JP4677607B2 - Triaxial test membrane - Google Patents

Triaxial test membrane Download PDF

Info

Publication number
JP4677607B2
JP4677607B2 JP2005341535A JP2005341535A JP4677607B2 JP 4677607 B2 JP4677607 B2 JP 4677607B2 JP 2005341535 A JP2005341535 A JP 2005341535A JP 2005341535 A JP2005341535 A JP 2005341535A JP 4677607 B2 JP4677607 B2 JP 4677607B2
Authority
JP
Japan
Prior art keywords
triaxial test
membrane
window
triaxial
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005341535A
Other languages
Japanese (ja)
Other versions
JP2007147428A (en
Inventor
明 桝井
一男 青木
雄二 緒方
博憲 羽田
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2005341535A priority Critical patent/JP4677607B2/en
Publication of JP2007147428A publication Critical patent/JP2007147428A/en
Application granted granted Critical
Publication of JP4677607B2 publication Critical patent/JP4677607B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤から採取した土、砂、砂礫等(以下、「土砂」と言う。)の三軸試験用メンブレンに関する。   The present invention relates to a membrane for triaxial testing of soil, sand, gravel and the like (hereinafter referred to as “earth and sand”) collected from the ground.
近年、地中内に存在するメタンハイドレードを採取しエネルギー源として利用する試みが行われている。メタンハイドレードは、高圧、低温(例.10 M Pa、10℃)の生成条件で地中内に生成される。よって、掘削により地中から土砂サンプルを採取してその土砂サンプルの強度試験をすれば、メタンハイドレートを含む堆積層の強度を知ることができ、これにより、メタンハイドレート生産時における生産坑井の掘削や安定性についての判定が可能となる。   In recent years, attempts have been made to extract methane hydrate present in the ground and use it as an energy source. Methane hydrate is generated in the ground under the conditions of high pressure and low temperature (eg 10 MPa, 10 ° C). Therefore, if a sediment sample is collected from the ground by excavation and the strength test of the sediment sample is conducted, the strength of the sedimentary layer containing methane hydrate can be known, and this enables production wells during methane hydrate production. It is possible to determine the excavation and stability.
ところで、従来、地盤から採取した土砂の強度測定のための三軸試験(三軸応力試験)やその他の試験が行われている。このような土砂の試験では、地盤から採取した土砂サンプルを「メンブレン」というラテックス等のゴム製のスリーブ内に充填して行っている(特許文献1、2参照)。   By the way, conventionally, a triaxial test (triaxial stress test) and other tests for measuring the strength of earth and sand collected from the ground have been performed. In such a soil test, a soil sample collected from the ground is filled in a rubber sleeve such as latex called “membrane” (see Patent Documents 1 and 2).
例えば、三軸試験では、メンブレンを圧力容器内の加圧ヘッドに装着する。そして、このメンブレンに圧力容器により外部から加圧するとともに、加圧ヘッドにより軸方向の圧力を付加して、三軸試験を行う。   For example, in the triaxial test, the membrane is attached to a pressure head in a pressure vessel. Then, the membrane is pressurized from the outside by a pressure vessel, and an axial pressure is applied by a pressure head to perform a triaxial test.
特開平5−215747号公報JP-A-5-215747 特開平11−23567号公報Japanese Patent Laid-Open No. 11-23567
従来の三軸試験用のメンブレンは、ゴム材で形成されており、ゴム材は薄くても強度を有し、弾性に富み、三軸試験等による土砂サンプルの変形に抵抗が少なく柔軟に対応でき、土砂サンプルへの加圧力をより正確に加えることができるから、メンブレン材料としては最適な材料である。しかしながら、ゴム材は、不透明であるために試験の最中での土砂サンプルの変形状況等が外部から可視的に観察することができないという問題があった。   Conventional membranes for triaxial testing are made of rubber material. Even if the rubber material is thin, it has strength and is highly elastic. It can flexibly respond to deformation of earth and sand samples due to triaxial testing. Since the pressure applied to the soil sample can be applied more accurately, it is an optimal material for the membrane material. However, since the rubber material is opaque, there has been a problem that the deformation state of the earth and sand sample during the test cannot be visually observed from the outside.
土砂を構成する個々の粒子の挙動を観察することができれば、三軸試験中における土粒子相互の固着状態や噛み合せ、乗り上げまたは回転運動などが明らかになり、土砂のような粒状体サンプルの変形および破壊メカニズムの解明に寄与する。特に、メタンハイドレートの開発にあたっては、土砂中に含まれるハイドレートを分解しメタンガスを回収するため、分解メタンガスを含む土砂の変形特性やせん断強度を求める必要があり、メタンガスの存在下における土粒子の挙動を可視化できる意義は非常に大きい。   If the behavior of the individual particles that make up the earth and sand can be observed, the adhesion state and meshing of the earth particles during the triaxial test, the ride-up or the rotational movement, etc. will be clarified. Contributes to the elucidation of the destruction mechanism. In particular, in the development of methane hydrate, it is necessary to determine the deformation characteristics and shear strength of the earth and sand containing cracked methane gas in order to decompose hydrate contained in the earth and recover methane gas. The significance of visualizing the behavior of is very significant.
メンブレンを合成樹脂製の膜の構成とすることも考えられるが、三軸試験等による土砂サンプルの変形に柔軟に対応できるように膜厚を薄くすると、強度を維持できなくなり、どうしても厚みを増す必要が生じる。すると、伸縮性が失われ、三軸試験等による土砂サンプルの変形に柔軟に対応できず、測定精度が低下するという問題が生じる。   Although it is conceivable that the membrane is made of a synthetic resin membrane, the strength cannot be maintained if the film thickness is reduced so that it can flexibly cope with the deformation of the earth and sand sample by a triaxial test, etc., and the thickness must be increased. Occurs. Then, stretchability is lost, and it is not possible to flexibly cope with the deformation of the earth and sand sample by a triaxial test or the like, resulting in a problem that the measurement accuracy is lowered.
このような問題を解決するために、例えば、前掲の特許文献1に示すように、メンブレン内のサンプルの上端の状況が撮影できるように、容器内におけるキャップにテレビカメラを設置し、これに接続された容器の外部のモニタ装置でモニタするような構成が考えられているが、このような構成は、構造的に複雑となり、コストも高くなるという問題があった。   In order to solve such a problem, for example, as shown in the above-mentioned Patent Document 1, a television camera is installed on the cap in the container so that the situation of the upper end of the sample in the membrane can be photographed and connected thereto. Although a configuration for monitoring with a monitor device outside the container is considered, such a configuration has a problem that it is structurally complicated and costs are increased.
本発明は、上記従来の問題を解決することを目的とするものであり、三軸試験用メンブレン内部の土砂サンプルの状況が外部から観察でき、また、外部からメンブレン内の状況をカメラで連続撮影することもでき、この画像を拡大して観察することが可能となるような簡単なメンブレンの構造を実現することを課題とするものである。   The object of the present invention is to solve the above-mentioned conventional problems, and the situation of the earth and sand sample inside the membrane for the triaxial test can be observed from the outside, and the situation inside the membrane is continuously photographed from the outside by a camera. It is an object of the present invention to realize a simple membrane structure capable of enlarging and observing this image.
本発明は上記課題を解決するために、ゴム製のスリーブから成り、三軸試験の対象である土砂サンプルを充填する三軸試験用メンブレンであって、前記スリーブの側面に窓を開口し、該窓を閉じるように透明の合成樹脂膜をスリーブの内側から該窓の周縁に貼り付けて成る透明窓を有することを特徴とする三軸試験用メンブレンを提供する。   In order to solve the above-mentioned problems, the present invention is a triaxial test membrane comprising a rubber sleeve and filled with a soil sample to be subjected to a triaxial test, wherein a window is opened on a side surface of the sleeve, There is provided a triaxial test membrane characterized by having a transparent window formed by adhering a transparent synthetic resin film to the periphery of the window from the inside of a sleeve so as to close the window.
以上のような構成から成る本発明に係る三軸試験用メンブレンによれば、次の効果を生じる。
(1)本発明の三軸試験用メンブレンは、きわめて簡単な構造であるが、三軸試験用メンブレン内の土砂の状態が可視的に観察できるという多大の効果が生じる。
(2)メンブレンに設けた窓を通して、外部からメンブレン内の状況をカメラで連続撮影でき、さらにこの撮影画像を拡大して観察することが可能となるので、三軸試験中の土砂サンプル挙動が的確に観察できる。
(3)本発明の三軸試験用メンブレンは、薄いゴム製スリーブを利用することができるから、三軸試験において土砂サンプルの変形に対しても抵抗なくその変形に追従できるから、正確な測定が可能である。
According to the triaxial test membrane according to the present invention having the above-described configuration, the following effects are produced.
(1) Although the triaxial test membrane of the present invention has a very simple structure, a great effect that the state of earth and sand in the triaxial test membrane can be visually observed occurs.
(2) The situation inside the membrane can be continuously photographed with a camera through the window provided on the membrane, and this photographed image can be enlarged and observed, so that the behavior of the sediment sample during the triaxial test can be accurately observed. Can be observed.
(3) Since the triaxial test membrane of the present invention can use a thin rubber sleeve, it can follow the deformation of the earth and sand sample without resistance in the triaxial test. Is possible.
本発明に係る三軸試験用メンブレンを実施するための最良の形態を実施例に基づいて図面を参照して、以下に説明する。   The best mode for carrying out the triaxial test membrane according to the present invention will be described below with reference to the drawings based on the embodiments.
図1は、本発明に係る三軸試験用メンブレンの実施例を説明する図である。三軸試験用メンブレン1は、ゴム製の円筒状のスリーブ2を本体として形成されている。ゴム材としては、天然ゴム(ラテックス)が使用される。その厚さは、約0.3 〜0.5 mm程度である。   FIG. 1 is a diagram illustrating an example of a triaxial test membrane according to the present invention. The triaxial test membrane 1 is formed with a rubber cylindrical sleeve 2 as a main body. Natural rubber (latex) is used as the rubber material. Its thickness is about 0.3 to 0.5 mm.
本発明の三軸試験用メンブレン1の特徴は、スリーブ2の側面に窓3を開口し、この窓3を閉じるように透明の合成樹脂膜4をスリーブ2の内側からこの窓3の周縁6に貼り付けて形成された透明窓5を有する構成である。   A feature of the membrane for triaxial testing 1 of the present invention is that a window 3 is opened on the side of the sleeve 2, and a transparent synthetic resin film 4 is placed from the inside of the sleeve 2 to the periphery 6 of the window 3 so as to close the window 3. It is the structure which has the transparent window 5 formed by affixing.
具体的には、この三軸試験用メンブレン1は、その側面に矩形又は円形の孔から成る窓3が形成されており、三軸試験用メンブレン1の内側からこの窓3の周縁6に沿って窓3を閉じるように、透明の合成樹脂膜4が接着剤で貼り付けられている。   Specifically, the triaxial test membrane 1 is formed with a window 3 made of a rectangular or circular hole on its side surface, and along the periphery 6 of the window 3 from the inside of the triaxial test membrane 1. A transparent synthetic resin film 4 is attached with an adhesive so as to close the window 3.
窓3の大きさは、三軸試験用メンブレン1内の土砂サンプルの一部の状態が観察できる程度の大きさであればよい。例えば、直径が10cmで長さが20cmの三軸試験用メンブレンでは、窓3の寸法は、横幅2cm、縦幅3cm程度の寸法である。合成樹脂膜4としては、例えば、スチロール樹脂等の材料を使用すればよい。又、接着剤としては、例えば、シアノアクリレート等が使用される。   The size of the window 3 may be such a size that a part of the earth and sand sample in the triaxial test membrane 1 can be observed. For example, in a triaxial test membrane having a diameter of 10 cm and a length of 20 cm, the size of the window 3 is about 2 cm in width and 3 cm in length. As the synthetic resin film 4, for example, a material such as styrene resin may be used. Moreover, as an adhesive agent, cyanoacrylate etc. are used, for example.
以上の構成から成る本発明の三軸試験用メンブレン1の使用に際しては、その中に土砂サンプルを充填し、三軸試験装置7の圧力容器8内に入れ、図1(b)に示すように、キャップ9と基台10の間に装着する。そして、三軸試験を行う。   When using the triaxial test membrane 1 of the present invention having the above structure, a soil sample is filled in the membrane and placed in the pressure vessel 8 of the triaxial test apparatus 7, as shown in FIG. 1 (b). Then, it is mounted between the cap 9 and the base 10. Then, a triaxial test is performed.
本発明は三軸試験装置自体の発明ではないので、ここでではその詳細な説明はしないが、三軸試験用メンブレン1の説明の都合上、簡単に説明する。   Since the present invention is not an invention of the triaxial test apparatus itself, a detailed description thereof will not be given here, but will be briefly described for convenience of explanation of the triaxial test membrane 1.
三軸試験装置は、いろいろな態様があるが、図1(b)において、一例である三軸試験装置7を模式的に説明する。外部の加圧水発生装置等の加圧源11から圧力を圧力容器8内導入して三軸試験用メンブレン1を周囲から圧力P1で加圧するとともに、キャップ9により上方から軸方向に圧力P2で加圧して、三軸試験を行うことができる。キャップ9は、外部に設けられた油圧駆動装置等(図示しない。)により軸方向上下に動作するピストン棒12の下端に設けられている。   Although there are various modes of the triaxial test apparatus, FIG. 1B schematically illustrates the triaxial test apparatus 7 as an example. Pressure is introduced into the pressure vessel 8 from a pressurizing source 11 such as an external pressurized water generator, and the triaxial test membrane 1 is pressurized with pressure P1 from the surroundings, and is pressurized with a cap P9 in the axial direction from above. Triaxial tests can be performed. The cap 9 is provided at the lower end of the piston rod 12 that moves up and down in the axial direction by a hydraulic drive device (not shown) provided outside.
このような三軸試験において、本発明に係る三軸試験用メンブレン1を利用すれば、三軸試験中の土砂サンプルの変化の状態や結果を透明窓5を通して外部から観察できる。   In such a triaxial test, if the triaxial test membrane 1 according to the present invention is used, the state and results of changes in the sediment sample during the triaxial test can be observed from the outside through the transparent window 5.
以上、本発明の三軸試験用メンブレンを実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   The best mode for carrying out the triaxial test membrane of the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and the technology described in the claims It goes without saying that there are various embodiments within the scope of the subject matter.
本発明に係る三軸試験用メンブレンは、地盤から採取した土砂の強度測定のための三軸試験に好適であり、特に、メタンハイドレード分解を想定した土砂の三軸試験にはきわめて効果的である。   The triaxial test membrane according to the present invention is suitable for a triaxial test for measuring the strength of earth and sand collected from the ground, and is particularly effective for a triaxial test for earth and sand assuming methane hydrate decomposition. is there.
(a)は本発明の三軸試験用メンブレンの構成を説明する図であり、(b)はその使用状態を説明する図である。(A) is a figure explaining the structure of the membrane for a triaxial test of this invention, (b) is a figure explaining the use condition.
符号の説明Explanation of symbols
1 三軸試験用メンブレン
2 スリーブ
3 窓
4 合成樹脂膜
5 透明窓
6 窓の周縁
7 三軸試験装置
8 圧力容器
9 キャップ
10 基台
11 加圧源
12 ピストン棒
DESCRIPTION OF SYMBOLS 1 Membrane for triaxial test 2 Sleeve 3 Window 4 Synthetic resin film 5 Transparent window 6 Window periphery 7 Triaxial test apparatus 8 Pressure vessel 9 Cap 10 Base 11 Pressure source 12 Piston rod

Claims (1)

  1. ゴム製のスリーブから成り、三軸試験の対象である土砂サンプルを充填する三軸試験用メンブレンであって、
    前記スリーブの側面に窓を開口し、該窓を閉じるように透明の合成樹脂膜を前記スリーブの内側から該窓の周縁に貼り付けて成る透明窓を有することを特徴とする三軸試験用メンブレン。
    A triaxial test membrane comprising a rubber sleeve and filled with a soil sample to be subjected to a triaxial test,
    A membrane for a triaxial test, comprising a transparent window formed by opening a window on a side surface of the sleeve, and a transparent synthetic resin film attached to the periphery of the window from the inside of the sleeve so as to close the window. .
JP2005341535A 2005-11-28 2005-11-28 Triaxial test membrane Active JP4677607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341535A JP4677607B2 (en) 2005-11-28 2005-11-28 Triaxial test membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341535A JP4677607B2 (en) 2005-11-28 2005-11-28 Triaxial test membrane

Publications (2)

Publication Number Publication Date
JP2007147428A JP2007147428A (en) 2007-06-14
JP4677607B2 true JP4677607B2 (en) 2011-04-27

Family

ID=38209003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341535A Active JP4677607B2 (en) 2005-11-28 2005-11-28 Triaxial test membrane

Country Status (1)

Country Link
JP (1) JP4677607B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441208B (en) * 2008-12-19 2012-02-22 河海大学 True triaxial instrument of deformation without side direction interference
CN102042930B (en) * 2010-07-01 2013-07-10 青岛海洋地质研究所 Gas hydrate mechanical property experiment device
CN101936848B (en) * 2010-07-29 2012-05-23 大连理工大学 Protective device of small load sensor in series structure
KR101431982B1 (en) * 2013-07-11 2014-08-20 한국가스공사 Experimental apparatus for predicting ground variation during the recovery of gas hydrate
CN104833582B (en) * 2015-05-21 2017-06-13 大连理工大学 A kind of natural gas hydrate deposits thing Triaxial tester
CN110542617B (en) * 2019-08-22 2020-06-16 青岛海洋地质研究所 Method for synchronously measuring dynamic-static mechanical parameters of hydrate sediment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871432A (en) * 1981-10-23 1983-04-28 Odakyu Kensetsu Kk Soil test method
JPS6336131A (en) * 1986-07-30 1988-02-16 Shimizu Constr Co Ltd Method and instrument for measuring s wave speed using large-sized three-axial cell
JPS63235864A (en) * 1987-03-24 1988-09-30 Central Res Inst Of Electric Power Ind High restraint pressure shearinig soil tank
JP2000081378A (en) * 1998-09-07 2000-03-21 Central Res Inst Of Electric Power Ind Three-axis cell, three-axis testing device, and three-axis testing method
JP2000180311A (en) * 1998-12-14 2000-06-30 Japan Marine Sci & Technol Center Towing-type sample collecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871432A (en) * 1981-10-23 1983-04-28 Odakyu Kensetsu Kk Soil test method
JPS6336131A (en) * 1986-07-30 1988-02-16 Shimizu Constr Co Ltd Method and instrument for measuring s wave speed using large-sized three-axial cell
JPS63235864A (en) * 1987-03-24 1988-09-30 Central Res Inst Of Electric Power Ind High restraint pressure shearinig soil tank
JP2000081378A (en) * 1998-09-07 2000-03-21 Central Res Inst Of Electric Power Ind Three-axis cell, three-axis testing device, and three-axis testing method
JP2000180311A (en) * 1998-12-14 2000-06-30 Japan Marine Sci & Technol Center Towing-type sample collecting device

Also Published As

Publication number Publication date
JP2007147428A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4677607B2 (en) Triaxial test membrane
US7917311B2 (en) Method for structural health monitoring using a smart sensor system
BRPI0818801B8 (en) diagnostic testing system
CN106480870B (en) A kind of static sounding probe
CN102900063B (en) Dynamic pore-pressure static sounding probe for detecting sludge
US20180335494A1 (en) Systems and methods for tri-axial nmr testing
CN104807563A (en) Non-contact ground stress testing device and method based on drilling microscopy digital photography
CN106759216B (en) A kind of penetrometer and its measurement method having both dynamic sounding and static sounding
CN103821183A (en) Testing apparatus for simulating phenomenon and law of soil heave-piping failure
WO2012031265A2 (en) Method and apparatus to observe a swellable packer element
CN205102959U (en) Tensile force measurement device under water
CN105258826A (en) Underwater tensile force measurement device
Daou et al. Swelling of elastomers in CO2 environment: testing methodology and experimental data
JP2007057472A (en) In situ testing device for investigating anisotropy of foundation
CN101936161B (en) In-situ measurement method for coal rock strength and deformation modulus
CN205301244U (en) Test structure of joint to influence of rock mass mechanics characteristic is filled in evaluation
CN105674867B (en) A kind of high undersea hydrostatic pressures magnetostrictive displacement sensor sealing device
Seol et al. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments
CN201180537Y (en) Down-hole falling objects detection actuating mechanism
CN103674619B (en) A kind of gravity type deepwater silt low-disturbance sampler
JP2005069937A (en) Rock pressure measuring instrument and rock pressure measuring method
CN204203167U (en) Drilling tool damage wellhead detecting device
Ctvrtlik et al. High-resolution acoustic emission monitoring in nanomechanics
CN110158568A (en) A kind of feeler inspection probe coefficient dynamic calibrating method
KR101814019B1 (en) Current Hydraulic Fracturing System for Applying Differential Stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

R150 Certificate of patent or registration of utility model

Ref document number: 4677607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250