JPS586972A - Hearth liner for vacuum deposition by electron beam - Google Patents

Hearth liner for vacuum deposition by electron beam

Info

Publication number
JPS586972A
JPS586972A JP10374281A JP10374281A JPS586972A JP S586972 A JPS586972 A JP S586972A JP 10374281 A JP10374281 A JP 10374281A JP 10374281 A JP10374281 A JP 10374281A JP S586972 A JPS586972 A JP S586972A
Authority
JP
Japan
Prior art keywords
liner
crucible
hearth liner
source
hearth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10374281A
Other languages
Japanese (ja)
Inventor
Yasushi Ose
小瀬 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10374281A priority Critical patent/JPS586972A/en
Publication of JPS586972A publication Critical patent/JPS586972A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a titled hearth liner which prevents the creeping of a source for vapor deposition out from the hearth liner and leaking to the rear side, minimizes the heat transfer between said source and a crucible and has improved vapor deposition efficiency by projecting eaves to the outside edge in the opening part of the hearth liner. CONSTITUTION:Eaves 1d are projected to the outside edge in the opening part of a bowl-like hearth liner 1 made of BN and TiB2, and the liner 1 is mounted by bringing the eaves 1d in contact with a crucible 3. Therefore, in spite of creeping of a metallic source 2 for vapor deposition melted in the liner 1 to the outside along the inside surface 1a of the liner 1, the creeping thereof out to the rear side 1c is prevented by the contact part T between the eaves 1d and the crucible 3, whereby the degree of the joining between the source 2 and the crucible 3 is minimized. Therefore, the heat transfer from the source 2 to the crucible 3 is minimized, and the efficient vapor deposition is performed from the liner 1 even with low input electron beams.

Description

【発明の詳細な説明】 本発明は、電子ビーム真空蒸着において、金属ソースを
高温にして蒸発させる際、該金属ソースと真空蒸着用ル
ツボとの間に介在させて電子ビームの入力を低くシ、蒸
発効率を上げて蒸着する目的で使用するハースライナ−
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In electron beam vacuum evaporation, when a metal source is heated to a high temperature and evaporated, the present invention is capable of lowering the input of the electron beam by interposing it between the metal source and the vacuum evaporation crucible. Hearth liner used for the purpose of increasing evaporation efficiency for vapor deposition
It is related to.

半導体工業が発達するにつれて半導体ウェハー上に金属
の薄膜を被覆し、微細加工する技術が重要となり、薄膜
の形成法として真空蒸着法が開発された。近年素子の集
積化、高周波化が進むにつれ、パターンをより微細化し
、素子の電極構造も多層構造化する必要があり、より良
質な金属薄膜を形成することが望まれている。
As the semiconductor industry has developed, techniques for coating semiconductor wafers with thin metal films and finely processing them have become important, and vacuum evaporation has been developed as a method for forming thin films. In recent years, as elements have become more integrated and have higher frequencies, it is necessary to make patterns finer and to make the electrode structure of the element multilayered, and it is desired to form a metal thin film of better quality.

電子ビーム真空蒸着法は高融点かつ低蒸気圧の金属物質
の薄膜を形成できるため、現在最も一般的な蒸着法とな
っており、金属薄膜を半導体ウェハー上へ電子ビーム蒸
着させる場合、電子ビームの入力を低くおさえて効率よ
く蒸着させる必要がある。その理由は以下のとおりであ
る。
Electron beam vacuum evaporation is currently the most common evaporation method because it can form a thin film of a metal material with a high melting point and low vapor pressure. It is necessary to keep the input low and perform vapor deposition efficiently. The reason is as follows.

(1)金属ソース、真空蒸着用ルツボからの反射電子、
2次電子等の放射線による半導体ウェハー表面への影響
を最小限にする必要がある。
(1) Backscattered electrons from metal source and vacuum evaporation crucible,
It is necessary to minimize the influence of radiation such as secondary electrons on the semiconductor wafer surface.

(2)  ルツボから熱輻射圧よる半導体ウェハーの温
度上昇を抑える。
(2) Suppress the temperature rise of the semiconductor wafer due to thermal radiation pressure from the crucible.

(3)  ルツボ周辺からの異物混入を避ける。(3) Avoid contamination of foreign matter from around the crucible.

ハースライナ−1は電子ビームの入力を低くおさえかつ
蒸着速度を速くして蒸着効率を上げるために使用される
ものであり、熱伝導の非常に悪い導電性材料で作られ、
その構造は播鉢状となっている(第1図参照〕。従来、
タンタル、タングステン、モリブデン等を材料としたハ
ースライナ−で蒸発効率を上げてきたが、これらの物質
は高温時に蒸着金属と反応し合金化し易いため、形成し
た金属薄膜中にハースライナ−として使用した物質が含
まれてしまうという欠点があった。
Hearth liner 1 is used to keep the input of the electron beam low and increase the deposition rate to increase the deposition efficiency, and is made of a conductive material with very poor thermal conductivity.
Its structure is like a pot (see Figure 1). Conventionally,
Evaporation efficiency has been improved by using hearth liners made of materials such as tantalum, tungsten, and molybdenum, but these materials tend to react with the deposited metal and form alloys at high temperatures, so the materials used as the hearth liner may not be present in the formed metal thin film. It had the disadvantage of being included.

一方、窒化ホウ素(BN)と刑ホウ化チタン(TiB、
)を材料としたハースライナ−1においては、蒸着物質
とハースライナ−材料との反応は起こシにくいため、形
成した金属薄膜中への異物の混入は避けられる。しかし
、該ハースライナー1を使用した場合でも金属ノース2
の種類によってはハースライナ−1と非常に良く濡れな
じむものがあり、その場合金属ソース2がハースライナ
−1の内面1aを伝わってその開口縁部1bを乗り越見
てはい出し、ハースライナ−1とルツボ6との間がらハ
ースライナ−1の裏面1c側に入り込んでしまう(第2
図参照)。
On the other hand, boron nitride (BN) and titanium boride (TiB)
) in the hearth liner 1 made of material, since a reaction between the deposited substance and the hearth liner material is unlikely to occur, contamination of foreign matter into the formed metal thin film can be avoided. However, even when using the hearth liner 1, the metal north 2
Depending on the type of the metal source 2, the metal source 2 can wet the hearth liner 1 very well. 6, it gets into the back side 1c of the hearth liner 1 (second
(see figure).

このため、金属ソース1とルツボ6とがハースライナ−
裏面1c全体で接触するため両者間の熱伝導が良くなり
、蒸着効率は低下してしまいハースライナ−を使用する
効果がなくなってしまりという問題があった。
Therefore, the metal source 1 and the crucible 6 are connected to the hearth liner.
Since the entire back surface 1c is in contact with each other, heat conduction between the two is improved, and the vapor deposition efficiency is reduced, making the use of the hearth liner ineffective.

本発明は前記問題点を解消するもので、拙鉢状のハース
ライナ−の開口部外縁に庇を突設したことを特徴とする
ものである。
The present invention solves the above-mentioned problems and is characterized in that an eave is provided protruding from the outer edge of the opening of the bowl-shaped hearth liner.

以下、本発明の一実施例を図面によって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、窒化ホウ素(BN)とニホウ化チタン
(TiB、)を材料とした播鉢状のハースライナ−にお
いて、ハースライナ−1の開口部外縁に庇1dを突設す
る。ハースライナ−1はその庇1dをルツボ3と接触さ
せてルツボ6上に取付けられる。ハースライナ−1内で
溶融している蒸着用金属ソース2がハースライナ−1の
内面1aを伝わってはい出しても該ハースライナ−1の
庇1dとルツボ6との接触部分子で    、・・lそ
の裏面1C側へのはい出しが防止され、金属ソース2と
ルツボ3との接触度合が最小限に抑えられるから蒸着用
金属ソース2からルツボ6への熱伝導を最小限におさえ
ることができる。
In FIG. 3, in a pot-shaped hearth liner made of boron nitride (BN) and titanium diboride (TiB), an eaves 1d is provided protruding from the outer edge of the opening of the hearth liner 1. The hearth liner 1 is mounted on the crucible 6 with its eaves 1d in contact with the crucible 3. Even if the metal source 2 for evaporation melted inside the hearth liner 1 flows through the inner surface 1a of the hearth liner 1 and leaks out, the contact portion between the eaves 1d of the hearth liner 1 and the crucible 6...l its back surface. Since leakage to the 1C side is prevented and the degree of contact between the metal source 2 and the crucible 3 is minimized, heat conduction from the metal source 2 for deposition to the crucible 6 can be minimized.

また、このハースライナ−1により低入力電子ビームで
も効率良く蒸着を行うことが可能となる。
Moreover, this hearth liner 1 allows efficient vapor deposition even with a low input electron beam.

次に本発明の実際の効果を示すために蒸着用ソースとし
て2ccのアルミニウムを用いて蒸着した場合について
述べる。表1は純度9999%のアルミニウム2 cc
を次に示す3通りの電子ビーム蒸着法で蒸着した場合の
蒸発効率を示すものである。   − (1)  !鉢形状の電子ビーム蒸着用ルツボ(材料は
無酸素銅)に直接アルミニウムを入れた場合。
Next, in order to demonstrate the actual effects of the present invention, a case will be described in which 2 cc of aluminum is used as a vapor deposition source. Table 1 shows 2 cc of aluminum with a purity of 9999%.
The graph shows the evaporation efficiency when evaporation is performed using the following three types of electron beam evaporation methods. - (1)! When aluminum is placed directly into a bowl-shaped crucible for electron beam evaporation (the material is oxygen-free copper).

(2)窒化ホウ素(BN)とニホウ化チタン(TIN3
2)を材料とした厚さ5m1jrの従来型ハースライナ
−を使用した場合。
(2) Boron nitride (BN) and titanium diboride (TIN3)
When using a conventional hearth liner with a thickness of 5m1jr made from 2).

(3)  (2)で使用したハースライナ−の開口縁部
を庇状にした本発明に係るハースライナ−を使用した場
合。
(3) When the hearth liner according to the present invention is used, in which the opening edge of the hearth liner used in (2) is shaped like an eave.

電子ビーム蒸着用ルツボ、の寸法は第6図に示すように
、深さdを10頭、底面9直径、D□を12間、開口部
縁部の直径り、を60間としである。また蒸着条件は全
て到達真空度2X10’−7om 以下(蒸着機ペルジャー内の真空度)、電子ビーム加速
電圧はdαで行った。表1は蒸着用ノースから360顛
の距離において50 OA’/ secの蒸着速度を得
るのに必要な電子ビームのエミッション電流の値で比較
じた。
As shown in FIG. 6, the dimensions of the crucible for electron beam evaporation are as follows: depth d is 10 mm, bottom surface diameter is 9 mm, D□ is 12 mm, and opening edge diameter is 60 mm. Further, the deposition conditions were all such that the ultimate vacuum level was 2×10'-7 om or less (the vacuum level in the Pelger evaporator), and the electron beam acceleration voltage was dα. Table 1 compares the values of the electron beam emission current required to obtain a deposition rate of 50 OA'/sec at a distance of 360 degrees from the deposition north.

表1に示すように本発明の・・−スライナーを使用した
場合、:300A/secの蒸着速度を得るのに必要な
エミノ7ヨ/電流は、(1)のようにハースライナ−が
ない場合の45%、(2)の従来型のハースライナ−を
使用した場合の55チであり、電子ビーム入力電流を大
幅に低減することが可能である。
As shown in Table 1, when the liner of the present invention is used, the current required to obtain a deposition rate of 300 A/sec is the same as that without the hearth liner as shown in (1). 45%, and 55% when using the conventional hearth liner (2), making it possible to significantly reduce the electron beam input current.

以上のように本発明はハースライナ−の開口部外縁に庇
を突設したので、ハースライナ−からはい出す蒸着用ソ
ースがハースライナ−裏面側に漏れ出るのを防止でき、
蒸着用ソースとルツボとの接触度が最小限となシ両者間
の熱伝導を最少限に抑えて蒸着効率を高めることができ
る。また蒸着用ソースとルツボとの間の熱伝導が最小限
に抑えられるから、低入力電子ビームでも効率良く、蒸
着を行なうことができる。
As described above, in the present invention, since the eaves are provided protruding from the outer edge of the opening of the hearth liner, it is possible to prevent the deposition source leaking out from the hearth liner to the back side of the hearth liner.
Since the degree of contact between the deposition source and the crucible is minimized, heat conduction between the two can be minimized and deposition efficiency can be increased. Furthermore, since heat conduction between the deposition source and the crucible is minimized, deposition can be performed efficiently even with a low input electron beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のハースライナ−の断面図、第2図は従来
のハースライナ−を使用した蒸着状態を示す断面図、第
3図は本発明の一実施例を示す断面図である。 1・・・バー スライナ−1b・・・ハースライナ−の
開口縁部1d・・・庇
FIG. 1 is a cross-sectional view of a conventional hearth liner, FIG. 2 is a cross-sectional view showing a vapor deposition state using the conventional hearth liner, and FIG. 3 is a cross-sectional view showing an embodiment of the present invention. 1... Bar liner 1b... Opening edge of hearth liner 1d... Eave

Claims (1)

【特許請求の範囲】[Claims] (1)窒化ホク素とニホウ化チタンとを材料とした播鉢
状の電子ビー ム真空蒸着用・・−スライナーにおいて
4播鉢状のハースライナ−の開口部外縁に庇を突設した
ことを特徴とする電子ビーム真空蒸着用ハースライナー
(1) Bowl-shaped electron beam vacuum evaporation using boron nitride and titanium diboride as materials - Characteristic feature of the liner is that an eave is provided protruding from the outer edge of the opening of the 4-pot shaped hearth liner. Hearth liner for electron beam vacuum evaporation.
JP10374281A 1981-07-02 1981-07-02 Hearth liner for vacuum deposition by electron beam Pending JPS586972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10374281A JPS586972A (en) 1981-07-02 1981-07-02 Hearth liner for vacuum deposition by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10374281A JPS586972A (en) 1981-07-02 1981-07-02 Hearth liner for vacuum deposition by electron beam

Publications (1)

Publication Number Publication Date
JPS586972A true JPS586972A (en) 1983-01-14

Family

ID=14362056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10374281A Pending JPS586972A (en) 1981-07-02 1981-07-02 Hearth liner for vacuum deposition by electron beam

Country Status (1)

Country Link
JP (1) JPS586972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154142A (en) * 1985-12-27 1987-07-09 Toshiba Corp Pipeline processing method for processor and pipeline processor
JPS62226232A (en) * 1986-03-28 1987-10-05 Toshiba Corp Control system for branch instruction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109231A (en) * 1973-02-21 1974-10-17
JPS5244735A (en) * 1975-10-06 1977-04-08 Hitachi Ltd Structure for preventing leak of molten metal
JPS545880A (en) * 1977-06-17 1979-01-17 Hitachi Ltd Electron beam evaporating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49109231A (en) * 1973-02-21 1974-10-17
JPS5244735A (en) * 1975-10-06 1977-04-08 Hitachi Ltd Structure for preventing leak of molten metal
JPS545880A (en) * 1977-06-17 1979-01-17 Hitachi Ltd Electron beam evaporating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154142A (en) * 1985-12-27 1987-07-09 Toshiba Corp Pipeline processing method for processor and pipeline processor
JPH0451858B2 (en) * 1985-12-27 1992-08-20 Tokyo Shibaura Electric Co
JPS62226232A (en) * 1986-03-28 1987-10-05 Toshiba Corp Control system for branch instruction
JPH056894B2 (en) * 1986-03-28 1993-01-27 Tokyo Shibaura Electric Co

Similar Documents

Publication Publication Date Title
US4972449A (en) X-ray tube target
US5768338A (en) Anode for an X-ray tube, a method of manufacturing the anode, and a stationary anode X-ray tube
US3795832A (en) Target for x-ray tubes
US20020050246A1 (en) Full area temperature controlled electrostatic chuck and method of fabricating same
JPS6255931A (en) Formation of metal silicide contact and sputtering apparatustherefor
US5157240A (en) Deposition heaters
US6176931B1 (en) Wafer clamp ring for use in an ionized physical vapor deposition apparatus
US2665320A (en) Metal vaporizing crucible
US3790838A (en) X-ray tube target
JPS586972A (en) Hearth liner for vacuum deposition by electron beam
US4394953A (en) Method of joining individual parts of an X-ray anode, in particular of a rotating anode
US3731128A (en) X-ray tube with rotary anodes
US5247563A (en) High vapor pressure metal for X-ray anode braze joint
JPS6059990B2 (en) Vapor deposition equipment
US2345722A (en) X-ray tube
JPH0225987B2 (en)
US6229956B1 (en) Flash evaporator vessel
JPH0673543A (en) Continuous vacuum vapor deposition device
JPH0558775A (en) Molecular-beam epitaxy device
JPH06280004A (en) Electron beam evaporation source
JPS6120032Y2 (en)
JPS6065529A (en) Target for spattering
JPS62240758A (en) Hearth liner for electron gun heater
JPS63137160A (en) Vacuum deposition apparatus
JPH0139713Y2 (en)