High strength polyethylene films - obtd by homogenising polyethylene and peroxide in an extruder
JPS5282964A (en) * 1975-12-29 1977-07-11 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS57107518A (en) * 1980-12-25 1982-07-05 Fujitsu Ltd Matrix switch driving system
JPS585330A (en) * 1981-06-22 1983-01-12 ビーピー・シミー・ソシエテ・アノニム Polymer quality improvement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079370A (en) * 1955-05-18 1963-02-26 Gen Electric Peroxide cured polyethylene
NL234639A (en) * 1957-12-26
BE581218A (en) * 1958-07-30
US3105057A (en) * 1958-11-06 1963-09-24 Cabot Corp Peroxide cured ethylene-butene compositions
US3242159A (en) * 1961-11-27 1966-03-22 Pullman Inc Treatment of linear polyethylene
NL298986A (en) * 1963-01-09 1900-01-01
DE1952073C3 (en) * 1969-10-16 1974-05-02 Siemens Ag, 1000 Berlin U. 8000 Muenchen Process for crosslinking polyolefins and olefin copolymers
JPS5148196B2 (en) * 1972-03-11 1976-12-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014672A (en) * 1973-05-15 1975-02-15
DE2442230A1 (en) * 1974-09-04 1976-03-18 Basf Ag High strength polyethylene films - obtd by homogenising polyethylene and peroxide in an extruder
JPS5282964A (en) * 1975-12-29 1977-07-11 Nippon Petrochemicals Co Ltd Method of producing tubular film
JPS57107518A (en) * 1980-12-25 1982-07-05 Fujitsu Ltd Matrix switch driving system
JPS585330A (en) * 1981-06-22 1983-01-12 ビーピー・シミー・ソシエテ・アノニム Polymer quality improvement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501782A (en) * 1984-04-09 1986-08-21 ビ−ピ− ケミカルズ リミテツド Modification of LLDPE by peroxide treatment
JPS6465146A (en) * 1987-09-04 1989-03-10 Idemitsu Petrochemical Co Modified linear polyethylene composition of medium to low density
JP2010150304A (en) * 2008-12-24 2010-07-08 Japan Polyethylene Corp Polyethylene-based resin for extrusion molding and method for producing the same, and extrusion molded article obtained thereby

Also Published As

Publication number Publication date
EP0079687A3 (en) 1985-03-27
DE3276941D1 (en) 1987-09-17
EP0079687A2 (en) 1983-05-25
EP0079687B1 (en) 1987-08-12
JPS6242921B2 (en) 1987-09-10
US4465812A (en) 1984-08-14

Similar Documents

Publication Publication Date Title
EP0072750B1 (en) Improved polyethylene composition
JPS5871904A (en) Improved linear medium-to-low density polyethylene composition
US5795941A (en) Crosslinkable bimodal polyolefin compositions
US4336352A (en) Blend of three ethylene polymers
JPH0112780B2 (en)
EP2504388B1 (en) Compositions, films and methods of preparing the same
JPS5951905A (en) New ethylene copolymer
JPS6026051A (en) Polyethylene composition
JPH0366341B2 (en)
JPH0112779B2 (en)
JPS6242922B2 (en)
JPS58194936A (en) Ethylene/alpha-olefin copolymer film
JPS596241A (en) Extrusion-coating resin composition
JPH0125333B2 (en)
JPH0112781B2 (en)
KR100563482B1 (en) Linear low density polyethylene resin composition with high impact strength
JPS58196249A (en) Carbon black composition and molded article prepared therefrom
JPS62187733A (en) Modified ethylene/alpha-olefin copolymer
JP2004168817A (en) Polyethylene composition
JPS5989341A (en) Polyethylene composition for blow molding
JP6977627B2 (en) Propylene resin composition for matte injection molding and its molded products
JPS5971349A (en) Ethylenic resin composition
JP3067281B2 (en) Method for producing chlorinated polyethylene
JPH02235947A (en) Polyethylene composition
JPH01271403A (en) Manufacture of modified ethylene copolymer