JPS5871352A - Wear-resistant sintered aluminum alloy - Google Patents

Wear-resistant sintered aluminum alloy

Info

Publication number
JPS5871352A
JPS5871352A JP16797181A JP16797181A JPS5871352A JP S5871352 A JPS5871352 A JP S5871352A JP 16797181 A JP16797181 A JP 16797181A JP 16797181 A JP16797181 A JP 16797181A JP S5871352 A JPS5871352 A JP S5871352A
Authority
JP
Japan
Prior art keywords
powder
alloy
wear
aluminum
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16797181A
Other languages
Japanese (ja)
Inventor
Akira Matsuyama
晃 松山
Hiroshi Kiyono
清野 洋
Yoshihiro Marai
馬来 義弘
Masahiko Shioda
正彦 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP16797181A priority Critical patent/JPS5871352A/en
Publication of JPS5871352A publication Critical patent/JPS5871352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered Al alloy with superior wear resistance by adding specified percentages of Cu, Si, Mg and MoS2 to Al. CONSTITUTION:An alloy consisting of, by weight, 2-10% Cu, 10-29% Si, 0.2- 2% Mg, 1-4% MoS2 and the balance Al is prepared. The MoS2 is used after coating the powder surface with >= about 20% Cu. The Si is desirably added as Al-Si alloy powder contg. about 15-30% Si, and annealing is carried out at about 400-500 deg.C in an inert or nonoxidizing atmosphere.

Description

【発明の詳細な説明】 本発明は、耐摩耗性焼結アルミニウム合金に関するもの
で、特に内燃機関のシリンダライナー。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to wear-resistant sintered aluminum alloys, particularly cylinder liners for internal combustion engines.

オイルポンプサイドプレート、軸受、ピン、集電子など
の摺動材料に用いられる耐摩耗性焼結アルミニウム合金
に関するものである。
This invention relates to wear-resistant sintered aluminum alloys used for sliding materials such as oil pump side plates, bearings, pins, and current collectors.

従来、耐摩耗性を有するアルミニウム系合金に対する需
要はかなり多く、珪素(St)、鉛(pb)。
Conventionally, there has been considerable demand for aluminum-based alloys with wear resistance, such as silicon (St) and lead (PB).

黒鉛、窒化ホウX(BN)などを添加したアルミニウム
合金鋳物や、表面にPb 、 BN 、二硫化モリブチ
y(Mo8.)などを固着したアルミニウム合金や、S
l、黒鉛などを添加した焼結アルミニウム合金などがあ
る。
Aluminum alloy castings to which graphite, boron nitride
There are sintered aluminum alloys to which l, graphite, etc. are added.

ところで、Siはアルミニウム(At )との反応性が
高く、かつ硬質で耐摩耗性に優れた元素であるが、鋳造
においてもまた焼結においてもAtKSiを添加しただ
けではAtの耐摩耗性を改善するには不十分であること
が多い。
By the way, Si is an element that is highly reactive with aluminum (At), hard, and has excellent wear resistance, but the wear resistance of At cannot be improved by just adding AtKSi in both casting and sintering. It is often insufficient to do so.

そこで、他の耐摩耗性改善のための元素が種々添加され
ているが、高荷重が加わるような摩耗条件においては%
 Mob、が最もその効果を示すといわれている。しか
しながら、アルミニウム合金鋳物においては、MoS、
を均一に分散させることが困難であるばかりか、鋳造時
に溶湯へMo82を添加する際に、Mob、が分解する
ことが多い。一方、メッキによってアルミニウム合金の
表面にMOS。
Therefore, various other elements are added to improve wear resistance, but under wear conditions where high loads are applied,
It is said that mobs exhibit this effect most. However, in aluminum alloy castings, MoS,
Not only is it difficult to uniformly disperse Mob, but Mob often decomposes when Mo82 is added to the molten metal during casting. On the other hand, MOS is formed on the surface of aluminum alloy by plating.

を付着させることは可能であるが、vM−R性が患い。Although it is possible to attach vM-R, it suffers from vM-R properties.

他方、焼結アルミニウム合金中にMoS、を添加するこ
とは今まで困難であつ九。その理由は、瞬結によると均
一にMo82を混合することけり能であるが、混合時に
アルミニウム粉末表面にMo82が付清し、そのMOS
 2がアルミニウムと反応しないため焼結阻止材として
作用し、その結果焼結強雇を著しく低下させてしまうこ
とによる。したがって、従来はアルミニウム合金にMo
S、を添加し2あるいは付着させ念ものが満足のいくも
のとして得られなかり之。
On the other hand, it has been difficult until now to add MoS to sintered aluminum alloys. The reason for this is the ability to uniformly mix Mo82 according to instant setting, but Mo82 clears on the surface of the aluminum powder during mixing, and the MOS
This is because 2 does not react with aluminum and therefore acts as a sintering inhibitor, resulting in a significant reduction in sintering force. Therefore, in the past, Mo
Addition of S, or adhesion, did not result in a satisfactory result.

本発明は耐摩耗性のあるアルミニウム合金を提供するこ
とを目的とするもので、Mob、粉末表面をCuであら
かじめ被覆しておくことにより、混粉時にkl粉末表面
にMoS、粉末が付着することがなく、At粉末にMo
5s粉末を均一混入した状態でと反応し、 Atの融点
よりもかなり低い約548℃で液相を生成し、前記焼結
を進行させ、しかもこの0%1はAt1ft:強化する
ばかりでなく、MOS、を確実に保持し、長時間にわた
って使用してもMoS。
The purpose of the present invention is to provide an aluminum alloy with wear resistance, and by coating the MoS and powder surfaces with Cu in advance, MoS and powder will not adhere to the KL powder surface during powder mixing. There is no Mo in At powder.
It reacts with the homogeneously mixed 5s powder to generate a liquid phase at about 548°C, which is considerably lower than the melting point of At, to advance the sintering, and this 0%1 not only strengthens At1ft: Reliably retains MOS, even when used for long periods of time.

が脱落しにくいように作用することに着目して、ルウへ
のMOS、の添加の困難性を解決し、合金組成tcu:
2〜10%、Sl : 10〜29%%Mg: 0.2
〜2 ’4. Mob、 : 1〜45k、残部AAと
することにより前記問題点を解決したものである。
Focusing on the fact that MOS acts to prevent it from falling off, we solved the difficulty of adding MOS to roux, and created an alloy composition of tcu:
2-10%, Sl: 10-29%%Mg: 0.2
~2'4. Mob: 1 to 45k, with the remainder being AA to solve the above problem.

次に、本発明による焼結アルミニウム合金の成分範囲(
重量ts)の限定理由について説明する。
Next, the composition range of the sintered aluminum alloy according to the present invention (
The reason for limiting the weight ts) will be explained.

Cu #iMob、表Wit−被覆する九めの元素とし
てだけでなく、単体で添加してもさしつかえない。しか
し、Cuの合計重量が10チより多くなると焼結時に液
相量が多くなりすぎ、焼結の途中で圧粉体が変形したり
、強度が低下した抄する。また、211未満であると、
Mo8B粉末がCuで十分に被覆されず、被覆されなか
ったMOS、粉末が焼結阻止材として作用する。このた
め、Cuの全体重量は2〜109IIが望ましい。
Cu #iMob, Table Wit - It can be added not only as the ninth element to coat, but also alone. However, if the total weight of Cu exceeds 10 inches, the amount of liquid phase during sintering becomes too large, resulting in deformation of the powder compact during sintering or papermaking with reduced strength. Also, if it is less than 211,
The Mo8B powder is not sufficiently coated with Cu, and the uncoated MOS powder acts as a sintering inhibitor. Therefore, the total weight of Cu is preferably 2 to 109 II.

また、単体でCuを添加する場合、このCu粉末として
は、At−Cu合金粉、電解粉、アトマイズ粉が望まし
い。これに対して搗砕粉を用いると、搗砕粉に含まれる
不純物のためか、あるいは粉末の酸化のためか、引張強
度のばらつきが大きくなる。そして、搗砕粉以外の粉末
を用いると引張強度のばらつき社平均値に対して±7に
#/■3以内に押えられるのに対し、搗砕粉を用いると
引張強度のばらつきは±13 Kg / m”程度とな
る。
Further, when Cu is added alone, the Cu powder is preferably At-Cu alloy powder, electrolytic powder, or atomized powder. On the other hand, when ground powder is used, the tensile strength varies greatly, probably due to impurities contained in the ground powder or oxidation of the powder. When powder other than ground powder is used, the variation in tensile strength can be suppressed to within ±7 (#/■3) compared to the company average value, whereas when ground powder is used, the variation in tensile strength is ±13 kg. / m” or so.

陶はklに固溶し、母材であるAjを強化するばかりで
はなく、一部はSiと反応して鞠、81を析出し、At
の機械的特性を向上させる。この目的に有効なMgの量
は0.2〜2%である。そして、陶が0.216未満で
あるかあるいは2チを超えると焼結を有効におこなうこ
とが不可能となる。
Ceramic not only dissolves in Kl and strengthens the base material Aj, but also partially reacts with Si to precipitate 81 and At
improve the mechanical properties of The amount of Mg useful for this purpose is 0.2-2%. If the diameter of the ceramic is less than 0.216 mm or greater than 2 mm, it becomes impossible to sinter effectively.

5itiAtの高荷重時の耐摩耗性を改善する効果の優
れた元素であり、多量に添加する必要があるといえるが
、siv巣体で多量に添加すると、強度の低下が著しく
使用に耐えない。このため耐摩耗性をAtに付与する意
味で5lt−多量に添加する場合は、At−81合金粉
で添加するのが望ましい。
It is an element that has an excellent effect of improving the wear resistance of 5itiAt under high loads, and it can be said that it is necessary to add it in a large amount, but if it is added in a large amount in the form of a siv nest, the strength will drop significantly, making it unusable. Therefore, when a large amount of 5lt is added to impart wear resistance to At, it is desirable to add At-81 alloy powder.

この場合、AA−8k合金粉中の81量は15〜3゜−
が望ましい。すなわち、Si量が151未満の場合には
析出するSi量量が少なく、耐摩耗性改善の効果が少な
くなる。また、81量が30−を超えると成形性が悪く
なり、実用には不適当である。したがって、全体の81
量は、Mg 、 Cu 。
In this case, the amount of 81 in the AA-8k alloy powder is 15~3°-
is desirable. That is, when the amount of Si is less than 151, the amount of Si precipitated is small and the effect of improving wear resistance is reduced. Furthermore, when the amount of 81 exceeds 30, the moldability deteriorates and is not suitable for practical use. Therefore, the total 81
The amounts are Mg and Cu.

Mo8 gの添加量とAt−8k合金中のSi量の割合
より決まるが最大29チとする。また、At−81合金
粉は粉末硬度が高く、アトマイズのままでは成形性が極
めて悪い。このため、At−8k合金粉は粉末硬In低
下させる処理が必要となる。この処理としては焼なまし
処理が適切であり、その条件は非活性・非酸化性雰囲気
中で400〜500℃。
It is determined by the ratio of the amount of Mo8 g added and the amount of Si in the At-8k alloy, but the maximum value is 29 g. In addition, At-81 alloy powder has high powder hardness and has extremely poor formability when atomized. For this reason, the At-8k alloy powder requires treatment to reduce the powder hardness In. Annealing is appropriate for this treatment, and the conditions are 400 to 500°C in an inert, non-oxidizing atmosphere.

0.5〜2時間が望ましい。0.5 to 2 hours is desirable.

すなわち、AA−81合金粉は酸化されやすく、酸化さ
れるとその酸化皮膜が強固であり、焼結阻止材として作
用する念め、焼なまし雰囲気は非活性・非酸化性雰囲気
とすることが望ましい。この場合、焼なまし温度が40
0℃未満ではその効果が少なく、ま&550’Ci超え
ると温fを高める効果があまりないばかりか、Aj−8
1の共轟温度(約577℃)を超えると部分的に液相を
発生するので好ましくない。また、処理時間は短いほど
酸化される可能性が低くなるため、短い方が良いといえ
るが、0.5時間よりも短いと焼なましの効果が少ない
。また、2時間を超えて暁なまし処理を行なっても効果
が少な(、Aj−8t粉末が酸化される可能性が増加す
るため、焼なまし処理は0.5〜2時間が望ましい。
In other words, AA-81 alloy powder is easily oxidized, and when oxidized, its oxide film is strong and acts as a sintering inhibitor, so the annealing atmosphere should be an inert, non-oxidizing atmosphere. desirable. In this case, the annealing temperature is 40
Below 0℃, the effect is small, and when it exceeds 550'Ci, there is not only little effect of increasing the temperature f, but also Aj-8
Exceeding the co-roaring temperature of No. 1 (approximately 577° C.) is not preferable because a liquid phase is partially generated. Further, the shorter the treatment time, the lower the possibility of oxidation, so it can be said that the shorter the treatment time, the better, but if it is shorter than 0.5 hours, the annealing effect will be small. Further, even if the Akatsuki annealing treatment is performed for more than 2 hours, there is little effect (because the possibility of oxidation of the Aj-8t powder increases, the annealing treatment is preferably performed for 0.5 to 2 hours.

Mob、はへき開性に優れた物質であり、耐摩耗性およ
び摩擦係数の低下に対して極めて優れ次効果を示す。そ
して、Mob、を添加してアルミニウムに耐摩耗性を付
与させる場合、Mob、の添加は少量でよく、1−以上
の添加でその効果を示す。
Mob is a substance with excellent cleavage properties, and exhibits extremely excellent wear resistance and a reduction in the coefficient of friction. When Mob is added to impart wear resistance to aluminum, a small amount of Mob may be added, and the effect is exhibited when Mob is added in an amount of 1 or more.

しかし、4チを超える添加は耐摩耗性の改善に効果が少
ないばかりか、アルミニウム焼結体の強度を低下させて
しまうので好ましくない。
However, addition of more than 4 inches is not preferable because it not only has little effect on improving wear resistance but also reduces the strength of the aluminum sintered body.

また、MoS @に対するCuの禎覆量は、MoS z
に対して20チ以上なければCu被覆の効果を得ること
ができず、強度低下となる。し九がって、Mob、の添
加は、表面にCuを201!以上被覆したMoS、l)
末によって行ない、Mob!量が1〜4tsとなるよう
和するのが望ましい。
In addition, the amount of overlapping of Cu with respect to MoS @ is MoS z
If the thickness is less than 20 inches, the effect of the Cu coating cannot be obtained, resulting in a decrease in strength. Therefore, the addition of Mob adds 201% Cu to the surface! MoS coated above, l)
Do what you want, Mob! It is desirable to add the amounts so that the amount becomes 1 to 4 ts.

以下、本発明の実施例を比較例と共に説明する。Examples of the present invention will be described below along with comparative examples.

表1は本発明の実施例および比較例において使用し曳扮
末の混合比および得られた焼結体の性能を示すものであ
る。
Table 1 shows the mixing ratio of the sintered powder used in the Examples and Comparative Examples of the present invention and the performance of the obtained sintered bodies.

表Iにおいて、/l&1〜21に用いたAA粉末は、8
0メツシユのふるいを通過する粒度(−80メツシユ)
の粉末で、99.7−以上の純度のものである。tた、
扁l〜21に用い念At−81合金粉は、500℃×1
時間、露点−40℃以下のN。
In Table I, the AA powder used for /l&1-21 was 8
Particle size that passes through a sieve with 0 mesh (-80 mesh)
It is a powder with a purity of 99.7- or higher. It was,
The At-81 alloy powder used for flattening l~21 was heated at 500°C x 1
time, N with dew point below -40°C.

雰囲気中で焼なまし処理を行なつ九もので、−80メツ
シユの粉末である。さらに、41.3〜10゜12.1
3.15〜21に用いたCu粉は、−350メツシユの
アトマイズ粉で、純度99.0 嘔以上のものである。
Nine samples were annealed in an atmosphere and were -80 mesh powders. Furthermore, 41.3~10°12.1
3. The Cu powder used in Examples 15 to 21 is a -350 mesh atomized powder with a purity of 99.0 mm or higher.

さらにまた、Jt61〜21に用いた廟粉は、−200
メツシユの粉末で、純度99.5−以上のものである。
Furthermore, the powder used for Jt61-21 is -200
It is mesh powder with a purity of 99.5 or higher.

また、A1−21に用いた銅被1iWio8.は、−1
00メツシユの粉末である。
In addition, the copper-covered 1iWio8. used for A1-21. is -1
00 mesh powder.

この際、Mob、表面への銅被覆は、Mob、を活性化
処理した後、無電解Cuめつき液中へMoS 、を所定
時間浸漬することにより行なった。
At this time, the surface of the Mob was coated with copper by immersing MoS into an electroless Cu plating solution for a predetermined time after activating the Mob.

そこで、表1に示す成分割合になるように各粉末を秤量
し、成形時に金型と粉末との凝着を防止するために、通
常用いられるように潤滑材を各々1.0重量嘔添加して
それぞれV型混合機にて20分間混合して焼結用粉末を
作成した。次いで、前、記焼結用粉末を引張試験用の金
型に入れ、3.5ton / x”の圧力で圧粉成形し
た。成形後、窒素ガス雰囲気中で400℃×1時間保持
して上記潤滑材を除去し、続いて露点−40℃以下の画
素ガス雰囲気中で1時間保持して焼結した。このとき、
焼結温度は、供試材A1〜7,9〜18,20゜21が
550℃、供試付属8,19が570℃である。そして
、焼結後にそれぞれT6処理をおこなつ念。このT、処
理条件は、供試材ム1〜21において、490℃×1時
間保持後、80℃で温水燐入れし、その後160℃×1
8時間時効処理の条件とした。
Therefore, each powder was weighed to have the component ratio shown in Table 1, and 1.0 wt. wt. of a lubricant was added to each powder as is commonly used to prevent the powder from adhering to the mold during molding. The powders were mixed for 20 minutes using a V-type mixer to prepare powder for sintering. Next, the above sintering powder was placed in a tensile test mold and compacted at a pressure of 3.5 ton/x". After compacting, it was held at 400°C for 1 hour in a nitrogen gas atmosphere and the above The lubricant was removed, and then sintered by holding in a pixel gas atmosphere with a dew point of -40°C or lower for 1 hour.
The sintering temperature was 550°C for sample materials A1-7, 9-18, and 20°21, and 570°C for sample attachments 8 and 19. Also, be sure to perform T6 treatment on each after sintering. The treatment conditions were as follows: Sample materials 1 to 21 were held at 490°C for 1 hour, then heated with phosphorus at 80°C, and then heated at 160°C for 1 hour.
The conditions were an 8-hour aging treatment.

以上の工程により得られた各試験片について、各々イン
ストロン引張試験機により引張試験をおこなつ友。その
結果を同じく表1に示す。また、同一条件でチムケン岸
耗試験用の金型を用いて試験片を作成し、摩耗試験をヤ
こなった。このときの試験条件は、荷重20 Zba 
e周速2m/sec。
Each test piece obtained through the above process was subjected to a tensile test using an Instron tensile tester. The results are also shown in Table 1. In addition, a test piece was prepared using a mold for the Chimken abrasion test under the same conditions, and the abrasion test was carried out. The test conditions at this time were a load of 20 Zba
e Circumferential speed 2m/sec.

潤滑油(機械油+50 ) 0.5 CC/ min 
、試験時間50時間でおこなつ念。相手材としては、ね
ずみ鋳鉄品(Fe12)を用い、これf IJング形状
圧して試験片側に形成された摩耗痕幅を試験結果とした
。この結果を同じく表1に示す。
Lubricating oil (machine oil +50) 0.5 CC/min
Please make sure to complete the exam within 50 hours. A gray cast iron product (Fe12) was used as the mating material, and the width of the wear scar formed on one side of the test was taken as the test result. The results are also shown in Table 1.

表1から明らかなごとく、比較材(JK12)のように
、Cu被覆が不十分なMob、粉末を添加すると、引張
強度がかなり低下するのに対し、Cuで十分に被覆した
MOS、を用いた本発明材(崖1〜11)ではいずれも
すぐれた引張強度を有していると共に、耐摩耗性も良好
であることがわかる。
As is clear from Table 1, the tensile strength of the comparative material (JK12), which is insufficiently coated with Cu, decreases considerably when powder is added, whereas MOS, which is sufficiently coated with Cu, is used. It can be seen that the materials of the present invention (Cliffs 1 to 11) all have excellent tensile strength and good abrasion resistance.

また、MOS、粉末表面にCuを被覆し、かつCuの単
体添加量を多くして全Cu量金増大させた比較材(崖1
3)では、焼結時に溶解を生じて強度の低下ならびに変
形をきたした。
In addition, a comparative material (Cliff 1
In case 3), melting occurred during sintering, resulting in a decrease in strength and deformation.

また、比較材(A20)のように、Mob、量が1−未
満ではその効果がなく、比較材(扁21)のように4チ
を超えると強度低下が著しい。また、比較材(419)
のようにSi量が、101未満では耐摩耗性にとぼしく
なる。さらに、At−8t合金粉においては、比較材(
ム17)のようにSi量が15係未満のAt−8t粉で
は耐摩耗性にとぼしい。ま念、比較材(ム18)のよう
にSi量が301を超えるAt−8i粉では成形性が悪
い念め強度不足となる。また、比較材(415,16)
のように陶が0.2〜2チの範囲を外れて添加され次も
のでは適切な焼結ができず、g1度不足と々る。
Further, as in the comparative material (A20), if the amount of Mob is less than 1, there is no effect, and as in the comparative material (Ban 21), when it exceeds 4, the strength decreases significantly. Also, comparative material (419)
If the Si content is less than 101, the wear resistance will be poor. Furthermore, in At-8t alloy powder, comparative material (
At-8t powder with a Si content of less than 15 parts as in No. 17) has poor wear resistance. Please note that At-8i powder with a Si content of more than 301, like the comparative material (Mu18), has poor moldability and lacks strength. Also, comparative materials (415, 16)
If porcelain is added outside the range of 0.2 to 2 inches, proper sintering cannot be achieved, resulting in a g1 degree deficiency.

次に、Aj−8t合金粉の暁なまし条件による影響t−
閾べた結果を表2に示す。
Next, we will discuss the influence of the Akatsuki annealing conditions on Aj-8t alloy powder t-
Table 2 shows the threshold results.

表2において、供試材に用いたAA粉、Mob、粉。In Table 2, AA powder, Mob, and powder used as test materials.

Cu粉、造粉は、表1において用いた粉末と同様で、M
is、粉のCu被覆量は50%であり、Cu粉はアトマ
イズ粉であり、At−8i合金粉はAA −2091S
i粉である。そして、焼結合金の一成としては、At−
17%Si −4%Cu −0,5*hk −2慢Mo
8.となるようにした。なお、焼なまし雰囲気は、露点
−40℃以下のN、雰囲気である。
Cu powder and milled powder are the same as those used in Table 1, and M
is, the Cu coating amount of the powder is 50%, the Cu powder is atomized powder, and the At-8i alloy powder is AA-2091S.
It is powder. As a component of the sintered alloy, At-
17%Si -4%Cu -0,5*hk -2Mo
8. I made it so that Note that the annealing atmosphere is a N atmosphere with a dew point of -40°C or lower.

その結果、表2から明らかなように1.U−St。As a result, as is clear from Table 2, 1. U-St.

合金粉の焼なまし条件は、400℃未満の焼なまし温度
では粉末硬度が高すぎ、550℃を超える温蜜では部分
的に溶解を生じてしまう。さらに、焼結時間は、0.5
時間未満では焼なまし処理の効果が少なく粉末硬度が高
すぎ、2時間を超えると時間を長くした効果が少ないば
かりか、強度低下をもたらす。
Regarding the annealing conditions for the alloy powder, if the annealing temperature is less than 400°C, the powder hardness will be too high, and if the temperature is more than 550°C, partial dissolution will occur. Furthermore, the sintering time is 0.5
If it is less than 2 hours, the effect of the annealing treatment will be small and the powder hardness will be too high, and if it exceeds 2 hours, not only will the effect of lengthening the time be small, but the strength will decrease.

第1図ないし第4図はそれぞれ表2に示すA31.42
2.426 、ム23の顕微鏡組織写真(X400)で
あって、各供試材を10−N峙H嬉液(70℃)で腐食
して調べた結果を示すものである。図に示す結果から、
焼なまし条件によって組織がかなり相異してくることが
明らかであり、表2の結果からもkl−8i合金粉の情
なまし条件1−400〜550℃の温度で0.5〜2時
間とするのが望ましいことが明らかであった。
Figures 1 to 4 are A31.42 shown in Table 2, respectively.
2.426, is a microscopic structure photograph (X400) of Mu23, and shows the results of corroding each sample material with 10-N dichloromethane solution (70° C.). From the results shown in the figure,
It is clear that the structure differs considerably depending on the annealing conditions, and from the results in Table 2, the annealing condition 1 of KL-8i alloy powder is 400 to 550°C for 0.5 to 2 hours. It was clear that it would be desirable to do so.

また、本発明材のものにおいて、Mob、の残留率を−
べたところ約92チ残留しており、本発明ではMob!
の分解阻止にも効果があるものと考えられる。
In addition, in the material of the present invention, the residual rate of Mob was -
Approximately 92 inches remained in the solid area, and in this invention, Mob!
It is also thought to be effective in preventing the decomposition of.

以上のように、この発明によれば、焼結後に鍛造などの
加工を行なわなくとも十分使用可症であり、原価の低減
に寄与するばかりでなく、複雑形状部品であっても製造
可能となり、生産性の向上などのすぐれた効果をもたら
す。なお、本発明品の強賓をさらに上げるため、焼結後
に鍛造などの加工を行ってもなんらさしつかえない。
As described above, according to the present invention, it is fully usable without processing such as forging after sintering, and not only contributes to cost reduction, but also allows manufacturing of parts with complex shapes. It brings excellent effects such as improved productivity. In addition, in order to further increase the appeal of the product of the present invention, there is no problem in performing processing such as forging after sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は、At−8i合金粉の焼なまし条
件による組織の変化を調べた結果を示す顕微鏡組織写真
(400倍)であって、第1図は暁なまし処理なし、第
2図は400℃×1時間焼なまし、第3図は500℃×
1時間暁なまし、第4図は550℃×1時間焼なましし
た結果を示す。 特許出願人  日産自動車株式会社
Figures 1 to 4 are micrographs (400x) showing the results of examining the changes in the structure of At-8i alloy powder depending on the annealing conditions. Figure 2 shows annealing at 400°C for 1 hour, and Figure 3 shows annealing at 500°C.
Figure 4 shows the results of annealing at 550°C for 1 hour. Patent applicant Nissan Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)  重量−で、鋼:2〜10−1珪素10〜29
%、マグネシウム:0.2〜2嗟、二硫化モリブデン=
1〜4%、残部アルミニウムの組成からなることを特徴
とする耐摩耗性焼結アルミニウム合金。
(1) Weight - Steel: 2-10-1 Silicon 10-29
%, Magnesium: 0.2-2 mo, Molybdenum disulfide =
A wear-resistant sintered aluminum alloy characterized by having a composition of 1 to 4% aluminum and the balance being aluminum.
(2)  二硫化モリブデンは、焼結前にあらかじめ鋼
で被覆された粉末として添加されたものである特許請求
の範囲! (1)項記載の耐摩耗性#INアルミニウム
合金。
(2) The claim that molybdenum disulfide is added as a powder coated with steel before sintering! The wear-resistant #IN aluminum alloy described in (1).
(3)珪素は、焼結前に非活性雰囲気中であらかじめ焼
なましされたアルミニウムー珪素合金粉末として添加さ
れたものである特許請求の範囲第(1)項1+は第(2
)項記載の耐摩耗性改善アルミニウム合金。
(3) Silicon is added as an aluminum-silicon alloy powder that has been annealed in an inert atmosphere before sintering.
) Aluminum alloy with improved wear resistance as described in item 2.
JP16797181A 1981-10-22 1981-10-22 Wear-resistant sintered aluminum alloy Pending JPS5871352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16797181A JPS5871352A (en) 1981-10-22 1981-10-22 Wear-resistant sintered aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16797181A JPS5871352A (en) 1981-10-22 1981-10-22 Wear-resistant sintered aluminum alloy

Publications (1)

Publication Number Publication Date
JPS5871352A true JPS5871352A (en) 1983-04-28

Family

ID=15859418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16797181A Pending JPS5871352A (en) 1981-10-22 1981-10-22 Wear-resistant sintered aluminum alloy

Country Status (1)

Country Link
JP (1) JPS5871352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292358A (en) * 1989-12-29 1994-03-08 Showa Denko K.K. Sintered aluminum-alloy
EP2875163A4 (en) * 2012-07-19 2016-05-11 Climax Engineered Mat Llc Spherical copper/molybdenum disulfide powders, metal articles, and methods of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292358A (en) * 1989-12-29 1994-03-08 Showa Denko K.K. Sintered aluminum-alloy
EP2875163A4 (en) * 2012-07-19 2016-05-11 Climax Engineered Mat Llc Spherical copper/molybdenum disulfide powders, metal articles, and methods of producing same
US9790448B2 (en) 2012-07-19 2017-10-17 Climax Engineered Materials, Llc Spherical copper/molybdenum disulfide powders, metal articles, and methods for producing same

Similar Documents

Publication Publication Date Title
KR100696312B1 (en) Sinterable metal powder mixture for the production of sintered components
JP4424810B2 (en) Sintered material
JP5110398B2 (en) Iron-based sintered alloy, method for producing iron-based sintered alloy, and connecting rod
EP0436952A1 (en) Aluminium-alloy powder, sintered aluminium-alloy, and method for producing the sintered aluminum-alloy
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
JPH0120215B2 (en)
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JPH07107183B2 (en) Wear resistant Cu alloy with high strength and toughness
JPS5871352A (en) Wear-resistant sintered aluminum alloy
JPH029099B2 (en)
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPS6086237A (en) Cu-alloy for slide member
JP3920656B2 (en) High rigidity aluminum alloy containing boron
JPS58141356A (en) Wear resistant sintered aluminum alloy
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JPH0569894B2 (en)
JPH06264170A (en) Aluminum alloy having high strength and wear resistance
JPH07116538B2 (en) Wear resistant Cu alloy with high strength and toughness
JPH04365832A (en) High strength wear resistant aluminum alloy sintered compact and production thereof
JP3246212B2 (en) Abrasion-resistant free graphite-precipitated iron-based sintered material with excellent seizure resistance
JP2556113B2 (en) High strength and high toughness Cu-based sintered alloy with excellent wear resistance
JP3250130B2 (en) Free graphite-precipitated iron-based sintered material with excellent strength and wear resistance
JP4290849B2 (en) Aluminum alloy with high strength and excellent wear resistance and slidability
KR910001011B1 (en) Synchronizer ring in speed varlator made of wear-resistant copper alloy having high strength and toughness