JPS5871432A - Soil test method - Google Patents

Soil test method

Info

Publication number
JPS5871432A
JPS5871432A JP17034081A JP17034081A JPS5871432A JP S5871432 A JPS5871432 A JP S5871432A JP 17034081 A JP17034081 A JP 17034081A JP 17034081 A JP17034081 A JP 17034081A JP S5871432 A JPS5871432 A JP S5871432A
Authority
JP
Japan
Prior art keywords
specimen
pressure
cylindrical
test
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17034081A
Other languages
Japanese (ja)
Inventor
Ichiro Kako
加来 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ODAKYU KENSETSU KK
Original Assignee
ODAKYU KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ODAKYU KENSETSU KK filed Critical ODAKYU KENSETSU KK
Priority to JP17034081A priority Critical patent/JPS5871432A/en
Publication of JPS5871432A publication Critical patent/JPS5871432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To conduct a soil test which is equal to a triple spindle test with simple operation by pressurizing a cylindrical specimen of hollow cylindrical pressure chamber with rubber bushing inside by the both ends thereof with lateral pressure. CONSTITUTION:When a cylindrical specimen 3 is inserted into an inside chamber formed with a thin rubber cylinder 4 and hydraulic pressure of a pressure chamber 1 is controlled, desirable side pressure is put upon the specimen 3. Under this condition, the ends pressure is put upon the specimen 3 by means of loading piston 10 and porous discs 5 and 6 and deformation valumen of the specimen 3 is measured according to movement volume, etc. of the piston 10 until the deformation becomes discontinuous so as to form Mohr's circle by stress. Adhesive power and internal friction angle of the soil specimen can be determined by a test which is equal to a triple spindle test with simple operation by drawing a tangent to Mohr's circle which corresponds to different side pressure.

Description

【発明の詳細な説明】 この発明は一軸試験機を用いて、三軸試験機と同様の試
験を行うことを目的とした土質試験方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soil testing method using a uniaxial testing machine for the purpose of conducting a test similar to that of a triaxial testing machine.

従来土質試験には一軸試験機を用いる場合と三軸試験機
を用いる場合とがあるが、−軸試験を用いた場合vc壮
同円柱状供試体に軸方向の加圧を掛け、供試体に掛る加
圧力と体積変化とを測定するものであるが、−軸方向か
らのみの圧力であるから、供試体が粘土質の場合は良い
結果が得られ、かつ進行性破裏の影響が少な(、せん断
面も固定した位置に生ぜず、最も弱い位置に生じるなど
の特性があって、現場の要請に応え得るような素速い試
験が可能であるが、供試体が粘土質でない場合には加圧
後半期に崩解し、実情に合致しない結果を生じるおそれ
があった。一方、三軸試験機は側圧および間隙圧をかげ
、加圧力の変化と体積変化お↓び間隙水圧ケ測定するの
で、崩解し易い土質であっても、実情に即したデーター
が得られる特質があるが、供試体および装置乞水中に設
置する為に全体の装置が複雑であって、手軽に短時間で
試験することがむつかしく、かつ高価になるので現場に
即応すべき試験としては不適当である。
Conventionally, soil tests can be conducted using either a uniaxial tester or a triaxial tester, but when using a -axial test, pressure is applied in the axial direction to a VC-shaped cylindrical specimen. This method measures the applied pressure and volume change, but since the pressure is applied only from the -axial direction, good results can be obtained when the specimen is made of clay, and the influence of progressive fracture is small ( , the shear plane does not occur at a fixed position, but at the weakest position, making it possible to conduct a quick test that can meet the demands of the field. However, if the specimen is not made of clay, There was a risk that it would collapse in the second half of the rolling process, resulting in results that did not match the actual situation.On the other hand, the triaxial testing machine measures changes in applied pressure, volume changes, and pore water pressure while reducing lateral pressure and pore pressure. Although it has the property of being able to obtain data that corresponds to the actual situation even in soils that are easily disintegrated, the overall equipment is complex because the specimen and equipment are installed underwater, making it difficult to conduct tests easily and in a short time. Since it is difficult and expensive to perform, it is inappropriate as a test that can be applied immediately in the field.

然るにこの発明は、円筒状の加圧室の内側部へ薄ゴムを
被層した供試体を挿入し、前記加圧室内の圧力を上げて
前記供試体の全周壁へ均等な側圧をかけ、この状態で供
試体ン端面の方向エリ加圧し、当該加圧力と供試体の体
積変化とを測定するようにしたので、簡単な操作により
三軸試験に匹適するデーターを得ることに成功したので
ある。
However, in this invention, a specimen coated with thin rubber is inserted into the inside of a cylindrical pressurizing chamber, and the pressure inside the pressurizing chamber is increased to apply uniform lateral pressure to the entire circumferential wall of the specimen. By applying pressure in the direction of the end face of the specimen and measuring the applied force and volume change of the specimen, they were able to successfully obtain data comparable to triaxial testing with simple operations.

前記試験は空気中のみならず水中でも行うことができる
The above test can be carried out not only in air but also in water.

即ちこの発明を添付図面に示す使用装置に基づいて説明
すれば次の通りである。第1図において円筒状加圧室l
内へ水を充填すると共に、その−側に連通管−の一端を
連結して他端を加圧装置(図示してない)と連結する。
That is, the present invention will be explained as follows based on the apparatus shown in the accompanying drawings. In Figure 1, the cylindrical pressurizing chamber l
While filling the inside with water, one end of the communication pipe is connected to the - side, and the other end is connected to a pressurizing device (not shown).

前記加圧室lの内周壁は、内圧の変化に応じ変形し、内
側に挿入した供試体3の側壁に均等圧を掛は得るように
なっている。
The inner circumferential wall of the pressurizing chamber 1 deforms in response to changes in internal pressure, and applies equal pressure to the side wall of the specimen 3 inserted inside.

前記供試体3は試験すべき土壌ケ所1定寸法の円柱状に
形成したもので、その外側に薄ゴム円筒tを被層しであ
る。前記のように加圧室lの内側へ前記ゴム円筒4”&
被着した供試体Jを挿入し、供試体3の上下端面には多
孔質円板S、4を介装して基台7と介装材gを夫々当接
し、所定の水圧をかけて供試体の側壁を加圧すると共に
(圧力計9によって側圧を読み一定圧を保つ)、介装材
ざ上に当接した載荷ピストン1oVc工り垂直圧をかけ
ム前記において載荷ピストン10の加圧力はその上方に
取付けたダイヤルゲージ(図示してない)によって測定
する。前記装置において、載荷ピストンioy矢示l/
のように加圧すると、加圧力の増加と共に下降するので
、その下降量と加圧力の変化を読みとり、下降量を供試
体の体積変化におきかえれば、体積変化と加圧力の対応
変化とすることができろ。
The specimen 3 was formed into a cylindrical shape with a fixed size for the soil to be tested, and a thin rubber cylinder t was layered on the outside thereof. As mentioned above, insert the rubber cylinder 4'' into the pressurized chamber l.
The adhered specimen J is inserted, the upper and lower end surfaces of the specimen 3 are interposed with porous disks S and 4, the base 7 and the intervening material g are brought into contact with each other, and a predetermined water pressure is applied. While pressurizing the side wall of the specimen (by reading the side pressure using the pressure gauge 9 and maintaining a constant pressure), a vertical pressure is applied to the loading piston 1oVc in contact with the surface of the intervening material.In the above, the pressing force of the loading piston 10 is Measured by a dial gauge (not shown) mounted above. In the device, the loading piston ioy arrow l/
When pressurized like this, it will drop as the pressure increases, so if you read the amount of descent and the change in pressure, and replace the amount of descent with the change in volume of the specimen, it will be the corresponding change in volume and pressure. Be able to do that.

このようにして、側圧を変化させ、これに対応する全応
力から夫々第3図のようなモールの円を画き、各日に共
通する接線を引けば、粘着力Cと内部摩擦角yを求める
ことができる。次に第2図の使用装置は水槽/コ内へ第
1図の使用装置を設置したものである。この場合には供
試体に含水させた状態で試験できるので、試験すべき土
壌の自然状態に近い条件で粘着力および内部摩擦角を求
め得る効果がある。前記測定方法によれば、進行性破壊
の影響が少なく、体積変化量が容易に測定でき常に二つ
の応力状態がわかると共に、崩解し易い砂質であっても
試験できるなど三軸試験と同様の効果が期待できると共
に、密封水中へ供試体を沈設するような手段をとらない
ので供試体のセットおよび取外しがきわめて容易であり
、試験を手軽かつ素早(行い得るなどの諸効果がある。
In this way, by changing the lateral pressure and drawing a Mohr's circle as shown in Figure 3 from the corresponding total stress, and drawing a common tangent for each day, we can find the adhesive force C and the internal friction angle y. be able to. Next, the apparatus shown in FIG. 2 is obtained by installing the apparatus shown in FIG. 1 into an aquarium. In this case, since the test can be carried out with the specimen hydrated, the adhesive force and internal friction angle can be determined under conditions close to the natural state of the soil to be tested. According to the above measurement method, the influence of progressive fracture is small, the amount of volume change can be easily measured, two stress states can always be seen, and even sandy materials that are easily disintegrated can be tested, similar to triaxial testing. In addition, since there is no need to submerge the specimen in sealed water, it is extremely easy to set up and remove the specimen, and the test can be performed easily and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に用いる装置の断面図第2図は
同じく他の装置の断面図、第3図は同じ(モールの包絡
線によりCとグを求める図である。 l・・加圧室  3・・供試体  ダ・・ゴム円筒  
S、6・・多孔質円板  10・・載荷ピストン 第1図 手続補正書(自船 昭和I4年/1月ψF 特許庁長音  島 1)春 樹    殿1、 事件の
表示 昭和I6年特 許 願第1り0JIIσ号4、代 理 
人 (郵便番号160) 住所東京都新宿区信濃町29番地徳明ビル昭殉  年 
 月  日 −)図面 Z 補正の内容 1    (1)QQm書は別紙添付0通り・化0補り
対象に記載した以外の欄は補正を要しない。 (J)  図面中第7図および第2図を別紙のように訂
正する。 と 添付書類の目録 (1)  訂正明細書            1通(
−)訂正図面             /通FJA細
書 / 発明の名称  土質試験方法 べ特許請求の範囲 l 所定寸法とした円柱状供試体を薄いゴム円筒を内側
とした中空円筒状加圧室の内部へ嵌挿し、前記供試体に
所定の側圧を!1けた状態でその端面方向より加圧し、
前記加圧力の増大に伴う体積変化を、その変化が不連続
になるまで続行し、ついで同−質の供試体を用い、側圧
のみ変えて前記と同一方法で体積変化を測定し、前記各
測定値に基づきモールの円を両き、各回に共通の接線を
引いて粘着力と内部摩擦角を末めることを特徴とした土
質試験方法 コ 前記円柱状供試体および円筒状加圧室を空気中又は
水中に設置することを特徴とする特許請求の範囲1g1
項記載の土質試験方法 J 側圧は水圧により掛けることを特徴とする特許請求
の範囲第1項記載の土質試験方法 3、発明の詳細な説明 この発明は一軸試験機を用いて、三軸試験機と開開する
ものである。 従来土質試験には一軸試験機を用いる場合と三軸試験機
を用いる場合とがある。−軸試験の場合には円柱状の供
試体に軸方向の圧を掛け、その加圧力と体積変化とを測
定するものであるが、−軸方向からのみの圧力であるか
ら、供試体が粘土質の場合は進行性破壊の影響が少なく
、せん断面も固定した位−に極ぜず、最も弱い位置に生
じるなどの特性があって、現場の製鎖に応え得るような
素速い試験が可能であるが、供試体が粘土質でない場合
には加工後早期に崩解し1、測定が中断するおそれがあ
った。一方、三軸試験機は側圧を変え、加圧力の変化と
体積変l化および間隙水圧を測定するので、崩解し易い
土質であっても、実情に即したデータが得られる特質が
あるが、供試体および装置を水中に設置する為全体の装
置が複雑で、手軽に短時間で試験することがむつかしく
、かつ高価になるので現場に即応すべき試験としては不
適当である。 然るにこの発明は、中空円筒状の加圧室の内周壁として
薄ゴムを用いこの中に供試体を挿入する□ ことにより前記加圧室内の圧力を上げて前記供試体の全
周一へ均等な側圧をかけ、この状態で供試体を端面の方
向より加圧し、当該加圧力と供試体の体積変化とを測定
するようにしたので、簡単な操作により三輪試験に匹適
するデーターを得ることが出来る。前記試験は空気中の
みならず水中でも行うことができる。 即ちこの発明を添付図面に示す使用装置に基づいて説明
すれば次の通りである。第1図において工里円筒状加圧
室l内へ水を充填すると共K、その−側に連通管−の一
端を連結して他端を加圧装置(図示してない)と連結す
る。前記加圧室/の内周の薄ゴムは、内圧の変化に応じ
変形し、中空円筒の内側に挿入した供試体jfflに均
等圧を掛は得るようになっている。 前記供試体3は試験すべき土試料を所定寸法の円柱状に
形成したものである。前記のように加圧端面には多孔質
円板よ、6を介装して基台りを蟲、擬毛、所定の水圧を
かけて供試体の側壁を加圧すると共に(圧力計tによっ
て側圧を読み一定圧を保つ)、前記多孔質円板!に当接
した載荷ピストンIOにより画直圧をかける。前記にお
いて載荷ピストンIOの加圧力はその上方に取付けたダ
イヤルゲージ(図示してない)により【−1定する。前
記装置におい文、載荷ピストンIOを矢示l/のように
加圧すると、加圧力の増加と共に下降するので、その下
降量と加圧力の変化を読みとり、下降量を供試体の体積
変化におきかえれば、体積変化と加圧力の対応変化とす
ることができる。5周壁のゴム円筒、tはゴム円筒の固
定バンドである。 このようにして、側圧を変化させ、これに対応する全応
力から夫々第3図のようなモールの円を画ぎ、各回に共
通する接線を引けば、粘着力Cと内部摩擦角ダを求める
ことができる。次に第一図の使用装置は水槽lコ内へ第
7図の使用装置を設置したものである。この場合には供
試体に含水させた状態で試験できるので、試験すべき土
試料の自然状態に近い条件で粘着力および内部摩擦角を
求め得る効果がある。前記測定方法によれば、進行性破
壊の影響が少なく、体積変化量が容易に測定でき常に二
つの応力状態がわかると共に、崩解し易い砂質式とであ
っても試験できるなど三軸試験と同様の効果が期待でき
ると共に、密封水中へ供試体を沈設するような手段をと
らないので供試体のセットおよび取外しがきわめて容易
であり、試験を手帳かつ素早(行い得るなどの諸効果が
ある。 4、図面の簡単な説明 第1図はこの発明の実施に用いる装置の断面図、第2図
は同じく他の使用装置の断面図、第3図は同じくモール
の包路線によりCと声を求める図である。 /・・加圧室  3・・供試体  亭・・ゴム円@S、
+・・多孔質円板  10・・載荷ピストン 第1図
Figure 1 is a cross-sectional view of the device used to carry out the present invention. Figure 2 is a cross-sectional view of another device. Pressure chamber 3...Specimen da...Rubber cylinder
S, 6... Porous disc 10... Loading piston Figure 1 Procedural amendment (Own ship January 1920/1950 ψF Patent Office Director Otoshima 1) Haruki Tono 1, Incident indication Showa I6 patent application 1st 0JIIσ No. 4, Deputy
Person (Postal code: 160) Address: 29 Shinanomachi, Shinjuku-ku, Tokyo Tokumei Building, 1983
Date -) Drawing Z Contents of amendment 1 (1) No amendments are required for the QQm document, except for those listed in the appendix 0 types and 0 corrections. (J) Figures 7 and 2 of the drawings are corrected as shown in the attached sheet. and List of attached documents (1) 1 copy of the amended statement (
-) Corrected drawings / FJA specifications / Title of invention Soil testing method Scope of claims 1 A cylindrical specimen with predetermined dimensions is inserted into a hollow cylindrical pressurized chamber with a thin rubber cylinder inside, and the above-mentioned Apply the specified lateral pressure to the specimen! Pressure is applied from the end face direction in a single digit state,
The volume change due to the increase in the applied pressure is continued until the change becomes discontinuous, and then the volume change is measured in the same manner as above, using a specimen of the same quality and changing only the lateral pressure, and each of the above measurements A soil test method characterized by crossing Mohr's circle based on the value and drawing a common tangent each time to determine the adhesive force and internal friction angle. Claim 1g1 characterized in that it is installed inside or underwater.
Soil testing method J described in Claim 1, characterized in that the lateral pressure is applied by water pressure. Detailed description of the invention. It opens up and opens up. Conventionally, there are cases in which a uniaxial testing machine is used for soil testing, and cases in which a triaxial testing machine is used. - In the case of an axial test, pressure is applied to a cylindrical specimen in the axial direction and the applied force and volume change are measured. In the case of high-quality chains, the influence of progressive fracture is small, and the shear plane is not limited to a fixed position, but occurs at the weakest point, making it possible to perform rapid tests suitable for on-site chain manufacturing. However, if the specimen was not made of clay, it would disintegrate early after processing 1 and there was a risk that the measurement would be interrupted. On the other hand, a triaxial testing machine changes the lateral pressure and measures changes in applied pressure, volume changes, and pore water pressure, so it has the characteristic of being able to obtain data that corresponds to the actual situation even if the soil is easily disintegrated. However, since the specimen and equipment are installed underwater, the overall equipment is complicated, making it difficult to test easily and in a short period of time, and is expensive, making it unsuitable for tests that need to be applied immediately in the field. However, this invention uses thin rubber as the inner peripheral wall of a hollow cylindrical pressurizing chamber and inserts the specimen into the chamber to increase the pressure inside the pressurizing chamber and create an even lateral pressure around the entire circumference of the specimen. In this state, the specimen is pressurized from the direction of the end face, and the applied force and volume change of the specimen are measured, so data comparable to the three-wheel test can be obtained with simple operations. The above test can be carried out not only in air but also in water. That is, the present invention will be explained as follows based on the apparatus shown in the accompanying drawings. In FIG. 1, when water is filled into the cylindrical pressurizing chamber l, one end of the communicating pipe is connected to the negative side of the chamber, and the other end is connected to a pressurizing device (not shown). The thin rubber on the inner periphery of the pressurizing chamber deforms in response to changes in internal pressure, and applies equal pressure to the specimen jffl inserted inside the hollow cylinder. The specimen 3 is a soil sample to be tested formed into a cylindrical shape with predetermined dimensions. As mentioned above, a porous disk 6 is inserted on the pressurizing end surface to apply a predetermined water pressure to the side wall of the specimen (the lateral pressure is measured using a pressure gauge t). Read and maintain constant pressure ), the porous disk! A direct pressure is applied to the image by the loading piston IO in contact with. In the above, the pressing force of the loading piston IO is determined by [-1] by a dial gauge (not shown) installed above it. In the above device, when the loading piston IO is pressurized as indicated by the arrow 1/, it will descend as the pressure increases, so read the amount of descent and the change in the pressure, and replace the amount of descent with the volume change of the specimen. If so, the volume change and the pressurizing force can correspond to each other. 5 A rubber cylinder with a peripheral wall, t is a fixing band of the rubber cylinder. In this way, by changing the lateral pressure, drawing a Mohr's circle as shown in Figure 3 from the corresponding total stress, and drawing a common tangent for each time, the adhesive force C and the internal friction angle DA can be found. be able to. Next, the apparatus shown in Fig. 1 is the apparatus shown in Fig. 7 installed in an aquarium. In this case, since the test can be performed with the specimen hydrated, it is possible to determine the adhesive force and internal friction angle under conditions close to the natural state of the soil sample to be tested. According to the above measurement method, the influence of progressive fracture is small, the amount of volume change can be easily measured, the two stress states can always be known, and even sandy type, which is easy to disintegrate, can be tested. The same effect can be expected, and since there is no need to submerge the specimen in sealed water, it is extremely easy to set up and remove the specimen, and it has various advantages such as being able to carry out tests quickly and with a notebook. 4. Brief description of the drawings Figure 1 is a cross-sectional view of the device used to carry out the present invention, Figure 2 is a cross-sectional view of another device used, and Figure 3 is a cross-sectional view of another device used to carry out the present invention. This is the diagram you are looking for. /... Pressurized chamber 3... Specimen Tei... Rubber circle @S,
+...Porous disc 10...Loading piston Fig. 1

Claims (1)

【特許請求の範囲】 l 所定寸法とした円柱状供試体の外側に薄いゴム円筒
を被層し、この供試体を円筒状加圧室の内側部へ嵌挿し
、前記供試体に所定の側圧を掛けた状態でその端面方向
より加圧し、前記加圧力の増大に伴う体積変化を、その
変化が不連続になるまで続行し、ついで同一質の供試体
を用い、 fi+!I圧のみ変えて前記と同一方法で体
積変化を測定し、前記各測定値に基づきモールの円を画
き、谷内に共通の接線を引いて粘看力と内部摩擦角を求
めることを特徴とした土質試験方法ユ 前記円柱状供試
体および円筒状加圧室な空気中又は水中に設置すること
を特徴とする特許請求の範囲第1項記載の土質試験方法 3、 側圧は水圧により掛けることを特徴とする特許請
求の範囲第1項記載の土質試験方法
[Claims] l A thin rubber cylinder is layered on the outside of a cylindrical specimen with predetermined dimensions, the specimen is inserted into the inside of a cylindrical pressurizing chamber, and a predetermined lateral pressure is applied to the specimen. In the applied state, pressure is applied from the direction of the end face, and the volume change due to the increase in the applied pressure is continued until the change becomes discontinuous. Then, using a specimen of the same quality, fi+! The volume change was measured in the same manner as described above by changing only the I pressure, a Mohr's circle was drawn based on each of the measured values, and a common tangent line was drawn in the valley to determine the viscous force and internal friction angle. Soil test method 3: Soil test method 3 according to claim 1, characterized in that the cylindrical specimen and the cylindrical pressurized chamber are installed in air or water; lateral pressure is applied by water pressure. A soil testing method according to claim 1, which is
JP17034081A 1981-10-23 1981-10-23 Soil test method Pending JPS5871432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17034081A JPS5871432A (en) 1981-10-23 1981-10-23 Soil test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17034081A JPS5871432A (en) 1981-10-23 1981-10-23 Soil test method

Publications (1)

Publication Number Publication Date
JPS5871432A true JPS5871432A (en) 1983-04-28

Family

ID=15903105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17034081A Pending JPS5871432A (en) 1981-10-23 1981-10-23 Soil test method

Country Status (1)

Country Link
JP (1) JPS5871432A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633718A1 (en) * 1988-06-30 1990-01-05 Inst Francais Du Petrole TRIAXIAL CONTAINER TEST CELL ON A ROCK SAMPLE AND TEST METHOD USING SUCH A CELL
US6431006B1 (en) * 1997-06-11 2002-08-13 Dynamic In Situ Geotechnical Testing Incorporated Soil testing assemblies
JP2007147428A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology Membrane for triaxial test
CN102109442A (en) * 2010-12-21 2011-06-29 东南大学 Fast test method of shearing resistance of bituminous mixture
CZ302741B6 (en) * 2009-09-24 2011-10-12 Vysoká škola bánská-Technická univerzita Ostrava Device for multiaxial combined loading of test specimens
CN105181404A (en) * 2015-07-09 2015-12-23 中国科学院寒区旱区环境与工程研究所 Frozen clay hollow cylinder sample preparation device
CN106769494A (en) * 2017-03-16 2017-05-31 中国石油大学(华东) creep impact coupling loading device
CN106769483A (en) * 2017-03-16 2017-05-31 中国石油大学(华东) Simple loading unit is impacted in creep
CN106908315A (en) * 2017-05-01 2017-06-30 刘华 The principal stress deflection experimental rig and application method of trapezoidal cheuch
CN106950125A (en) * 2017-03-29 2017-07-14 中国石油大学(华东) The experimental provision and its experimental method of a kind of simulation water horizontal well explosion fracturing
CN112858018A (en) * 2021-01-08 2021-05-28 青岛海洋地质研究所 Device and method for testing lateral pressure creep of hydrate-containing sediment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633718A1 (en) * 1988-06-30 1990-01-05 Inst Francais Du Petrole TRIAXIAL CONTAINER TEST CELL ON A ROCK SAMPLE AND TEST METHOD USING SUCH A CELL
US6431006B1 (en) * 1997-06-11 2002-08-13 Dynamic In Situ Geotechnical Testing Incorporated Soil testing assemblies
JP2007147428A (en) * 2005-11-28 2007-06-14 National Institute Of Advanced Industrial & Technology Membrane for triaxial test
JP4677607B2 (en) * 2005-11-28 2011-04-27 独立行政法人産業技術総合研究所 Triaxial test membrane
CZ302741B6 (en) * 2009-09-24 2011-10-12 Vysoká škola bánská-Technická univerzita Ostrava Device for multiaxial combined loading of test specimens
CN102109442A (en) * 2010-12-21 2011-06-29 东南大学 Fast test method of shearing resistance of bituminous mixture
CN105181404A (en) * 2015-07-09 2015-12-23 中国科学院寒区旱区环境与工程研究所 Frozen clay hollow cylinder sample preparation device
CN106769483A (en) * 2017-03-16 2017-05-31 中国石油大学(华东) Simple loading unit is impacted in creep
CN106769494A (en) * 2017-03-16 2017-05-31 中国石油大学(华东) creep impact coupling loading device
CN106769494B (en) * 2017-03-16 2019-05-03 中国石油大学(华东) Creep impact coupling loading device
CN106769483B (en) * 2017-03-16 2019-05-03 中国石油大学(华东) Simple loading unit is impacted in creep
CN106950125A (en) * 2017-03-29 2017-07-14 中国石油大学(华东) The experimental provision and its experimental method of a kind of simulation water horizontal well explosion fracturing
CN106950125B (en) * 2017-03-29 2019-10-08 中国石油大学(华东) A kind of experimental provision and its experimental method of dummy level well explosion fracturing
CN106908315A (en) * 2017-05-01 2017-06-30 刘华 The principal stress deflection experimental rig and application method of trapezoidal cheuch
CN106908315B (en) * 2017-05-01 2019-04-26 新昌县品顺机械有限公司 The principal stress deflection experimental rig and application method of trapezoidal cheuch
CN112858018A (en) * 2021-01-08 2021-05-28 青岛海洋地质研究所 Device and method for testing lateral pressure creep of hydrate-containing sediment

Similar Documents

Publication Publication Date Title
CN102607946B (en) Device for large-scale true tri-axial test of original grading rockfill body and use method of method
JPS5871432A (en) Soil test method
US4644805A (en) Force measuring device
CN108645720A (en) Shear box, experimental method and the device of swollen anatonosis effect are cut for testing rock
Atkinson et al. A fluid cushion, multiaxial cell for testing cubical rock specimens
Adachi et al. Buckling of torispherical shells under internal pressure: The elastic instability of the toroidal knuckle portion of torispherical shells is examined experimentally using plastic models
US2414550A (en) Compression machine
CN111238946A (en) Method for determining self-tightening pressure of aluminum alloy liner fiber-wound gas cylinder through test
US4951497A (en) Process and apparatus for measuring the roughness of the surface of a piece
Dave et al. In-house calibration of pressure transducers and effect of material thickness
CN105784495A (en) Device for measuring lateral pressure coefficient and Poisson's ratio of geotechnical material
US4905521A (en) Ported jacket for use in deformation measurement apparatus
CN112630121A (en) Device and method for testing permeability of fractured surrounding rock of deep chamber under stress action
US3630071A (en) Free piston gauging apparatus
CN110987618A (en) Rockfill material testing device and method
Anderson et al. A comparison of hydrostatic-stress and uniaxial-strain pore-volume compressibilities using nonlinear elastic theory
CN206038144U (en) Wheel load weighing sensor detection platform
US3940973A (en) Method for the determination of shrinkage effect
Durelli Experimental strain and stress analysis of solid propellant rocket motors
JPS6140540A (en) Method and apparatus for measuring flow characteristic of particulate material
CN113790829B (en) Soil horizontal stress testing method based on film pressure sensor
Wang et al. Stress analysis of tire sections
CN215004082U (en) Pressure distribution sensor calibration device
CN115372089B (en) Method for testing flexibility of crack in rough crack closing process after fracturing
Al-Chalabi et al. Strain distribution within compressed circular cylinders: Paper discusses a technique used to measure internal as well as external strains throughout an epoxy cylinder and compares theoretical and experimental solutions