JPS5868965A - Manufacture of light-receiving element - Google Patents
Manufacture of light-receiving elementInfo
- Publication number
- JPS5868965A JPS5868965A JP56167208A JP16720881A JPS5868965A JP S5868965 A JPS5868965 A JP S5868965A JP 56167208 A JP56167208 A JP 56167208A JP 16720881 A JP16720881 A JP 16720881A JP S5868965 A JPS5868965 A JP S5868965A
- Authority
- JP
- Japan
- Prior art keywords
- receiving element
- substrate
- film
- light
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 238000004544 sputter deposition Methods 0.000 claims abstract description 36
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 19
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 19
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 239000011651 chromium Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910003437 indium oxide Inorganic materials 0.000 claims description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 6
- 239000011521 glass Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 65
- 239000007789 gas Substances 0.000 description 51
- 150000003376 silicon Chemical class 0.000 description 24
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 22
- 229910052786 argon Inorganic materials 0.000 description 11
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 206010047571 Visual impairment Diseases 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- 238000005546 reactive sputtering Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000005477 sputtering target Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910010277 boron hydride Inorganic materials 0.000 description 2
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- -1 indium oxide-silver oxide metal oxide Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/105—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
- H01L31/1055—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type the devices comprising amorphous materials of Group IV of the Periodic Table
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は基板上に形成された下部電極とシリコンを主体
とし水素を含有する非晶質材料よシなる光導電膜とスパ
ッタリングによ多形成した透明電使とよシなる受光素子
あ製造方法に関するものである。たとえは、絶縁性基板
上に一次元に配列された非透光性金属電極を有し、該金
属電極上に一対一に対応するようにシリコンを主体とし
水素を官有する非晶質材料を基板側からn9型導電層。Detailed Description of the Invention The present invention relates to a lower electrode formed on a substrate, a photoconductive film made of an amorphous material mainly composed of silicon and containing hydrogen, and a transparent electrode formed by sputtering. The present invention relates to a method of manufacturing a light receiving element. For example, non-transparent metal electrodes are arranged one-dimensionally on an insulating substrate, and an amorphous material mainly composed of silicon and containing hydrogen is placed on the metal electrodes in one-to-one correspondence. N9 type conductive layer from the side.
iもしくはn型環を層、p型導電層(以後、非晶質水素
化シリコンホトダイイオードと呼ぶ)の順に形成せしめ
た光導電体層および該光導電体層上に一対一に対応する
ように透明電極を積層した一次元光センサの製造方法に
適用して有用である。A photoconductor layer in which an i- or n-type ring is formed in this order, a p-type conductive layer (hereinafter referred to as an amorphous hydrogenated silicon photodiode), and a photoconductor layer in one-to-one correspondence on the photoconductor layer. The present invention is useful when applied to a method for manufacturing a one-dimensional optical sensor in which transparent electrodes are laminated.
また、走査用5s−IC基板上に上記非晶質水素化シリ
コンホトダイオードよシなる光導電体層および透明電極
を積層した固体撮像素子の製造方法に瓜用しても有用で
ある。また、太陽電池など上記の構造の他の受光素子に
も適用できることは勿論のことである。。It is also useful to apply the present invention to a method of manufacturing a solid-state image sensor in which a photoconductor layer such as the amorphous hydrogenated silicon photodiode and a transparent electrode are laminated on a scanning 5S-IC substrate. It goes without saying that the present invention can also be applied to other light-receiving elements having the above structure, such as solar cells. .
本発明の方法は非晶質水素化シリコンホトダイオードよ
シなる光導電体層および透明電極を形成した、後に用い
て有用なものである。The method of the present invention is useful after forming photoconductor layers and transparent electrodes such as amorphous hydrogenated silicon photodiodes.
前述の一次元光センサの例は光電変換機能及び信号蓄積
機能を有する固体素子を複数個−次元状に配置し、各固
体素子を一画素に対応させて一次元の光信号読み取シ素
子列を形成し、この素子列内で各固体素子をノー次走査
することによシ外部に一次元の画像情報を電気信号に変
換する素子であシ、特に、透明電極が光導電体層を覆う
ように形成されてなる。In the example of the one-dimensional optical sensor mentioned above, a plurality of solid-state elements having a photoelectric conversion function and a signal accumulation function are arranged in a one-dimensional manner, and each solid-state element corresponds to one pixel to form a one-dimensional optical signal reading element array. It is an element that converts one-dimensional image information into an electrical signal by forming and non-order scanning each solid-state element within this array of elements. It is formed into.
この様な透明電極が光導電体2層を覆うように形成さ5
れてなる一次元光センサはこれまでに報告されている。Such a transparent electrode is formed so as to cover the two photoconductor layers.
A one-dimensional optical sensor based on this method has been reported so far.
以下この技術を第1図(a)、Φ)Kその断面図および
平面図を示した一次元センサを用いて簡単に説明する。This technique will be briefly explained below using a one-dimensional sensor shown in FIG.
第1図に示すように絶縁性基板1上に非透光性金属電極
2が形成され、さらに電極2上に非晶質水素化シリコン
ホトダイオード3および非晶質水素化シリコン分離ダイ
オード4が形成される。この時、ダイオード3および4
は金型
属21側からn□導電層31,41.iもしくはn型導
電層32,42. p型溝′#M、層33.43のjI
Iに形成されている。ホトダイオード3および分離ダイ
オード4は通常同時に形成される。ホトダイオード3は
絶縁層5の所望の位置にあけられたコンタクト穴62を
介して透明電極7と電気的に接続し、透明に極7はコン
タクト穴62を介して2層配線用金属電極22へ接続さ
れ、さらにコンタクト穴64を介して金属配線81から
行駆動用ICへと接続されている。一方、分離ダイオー
ド4はホトダイオ−艶゛3と共通の電極21で接続し、
もう一方はコンタクト穴61を介して金属配線82から
列駆動用ICへと接続されている。第1図に即して動作
原理を説明すると、入射光10が透明電極7を通してホ
トダイオード3に達する。As shown in FIG. 1, a non-transparent metal electrode 2 is formed on an insulating substrate 1, and an amorphous hydrogenated silicon photodiode 3 and an amorphous hydrogenated silicon isolation diode 4 are further formed on the electrode 2. Ru. At this time, diodes 3 and 4
are the n□ conductive layers 31, 41 . from the mold metal 21 side. i or n type conductive layer 32, 42. p-type trench'#M, jI of layer 33.43
It is formed in I. Photodiode 3 and isolation diode 4 are usually formed at the same time. The photodiode 3 is electrically connected to the transparent electrode 7 through a contact hole 62 made at a desired position in the insulating layer 5, and the transparent electrode 7 is connected to the metal electrode 22 for two-layer wiring through the contact hole 62. Further, the metal wiring 81 is connected to the row driving IC via the contact hole 64. On the other hand, the separation diode 4 is connected to the photodiode 3 through a common electrode 21,
The other side is connected to the column driving IC from the metal wiring 82 via the contact hole 61. The operating principle will be explained with reference to FIG. 1. Incident light 10 reaches photodiode 3 through transparent electrode 7.
こと、で元は吸収されて電子正孔対を生じ、これらのキ
ャリアはホトダイオードに印加された逆I(イアスミ圧
V!により金属電極21に蓄積される。In this case, the carriers are absorbed and generate electron-hole pairs, and these carriers are accumulated in the metal electrode 21 by the inverse I (Iasumi pressure V!) applied to the photodiode.
この時、分離ダイオードは逆方向にバイアスされており
配線82とはOFF状態になっている。蓄積されたキャ
リアは同じ金属電極21上に設けられた分離ダイオード
4を順方向にバイアスしてON状態とし配線82を通し
て蓄積されたキャリアが外部に読み出される。上記の蓄
積および読み出し動作を列駆動ICを用いて配線82を
選択し、行駆動ICを用いて配線81を選択す不マトリ
ックス駆動で各ホトダイオードごとに順次行なうことに
よシ、−次元の画像情報を外部にとシ出すことが出来る
。本構造の一次元光センサは全画素を連続した複数の群
に分け、群ごとをまとめて走査するため、走査回路を大
巾に簡単化することができる。また、ホトダイオード3
と分離ダイオード4を同一のプロセスで形成できるので
、従来の5i−IICプロセスで作製したホトダイオー
ドアレイを実装したものよ如も、作成プロセスが簡略化
されている。At this time, the isolation diode is biased in the opposite direction and is in an OFF state with respect to the wiring 82. The accumulated carriers forward bias the isolation diode 4 provided on the same metal electrode 21 to turn it on, and the accumulated carriers are read out to the outside through the wiring 82. By sequentially performing the above storage and readout operations for each photodiode using a non-matrix drive in which the wiring 82 is selected using a column driving IC and the wiring 81 is selected using a row driving IC, -dimensional image information can be obtained. can be exposed to the outside. The one-dimensional optical sensor with this structure divides all pixels into a plurality of consecutive groups and scans each group together, so the scanning circuit can be greatly simplified. In addition, photodiode 3
Since the isolation diode 4 and the isolation diode 4 can be formed in the same process, the fabrication process is simplified compared to that in which a photodiode array fabricated by the conventional 5i-IIC process is mounted.
しかし、基板1上に所望のパターンの’1121および
非晶質、水素化シリコンよシなるホトダイオード3を形
成した後、その上部に酸化インジウム−酸化錫系の透明
電極または白金などの半透明電極をスパッタリング法に
よ)形成するとホトダイオードの光応答特性が劣化する
という欠点が生じた。However, after forming a desired pattern of '1121 and a photodiode 3 made of amorphous silicon hydride on a substrate 1, a transparent electrode made of indium oxide-tin oxide or a translucent electrode made of platinum or the like is placed on top of the photodiode 3 made of amorphous silicon hydride. When the photodiode is formed using a sputtering method, the photoresponse characteristics of the photodiode deteriorate.
光導電膜上にたとえば酸化インジウム−酸化銀糸金属酸
化物の透明型&または金および白金などの半透明金輌電
極をスパッタリング法により形成するのは、非晶質水素
化シリコンよシなるホトダ・イオードとの接着性を筒め
るためである。この問題は特に上記の一次元光センサに
おいて特に要求される点である。A photodiode such as amorphous silicon hydride is used to form transparent electrodes of indium oxide-silver oxide metal oxide and semi-transparent gold electrodes of gold and platinum on the photoconductive film by sputtering. This is to improve adhesion with the material. This problem is particularly required in the above-mentioned one-dimensional optical sensor.
真空蒸着法7で酸化物の透明電極または金属の半透明電
極を力3成することも可能であるが、一般に#宥法で形
成した膜はスパッタリング法で形成した膜よシも下地膜
との接着性が劣っている。It is also possible to form transparent oxide electrodes or semi-transparent metal electrodes using the vacuum evaporation method, but in general, films formed using the #containing method have poorer bonding with the base film than films formed using the sputtering method. Poor adhesion.
第1図(a)にその画素部の断面図を示した一次元元セ
ンサはファクシミリ用−次元光センサとして用いる場合
、原禍が上記上にすと密着して移動するため透明!極の
上部およびその他のセンサ表面に摩耗防止用の透明な保
護層を形成する必要がある。あるいは保護層のかセシに
解僚力を失なわない程度に十分薄机ガラス板を透明な接
着剤ではシる工程を行う際、上記ホトダイオード3と透
明電極7との接着性が弱いと透明電極7が剥離するとい
う問題がしばしば発生する。この点で真空蒸着法で透明
電極7を形成するよシはスパッタリングで透明電極7を
形成することが望ましい。When the one-dimensional sensor whose pixel section is shown in cross section in Fig. 1(a) is used as a facsimile optical sensor, it is transparent because it moves in close contact with the above-mentioned surface! It is necessary to form a transparent protective layer on the top of the pole and other sensor surfaces to prevent wear. Alternatively, when performing the process of bonding a thin glass plate with a transparent adhesive sufficiently to the extent that the protective layer does not lose its dissolving power, if the adhesiveness between the photodiode 3 and the transparent electrode 7 is weak, the transparent electrode 7 may peel off. The problem often arises. In this respect, it is preferable to form the transparent electrode 7 by sputtering instead of forming it by vacuum evaporation.
また、酸化インジウム−酸化錫系の透明電極をインジウ
ム−錫系のハロゲン化物あるいは有機金属塩を用いたC
V ]) (Chemfcal Vapor pep
o−aiti’on )法に:り作成する方法も知られ
ている。In addition, indium oxide-tin oxide-based transparent electrodes can be replaced with indium-tin oxide-based halides or organometallic salts.
V]) (Chemfcal Vapor pep
It is also known to create an image using the o-aiti'on) method.
しかし、この方法では比抵抗が低く、抵抗の経時変化な
どもなく、かつ、下地膜との接着性の良い膜を得るため
には基板温度を300t:’以上にしなければならない
。一方、非晶質水素化シリコンよ如なる光導電膜は30
00以上に加熱すると可視光領域での光感度が著しく低
下する。従って、非゛晶質水素化シリコンホトダイオー
ドを光導電膜として用いた一次元光センサ用の透明電極
はCVD法によシ作成することはできない。However, in this method, in order to obtain a film with low specific resistance, no change in resistance over time, and good adhesion to the underlying film, the substrate temperature must be set to 300 t:' or higher. On the other hand, a photoconductive film such as amorphous hydrogenated silicon has a
When heated above 0.00, the photosensitivity in the visible light region decreases significantly. Therefore, a transparent electrode for a one-dimensional optical sensor using an amorphous hydrogenated silicon photodiode as a photoconductive film cannot be produced by the CVD method.
第1図に示した一次元光センサでは光信号電荷を・−足
の蓄積時間(例えば、3m5)ホトダイオード3内に電
極した後、極めて短い時間(例えば、500118〜1
0μs)内に分陰ダイオード4を順方向にバイアスしC
ON状態として配線82を逼して読み出す方式(蓄積動
作方式と呼ぶ)をとっている。In the one-dimensional optical sensor shown in FIG.
C
A method (referred to as an accumulation operation method) is adopted in which the wiring 82 is set in the ON state and read out.
第2図の受光素子は光応答特性を測定するためのテスト
用受光素子である。基板11上に設けら7Lだ下部電極
12と非晶質水素化シリコンよシな ′るホトダイ第4
ド13と透明電極14で構成されておシ、光導電膜には
常に一足の逆バイア哀電圧νTが印加されていて、光パ
ルス15によシホトメイオニド13に発生した光′dL
向を電流計16で面+&dみとることができる。とこで
、131はn0型尋電層、132はiもしくはn型環電
層、133はp型導電層である。スパッタリング法で透
明電体r形成した第2図の受光素子の光応@t¥j姓は
−しllを示すと第3図のようになる。第3図において
、特性aは入射の光パルス、曲線すはホトダイオード1
3に逆バイアスすなわち透明電極側を負にバイアス(一
般KVy=0〜−1OV程度を使用す号。)した場合の
光応答特性を示す。第3図の特性曲線□よシ特に透明電
極側に負のバイアスを印加した場合光応答特性が著しく
劣っていることがわあ・る。すなわち、第3図では透明
電極側を負にし □て光パルスを照射すると透明
電極から負電荷が注入される現象(二次光電流とも呼ぶ
)が起って、光をOFFにした後も、減衰電流が長い時
間にわたって多く流れ、なかなか暗電流のレベルまでも
どらないことを示している。この現象は一次元光センサ
では副走査方向(原稿送シ方向)の再生画像のパターン
巾の拡大または縮少現象として現われる。極端な場合は
再生画像が全く得られないこともある。また、二次光電
流が支配的な光応答特性は時定数が数十ms以上と大き
いため、この上うな受光素子を用いると高速のファクシ
ミリ装置を実現することが困難である。以上述べたよう
な現象は一次元光センサにとって実用上極めて太きな欠
点である。The light-receiving element shown in FIG. 2 is a test light-receiving element for measuring optical response characteristics. A 7L lower electrode 12 provided on a substrate 11 and a fourth photo-die made of amorphous hydrogenated silicon.
A reverse bias voltage νT is always applied to the photoconductive film, and the light dL generated in the photomeionide 13 by the light pulse 15
The direction of +&d can be measured with an ammeter 16. Here, 131 is an n0 type conductive layer, 132 is an i or n type conductive layer, and 133 is a p type conductive layer. The photoresistance of the light-receiving element shown in FIG. 2 in which the transparent conductor r is formed by sputtering is as shown in FIG. 3 when the surname is -shill. In Fig. 3, the characteristic a is the incident light pulse, and the curve is the photodiode 1.
3 shows the photoresponse characteristics when a reverse bias is applied, that is, the transparent electrode side is negatively biased (generally KVy=0 to -1 OV is used). It can be seen from the characteristic curve □ in FIG. 3 that the photoresponse characteristics are extremely poor, especially when a negative bias is applied to the transparent electrode side. In other words, in Figure 3, when the transparent electrode side is made negative and a light pulse is irradiated, a phenomenon in which negative charges are injected from the transparent electrode (also called secondary photocurrent) occurs, and even after the light is turned off, This shows that a large amount of decay current flows over a long period of time, and that it takes a long time to return to the dark current level. In a one-dimensional optical sensor, this phenomenon appears as an expansion or contraction of the pattern width of a reproduced image in the sub-scanning direction (original feeding direction). In extreme cases, a reproduced image may not be obtained at all. Further, since the photoresponse characteristic in which the secondary photocurrent is dominant has a large time constant of several tens of milliseconds or more, it is difficult to realize a high-speed facsimile device using such a light receiving element. The above-mentioned phenomena are extremely serious practical drawbacks for one-dimensional optical sensors.
上述の欠点を除去した非晶質水素化シリコンホトダイオ
ードを用いた一体元光センサを得るために本発明は極め
て有効である。The present invention is extremely effective in obtaining an integrated optical sensor using an amorphous hydrogenated silicon photodiode which eliminates the above-mentioned drawbacks.
本発明は上記目的を達成するために、所望の配線がなさ
れた基板上に水素を含有するシリコンを主体とした非晶
質光導電膜を反応性スパッタリング法またはグロー放N
CVD法によ膜形成した後、上記光導電膜上に透明電極
をスパッタリング法にて基板側からn0型導電層、iま
たはn型環電層p型導電層の111に形成する。しかる
後に、本−次元光センサを170Cから250Cの温度
範囲で熱処理し、透明電極をスパッタリング法にて光導
′電膜上に形成したために生じた本固体撮像素子の光応
答特性の劣化を改良するものである。本発明によって本
−次元光セ/すの長所である光応答特性が良好でしかも
感度が高い素子を得ることが出来、高速のファクシミリ
装置を実現することができる。また、n4型導電層、i
型もしくはn型環゛亀層、p型4篭層、°透明電極の順
に堆積してホトダイす−ドとして用いる理由を述べると
、入射光はその大部分が透明電極近傍で吸収されホトキ
ャ電子の光導電膜中の走行性が優れているので、ホトダ
イオードを逆バイアスして用いる場合、電子が透明電極
近傍ら金属電極側へ移動するような構造にした方が有利
だからである。前影光導電膜の反応性スパッタリング法
としては、一般のスパッタ装置−を用いてもよいし、マ
グネトロン型の高速スパッタ装置も用いることもできる
。スパッタi置内の対向電、極の一方の陰極(ターゲッ
ト側電極)に多結晶シリコンをスパッタ用ターゲットと
して設置し、他方の陽極(基板側電極)には所望の配線
がなされた一次元光センサ用基板を設置する。In order to achieve the above object, the present invention forms an amorphous photoconductive film mainly made of silicon containing hydrogen on a substrate with desired wiring using a reactive sputtering method or a glow emission method.
After film formation by the CVD method, transparent electrodes are formed on the photoconductive film by sputtering from the substrate side to the n0 type conductive layer, the i or n type ring conductive layer, and the p type conductive layer 111. Thereafter, the present dimensional optical sensor is heat-treated in a temperature range of 170C to 250C to improve the deterioration of the photoresponse characteristics of the present solid-state image sensor that occurred due to the transparent electrode being formed on the photoconductive film by sputtering method. It is something. According to the present invention, it is possible to obtain an element with good photoresponse characteristics, which is an advantage of the present dimensional optical cell, and high sensitivity, and a high-speed facsimile device can be realized. In addition, an n4 type conductive layer, i
The reason why it is used as a photodiode by depositing a type or n-type ring layer, a p-type four-layer, and a transparent electrode in this order is that most of the incident light is absorbed near the transparent electrode, and the photocarrier electrons are absorbed. This is because when using a photodiode with a reverse bias, it is advantageous to have a structure in which electrons move from the vicinity of the transparent electrode to the metal electrode side, since the photoconductive film has excellent mobility. For the reactive sputtering method of the front-shadow photoconductive film, a general sputtering device may be used, or a magnetron type high-speed sputtering device may also be used. A one-dimensional optical sensor in which polycrystalline silicon is installed as a sputtering target on one of the cathodes (target-side electrodes) and the other anode (substrate-side electrodes) with the desired wiring. Install the board for
スパッタ室内をlXl0’″@Torr以下の高真空に
保ちながら250〜300C’に加熱して、スパッタ室
内の脱ガスを行った後、放電ガスとして水素とアルゴン
の如き希ガスおよび微量のドーピングガスとの混合ガス
をスパッタ室内に導入し、13.56MH−0高周波ユ
バ□す、グを行っ7、よ記。After degassing the sputtering chamber by heating it to 250 to 300C' while keeping the sputtering chamber at a high vacuum below lXl0'''@Torr, hydrogen and a rare gas such as argon and a small amount of doping gas are used as discharge gas. A mixed gas of 13.56 MH-0 was introduced into the sputtering chamber, and a 13.56 MH-0 high frequency wave was applied.
基板上に水素を含有したシリコンを主体とする非晶質光
導電膜を堆積せしめる。膜形成中の基板温度は100〜
350C,放電ガスの圧力は8×10−’ Torr
〜2 x 10−” Torr 、放電ガス中の水素ガ
スの組成は10〜60 mo4%の範囲内である。An amorphous photoconductive film mainly composed of silicon containing hydrogen is deposited on a substrate. The substrate temperature during film formation is 100~
350C, discharge gas pressure is 8×10-' Torr
~2 x 10-'' Torr, and the composition of hydrogen gas in the discharge gas is within the range of 10-60 mo4%.
光導電膜堆積中において上記のアルゴンと水素の混合ガ
ス中にドーピングガスとして微量の窒素ガスi0.01
%〜1%程度i人させるか或いは微量の水素化リン例え
ばホス−フィン(P)Tm)を0,01〜5%程度混入
させるとn0型導電層が得られ、−ま次上記アルゴンと
水素の混合ガスに薇−蓋の水素化ホウ素例えばジボラン
(nuHs)を001〜5%程度混入させればp型導電
層が得られる。これらのドーピングガスの添加を行なわ
ない場合は一般にiまたはn型の導電層が得られる。以
上のスパッタ条件を用いて n+型型環層、iまたはn
型4電層、p型環電層の順に光導電膜を堆積し、ホトダ
イオードおよび分離ダイオード用の導電膜とする。During deposition of the photoconductive film, a trace amount of nitrogen gas i0.01 is added as a doping gas to the above-mentioned mixed gas of argon and hydrogen.
By mixing about 0.01% to 1% or a trace amount of phosphorus hydride (for example, phosphine (P)Tm) about 0.01 to 5%, an n0 type conductive layer can be obtained. A p-type conductive layer can be obtained by mixing about 0.01 to 5% of boron hydride such as diborane (nuHs) into the mixed gas. If these doping gases are not added, an i- or n-type conductive layer is generally obtained. Using the above sputtering conditions, an n+ type ring layer, i or n
A photoconductive film is deposited in the order of a type 4 conductive layer and a p-type ring conductive layer to form a conductive film for a photodiode and a separation diode.
また、前記のグロー放電CV f) (Chemica
lVapor ])eposition)−法として゛
は、rfココイル法二極放電法の二種類がある。いずれ
も、放電ガスとして5il(、などのシラン系ガスとア
ルゴンの如き希ガスあるいは水素ガスとの混合ガスを用
い、グロー放電を行ってシラン系ガスの分解反応により
上記−次元光センサ用基板上に水素を含有したシリコン
を主体とする非晶質光導電膜を堆積せしめる方法であり
、シリコンに水素を添加する反応を利用する反応性スパ
ッタリング法と区別される。In addition, the glow discharge CV f) (Chemical
There are two types of methods: RF cocoil method and bipolar discharge method. In both cases, a mixture of silane gas such as 5il (, etc.) and a rare gas such as argon or hydrogen gas is used to perform glow discharge, and a decomposition reaction of the silane gas causes the above-mentioned -dimensional optical sensor substrate to be This is a method of depositing an amorphous photoconductive film mainly made of silicon containing hydrogen, and is distinguished from reactive sputtering, which uses a reaction of adding hydrogen to silicon.
rfココイル法反応室をrfココイル中おき、rfコイ
ルに13.56MH2の高周波を印加して、反応室内に
導入したsiH,およびアルゴンの混合ガスのグロー放
電を起こさせ、反応室内に設置した上記−次元光センサ
用基板上に水素を含有したシリコンを主体とする非晶質
光導電膜を堆積せしめる方法である。また、二極放電法
は通常のスパッタリング装置を用い、対向電極間に13
.56λfzの高周波を印加して反応室内に導入した5
iH4およびアルゴンあるいは水素の混合ガスのグロー
放電を起こさせ、反応室内に設置した上記−次元光セン
サ用基板上に水素を含有したシリコンを主体とする非晶
質光導電膜を堆積せしめる方法である。RF cocoil method A reaction chamber was placed in an RF cocoil, and a high frequency of 13.56 MH2 was applied to the RF coil to cause a glow discharge of the mixed gas of siH and argon introduced into the reaction chamber. This is a method of depositing an amorphous photoconductive film mainly made of silicon containing hydrogen on a substrate for a dimensional optical sensor. In addition, in the bipolar discharge method, a normal sputtering device is used, and 13
.. A high frequency of 56λfz was applied and introduced into the reaction chamber.
This is a method of causing a glow discharge of a mixed gas of iH4 and argon or hydrogen, and depositing an amorphous photoconductive film mainly made of silicon containing hydrogen on the above-mentioned -dimensional optical sensor substrate installed in a reaction chamber. .
膜形成中の基板温度は100〜300C,放電ガスの圧
力は反范性スパッタリング法よh?M< 5X11)−
2’)’orrから2 ’]’Orr 、放電ガス中O
81H4ガ曾と同様に、−ヒ6ピの8 iH4およびア
ルゴンガスあるいけ水素の混合ガス中にドーピングガス
として微量の水素化リン例えばホスフィン(PHI)e
001〜5%程度混入させるとn9型導電層が得られ、
また上記のS t H4およびアルゴンあるいは水素の
混合ガス中にドーピングガスとして微量の水素化ホウ素
例えばジボラン(B*He)を0.01〜5%程度混1
人させれはpalJ2N電層が得られる。これらのドー
ピングガスの添加を行なわない場合は一般に11または
i型の導電層が得られ不。以上のグロー放電CVI5条
件を用いて、n0型導電層、iまたはn型導電層、p型
環電層の順に光導電膜を堆積し、ホトダイ・オードおよ
び分離ダイオード用の導゛畦膜とする。The substrate temperature during film formation is 100 to 300C, and the discharge gas pressure is the same as that of the reversible sputtering method. M<5X11)-
2')'orr to 2']'Orr, O in the discharge gas
Similar to the 81H4 gas, a trace amount of phosphorus hydride, such as phosphine (PHI), is added as a doping gas to a mixed gas of 8iH4 and argon gas or hydrogen.
When about 0.001 to 5% is mixed, an n9 type conductive layer is obtained,
In addition, a trace amount of boron hydride such as diborane (B*He) is mixed as a doping gas in the above mixed gas of S t H4 and argon or hydrogen in an amount of about 0.01 to 5%.
For example, a palJ2N electric layer can be obtained. If these doping gases are not added, generally a 11 or i type conductive layer cannot be obtained. Using the above glow discharge CVI5 conditions, a photoconductive film is deposited in the order of the n0 type conductive layer, the i or n type conductive layer, and the p type ring conductive layer to form a conductive ridge film for the photodiode and isolation diode. .
上記の方法でr次元センサ用上に非晶質水素化膜を所望
のパターンに加工するとホトダイオードおよび分離ダイ
オードの一子列が完成される。さらに、絶縁層を所望の
パターンに形成した後、その上部に透明電極をスパッタ
リング法によ膜形成する。この透明電極としては(1)
酸化インジウム。When the amorphous hydrogenated film is processed into a desired pattern on the r-dimensional sensor using the above method, a single row of photodiodes and separation diodes is completed. Further, after forming the insulating layer in a desired pattern, a transparent electrode is formed on the insulating layer by sputtering. As this transparent electrode, (1)
Indium oxide.
酸化錫および七れ″らの混合物から選ばれた一つを主成
呑とする透明電極が用いられる。また【(2)金。A transparent electrode mainly composed of one selected from a mixture of tin oxide and a mixture of tin oxide and the like is used. Also, [(2) gold.
白金、タンタル、モリブデン、アルミニウム、クロム、
ニッケルおよびそれらの混合物からなる群から選ばれた
一つを主成分とする半透明状の金属電極を用′hること
もできる。platinum, tantalum, molybdenum, aluminum, chromium,
It is also possible to use a translucent metal electrode whose main component is one selected from the group consisting of nickel and mixtures thereof.
・+1)の透明電極を形成するには、インジウム−錫系
の金属をターゲットとして、酸素ガスを含有したアルゴ
ンガス中で反応性RFスパツタリングを行なう方法もあ
るが、通常は、酸化インジウム−酸化錫系の焼結体ター
ゲットを用いて、アルゴンガスなどの希ガス中で、几r
スパッタリングを行なう方法がとられる。この場合、ス
パッタ装置内の対向電極の一方の陰極(ターゲット側電
極)に酸化インジウム−酸化錫系の焼結体をスパッタ用
ターゲットとして設置し、他方の陽極(基板制電hp
)には非晶質水素化シリコンよりなる光導電膜を堆積し
た一次元光センサ用基板を設置する。スパッタ室内を5
×10″″”l’orr以下の筒真空にまで排気した後
、放電ガスとしてアルゴンの如き希ガスをスパッタ塾内
に尋人し、13.56M)lxの高周波スパッタリング
を行って、上記光2jl電膜上に所定のパターンの酸化
インジウム5−酸化錫糸の透明電惨を堆積せしめる。膜
形成中の基板温度は80C〜22(1’、放′−′ガス
の圧力は3×10°s’1’orrから5 X 10”
” TOrrである。こめようにして、透明電極を形成
しこれをnr望のパターンに加工し、二層配線用金栖配
線を所望のパターンに設けると第1図に示す如き形状の
一次元光センサが得られる。・To form a +1) transparent electrode, there is a method of performing reactive RF sputtering in argon gas containing oxygen gas using an indium-tin metal as a target, but usually indium oxide-tin oxide is used. In a rare gas such as argon gas, using a sintered target of
A method of sputtering is used. In this case, an indium oxide-tin oxide based sintered body is installed as a sputtering target on one cathode (target side electrode) of the counter electrodes in the sputtering device, and the other anode (substrate antistatic HP
) is equipped with a one-dimensional optical sensor substrate on which a photoconductive film made of amorphous hydrogenated silicon is deposited. Inside the sputtering room 5
After evacuating the cylinder to a vacuum of less than ×10""l'orr, a rare gas such as argon was introduced into the sputtering school as a discharge gas, and high-frequency sputtering of 13.56 M)lx was performed. A transparent electrolyte of indium 5-tin oxide thread in a predetermined pattern is deposited on the electrolytic film.The substrate temperature during film formation is 80C to 22(1'), and the pressure of the emitted gas is 3 x 10°s. '1'orr to 5 x 10”
” TOrr. When a transparent electrode is formed and processed into a desired pattern, and Kanasu wiring for two-layer wiring is provided in a desired pattern, a one-dimensional light beam with a shape as shown in Fig. 1 is produced. A sensor is obtained.
また、(2)の透明電極に関しても、スパッタ装置内の
陰極(ターゲット側電極)に、寮、白金、タンタル、%
lJプfン9、アルミニウム、クロム、ニッケルおよび
それ←の混谷物からなる群から違ばれた一つを主成分と
する金属をスパッタ用ターゲットとして設置すれば上記
の(1)の透明電極と同昧のスパッタリング法によシ半
透明状の金F4電極を堆積することができる。この場合
、#−透明金執電極は光透過性を良くするためにできる
だけ膜厚を薄くする必要がある。通常、その膜厚は40
0Å以下である。Regarding the transparent electrode in (2), the cathode (target side electrode) in the sputtering device is made of aluminum, platinum, tantalum, %
If a metal whose main component is one different from the group consisting of aluminum, chromium, nickel, and their mixtures is set as a sputtering target, it will be the same as the transparent electrode in (1) above. A translucent gold F4 electrode can be deposited by a non-transparent sputtering method. In this case, the film thickness of the #-transparent metal electrode must be made as thin as possible in order to improve light transmittance. Usually, the film thickness is 40
It is 0 Å or less.
以上述べた方法で得られたm体撮像素子は第3図で説明
した如く、光応答特性の劣化した素子である。特に、第
1図におい°て透明IIt極7に負のバイアス電圧V!
を印加した場合、二次光電流が支配的な光応答特性を示
し、光応答の時定数が太きくなっている。しかし、この
素子を170C〜250Cの間で約15分根度から数時
間熱処理すノ
ると、光応答の遅さは全く問題とならない程度にまで改
善される。仁の改善のされ方は第2図に示した受光素子
の光応答特性で表わすと、第4図にその一例を示す如く
となる。第4−と第2図とを比較すると光応答特性の改
善のされ方が顕著であることがわかる。第5図は改善例
の一例を光OFF後の減衰電流で定量的に比べた図であ
る。曲線aは熱処理前の減衰電流、曲線bFi熱処理後
の減衰′は眞を表わしている。熱処理前は曲線aに示す
ように、初期値(光OF F直前の光電流)が大きく(
光電利得G:=4)、減衰の時定数もτ、=39mSI
と大きいいわゆる二次光電流が支配的な″A:応答特性
を示している。これに対して、熱処理後は曲線すに示す
ように初期値の光電利得G−は二次光電流が抑制される
ので1となるが、減衰のLi、′I定数τbは′10μ
Sと3000分の工程度に改善されている。曲線すは測
定回路系の時定数を加算さtているので、実際の改善中
はさらに大きくなる。この現象は第1図に示し六−次元
光センサでも全く同様に観測される。The m-body image sensor obtained by the method described above is an element with deteriorated photoresponse characteristics, as explained in FIG. In particular, in FIG. 1, a negative bias voltage V! is applied to the transparent IIt pole 7.
When , the photoresponse characteristics are dominated by the secondary photocurrent, and the time constant of the photoresponse becomes thicker. However, when this element is heat-treated at 170C to 250C for about 15 minutes to several hours, the slowness of the photoresponse is improved to such an extent that it does not pose a problem at all. The manner in which the contrast is improved can be expressed by the photoresponse characteristics of the light-receiving element shown in FIG. 2, and an example thereof is shown in FIG. Comparing FIG. 4- with FIG. 2, it can be seen that the photoresponse characteristics have been significantly improved. FIG. 5 is a diagram quantitatively comparing an example of an improved example in terms of attenuation current after the light is turned off. Curve a represents the attenuation current before heat treatment, and curve bFi represents the attenuation current after heat treatment. Before heat treatment, as shown in curve a, the initial value (photocurrent just before turning off the light) is large (
Photoelectric gain G:=4), decay time constant also τ,=39mSI
``A: response characteristic'' in which a large so-called secondary photocurrent is dominant.On the other hand, after heat treatment, as shown in the curve, the initial value of photoelectric gain G- is such that the secondary photocurrent is suppressed. However, the attenuation Li,'I constant τb is '10μ
The process speed has been improved to S and 3000 minutes. Since the curve is added with the time constant of the measurement circuit system, it becomes even larger during actual improvement. This phenomenon is observed in exactly the same way in the six-dimensional optical sensor shown in FIG.
第I図に示した一次元光センサにおいて、熱処理温度と
、光OFF’後3ms経過した時の残像(熱涙“す)と
の関係は第6図に示す如くとなった。但し、熱処理時間
は60分間とした。第6図から明らかなように、熱、処
理温度を室崗から次第に上げていくと、残像は次第に大
きくなり、100〜120Cの間で最大値を示した後、
15°OC前小値を示して、また反対に増方口讐る傾向
を持つ。In the one-dimensional optical sensor shown in FIG. As is clear from Fig. 6, as the heat and processing temperature are gradually increased from room temperature to room temperature, the afterimage gradually becomes larger, and after reaching a maximum value between 100 and 120C,
It shows a small value before 15°OC, and has a tendency to increase again.
熱処理時間は各温度20〜60分で#丘ぼその温度にお
ける残像の飽和値に達する。従って必要以上長時間熱処
理をしても具体的に余シ意味はない。The heat treatment time reaches the saturation value of the afterimage at the hillside temperature in 20 to 60 minutes at each temperature. Therefore, there is no specific point in carrying out the heat treatment for a longer time than necessary.
熱処理は通常大気中で行うがアルゴンガスなどの希ガス
あるいは窒素などの不活性ガス中で行っても同様の効果
が確認できた。一般の一次元光センサでは3ms後の残
像が4%以下であれば十分に使用可能である。第6図か
ら少なくとも140C以上でその効果を奏しはじめるが
170C〜250Cの範囲で熱処理を行なえば、第1図
に示した一次元光センサVi3 m s後の残像が4%
以下となシ、−次元光センナとして極めて好都合に使用
できる。Although heat treatment is normally performed in the atmosphere, similar effects were confirmed when it was performed in a rare gas such as argon gas or an inert gas such as nitrogen. A general one-dimensional optical sensor can be used sufficiently if the afterimage after 3 ms is 4% or less. As shown in Fig. 6, the effect starts to appear at least above 140C, but if heat treatment is performed in the range of 170C to 250C, the afterimage after the one-dimensional optical sensor Vi3 ms shown in Fig. 1 will be reduced to 4%.
The following can be used very conveniently as a -dimensional optical sensor.
第5図および第6図で示した本発明の効果はあくまで、
非晶質水素化シリ・ンよシな2第1図および第2図に示
したn+型導電層、iまたはn型導電層、p型溝電層の
順に堆積せしめたホトダイオード上にスパッタリング法
によシ透明!極を堆積することによって発生したホトダ
イオードと透明電惨間の電気的接触の問題点を改善する
ものである。非晶質水素化シリコンを前述の反応性スパ
ッタリング法もしくはグロー放電法により堆積直後に光
感度−を大巾に向上する目的で光導電膜堆積装置内に入
れたまま真空中で220〜270Cに保持して熱処理す
る技術とは別異の技術である。The effects of the present invention shown in FIGS. 5 and 6 are limited to
Amorphous silicon hydride was deposited using a sputtering method on a photodiode in which an n+ type conductive layer, an i or n type conductive layer, and a p type trench conductive layer were deposited in this order as shown in Figures 1 and 2. It's transparent! This improves the problem of electrical contact between the photodiode and the transparent conductor caused by depositing the electrode. Immediately after amorphous hydrogenated silicon is deposited by the above-mentioned reactive sputtering method or glow discharge method, it is kept in a photoconductive film deposition apparatus at 220 to 270 C in vacuum for the purpose of greatly improving photosensitivity. This is a different technology from heat treatment.
また、本発明は第1図に一例として示した一次元光セン
サのみならず。原理的に第2図に示した如くの構成を持
つ受光素子全般に対しても有効である。例えは、太陽電
池あるいは、二次元状に配゛列したスイッチと上記スイ
ッチを介して取シ出した光学像に相当する光電荷を転送
する走置素子を少なくとも鳴する半導体基板(走査用5
i−rc基板)上に非晶質水素化シリコンよりなる光導
電膜を00型導電層、iもしくはn型導電層、p型寺′
電層の順に堆積せしめてホトダイオードとし、さらに、
その上に透明電極をスパッタリング法によシ堆稙せしめ
てなるいわゆる二階建構造の固体撮像素子に適用しても
有用なことは勿論である。Furthermore, the present invention is applicable not only to the one-dimensional optical sensor shown as an example in FIG. In principle, it is also effective for all light receiving elements having the configuration shown in FIG. For example, a solar cell or a semiconductor substrate (scanning 5
A photoconductive film made of amorphous hydrogenated silicon is deposited on a 00-type conductive layer, an i- or n-type conductive layer, and a p-type conductive layer on an i-rc substrate).
A photodiode is formed by depositing electrical layers in this order, and further,
Of course, it is also useful to apply the present invention to a solid-state imaging device having a so-called two-story structure, on which a transparent electrode is deposited by sputtering.
また、ここで用いている非晶質水素化シリコンを主体と
する光導電膜に適当萱の炭素あるいはゲルマニウムが含
有されていても本発明は有効である。Further, the present invention is effective even if the photoconductive film mainly composed of amorphous hydrogenated silicon used here contains an appropriate amount of carbon or germanium.
以下本発明を実施例によシ詳しく説明する。The present invention will be explained in detail below using examples.
実施例1
第7図から第11図まては本発明の一次元光センサの製
造方法を示す画素部の断面図である。絶縁性のガラス基
板1上に金属クロムをスパッタリング法によ如膜厚20
00人程度に堆積し、これを硝酸第2セリウムアンモニ
ウム系のエツチング液を用いたホトエツチング工程によ
シ所望の電極パターン2とする(第7図)。ここで、2
1はホトダイオードおよび分離ダイオード用電極、22
は二層配線用下部電極である。次に、この基板を2極式
グロー柊電CVD装置内に設置し、反応室内に放電ガス
として10%BAH,ガスを含んだH。Embodiment 1 FIGS. 7 to 11 are cross-sectional views of a pixel portion showing a method of manufacturing a one-dimensional optical sensor of the present invention. Metal chromium is deposited on an insulating glass substrate 1 to a thickness of 20 mm by sputtering.
A desired electrode pattern 2 is formed by a photo-etching process using a ceric ammonium nitrate-based etching solution (FIG. 7). Here, 2
1 is an electrode for a photodiode and a separation diode, 22
is the lower electrode for two-layer wiring. Next, this substrate was placed in a two-electrode glow electric CVD apparatus, and a reaction chamber containing 10% BAH and H gas as a discharge gas.
ガスをl’l”Off導入し、ドーピングガスとしてP
H,ガスを体積比(PH,/5i)(、)で1%になる
ように導入して、13.56MHz の高周波放電を行
うことにより非晶質水素化シリコンを主体とするn0型
導電廖を上記基板上に250人の膜厚に堆槓せしめる。Introduce a gas l'l''Off, and use P as a doping gas.
By introducing H gas at a volume ratio (PH, /5i) (, ) of 1% and performing a high frequency discharge of 13.56 MHz, an n0 type conductive cell mainly made of amorphous hydrogenated silicon was formed. was deposited on the substrate to a thickness of 250 mm.
さらに、P)1.カス
に■停止して10%Si)]、+90%H1混合ガス゛
のみにて高周波放電を継続し、非晶質水素化シリランを
主体とするi型溝電層を5500人の膜厚にJ4F槓せ
しめる。さらに、上記放電ガスに加えてドーピングガス
としてB、H,ガスを体積比(B!Ha1層を400人
の膜厚に堆積せしめる。このように形成したn+ 1
1)構造の非晶質水素化シリコン膜i CH,ガスを
用いたプラズマエツチング法により所定の形状にパター
ン化するとホトダイオ−)’3および分離ダイオード4
となる(第8図、)。Furthermore, P)1. After stopping on the scum, high-frequency discharge was continued using only +90% H1 mixed gas, and an i-type groove conductor layer mainly composed of amorphous hydrogenated silyran was deposited to a thickness of 5,500 mm. urge Furthermore, in addition to the above-mentioned discharge gas, B, H, and gases as doping gases are deposited at a volume ratio (B!Ha1 layer is deposited to a thickness of 400 nm.
1) When an amorphous silicon hydride film with the structure is patterned into a predetermined shape by a plasma etching method using CH gas, a photodiode (3) and a separation diode (4) are formed.
(Figure 8).
ここで、31.41はno型導電層、32.42はi型
溝電層、33.43はp型環電層で1ある。Here, 31.41 is a no-type conductive layer, 32.42 is an i-type conductive layer, and 33.43 is a p-type conductive layer.
次に、上記基板上にコーニング社jM7059ガごスケ
スパッタリング法によシ膜厚2μmの厚さに堆積せしめ
、HF HNOs 1#*O系のエツチング液を用
いたホトエツチング法によシ所定の場所にコンタクト穴
61,62.63.64をあけると二の上部に:tn、
o、 −5no、系の透明電極をスパッタリング法で5
00OAの膜厚に堆積する。この時、スパッタ用ターゲ
ットとしては、sno、を5m01%含有したI n、
o、、焼結体を陰#(カソード)に設置して用いる。Next, a film of 2 μm thick was deposited on the substrate using a Corning Co., Ltd. jM7059 gas scale sputtering method, and then deposited at a predetermined location using a photoetching method using an HF HNOs 1#*O-based etching solution. When contact holes 61, 62, 63, and 64 are drilled at the top of the second part: tn,
o, -5no, system transparent electrode by sputtering method 5
The film is deposited to a thickness of 00OA. At this time, the sputtering target was In containing 5m01% of sno,
o. The sintered body is placed in the negative (cathode) and used.
放電ガスとしてArガスを用いlXl0””TOrrノ
ガス圧で13.56MH2の高周波スパッタリングを行
った。透明電極形成後、HCeHNOs’ HtO系
のエツチング液を用いたホトエツチング法によシ透明電
極を所定の形状7にパターン化すると第10図に示す如
き断面構造の素子が得られる。上記の素子中のホトダイ
オード$は光応答特性が劣化しておシ、例えは、第3図
に示すような、二次光電流が支配的な光応答速度の遅C
160分間の熱処理を行うと、享応答速度が第4図に示
すように大巾に早くなシ、特性の改善ができた。次に、
このパターン化されたlTO膜をホト、レジストよシな
る保護膜で児全に被榎した後、上記基板上に真空蒸着法
によシム1膜を2μmの膜厚に堆積せしめる。さらに、
H,p04−HNO,−IJ、0系のエツチング液を用
いたホトエツチング法により二層配線用のA−e電極パ
ターン81,82才形成する。この時、1.TO膜はホ
トレジで被接されておpAI3のエツチング液に触れる
ことによ −うて生ずる電気化学的なITO膜の溶出を
防いでいる。AAt極パターン形成後、I’l’0の保
護膜’tM素プラズマアッシャ法によシ除去すると第1
1図に示す如き読み取り速度の早い一次元光センサが得
られる。この−次元光センサを用いると1冒、速のファ
クシミリを実現することができる。High frequency sputtering was performed at a gas pressure of 13.56 MH2 using Ar gas as a discharge gas and a gas pressure of 1X10"" TOrr. After forming the transparent electrode, the transparent electrode is patterned into a predetermined shape 7 by photo-etching using an HCeHNOs'HtO-based etching solution, resulting in an element having a cross-sectional structure as shown in FIG. The photodiode in the above device has deteriorated photoresponse characteristics.For example, as shown in FIG.
When the heat treatment was performed for 160 minutes, the response speed was significantly faster as shown in FIG. 4, and the characteristics were improved. next,
After this patterned lTO film is completely covered with a protective film such as photoresist or the like, a shim 1 film is deposited to a thickness of 2 μm on the substrate by vacuum evaporation. moreover,
A-e electrode patterns 81 and 82 for two-layer wiring are formed by photoetching using H, p04-HNO, -IJ, 0-based etching solution. At this time, 1. The TO film is coated with photoresist to prevent electrochemical elution of the ITO film caused by contact with the pAI3 etching solution. After forming the AAt electrode pattern, the protective film of I'l'0 is removed by the plasma asher method.
A one-dimensional optical sensor with a high reading speed as shown in FIG. 1 can be obtained. Using this -dimensional optical sensor, it is possible to realize a very fast facsimile.
実施例2
、 また、本発明は太V#電池の製造方法に用いても南
幼である。供の場合、光応答特性の向上に加えて、光照
射時の非晶質水素化シリコンホトダイオ−ドの電圧−電
流特性が改善される。Embodiment 2 The present invention is also suitable for use in a method for manufacturing a thick V# battery. In this case, in addition to improving the photoresponse characteristics, the voltage-current characteristics of the amorphous hydrogenated silicon photodiode upon irradiation with light are improved.
所望のステンレススティール基板上に実施例1と同様の
方法でh+型およびi型尋′w/L層を形成する。さら
に、10%qiH,+90%山混会ガスにドーピングガ
スとして、CH,ガスを体積比((”H。H+ type and i type thick'w/L layers are formed on a desired stainless steel substrate in the same manner as in Example 1. Furthermore, CH and gas were added to the 10% qiH, +90% mountain mixture gas as a doping gas at a volume ratio (("H.
/5iH4)で3%、” B * Hsガスを体積比(
B2H6/5sH4)で1%になるように添加し、高周
波数′覗を継続して水素を含んだ非晶i炭化珪素(a−
sir二H)を主体とするp型環電層を350人の膜厚
に堆積せしめる。次に、この上部にIn、0.−5no
、系の透明電極をスしくツタリング法により1000人
あ膜厚に堆積する。スバツーリング条件は実施例1と同
様の条件で行った。このようにして第2図に示す如、き
断面構造の太陽電池が得られた。しかし、この太陽電池
は特性が劣化しており、はとんどホトダイオード特性を
示さない。例えば、第12図の曲線aに示すように、光
照射時の開放端電圧(open circuit vo
ltago、 ■oc)オよび短絡電流(5hort
circuit cu’rrent l5h)カ小さい
。次に、この素子を空気中で230C,20分間の熱処
理を行なうと、電−圧一電流特性が大巾に改善され、第
1゛2図の曲線すに示すような良好な太陽電池の特性を
得ることができる。/5iH4) at 3%, "B*Hs gas at volume ratio (
Amorphous silicon carbide (a-
A p-type ring conductive layer mainly composed of sir2H) is deposited to a thickness of 350 nm. Next, on top of this, In, 0. -5no
The transparent electrode of the system was deposited to a thickness of 1,000 mm using the tuttering method. Suba tooling conditions were the same as in Example 1. In this way, a solar cell having a cross-sectional structure as shown in FIG. 2 was obtained. However, the characteristics of this solar cell have deteriorated, and it hardly exhibits photodiode characteristics. For example, as shown by curve a in FIG. 12, the open circuit voltage during light irradiation
ltago, ■oc) and short circuit current (5hort
circuit cu'rrent l5h) is small. Next, when this element is heat-treated in air at 230C for 20 minutes, the voltage-current characteristics are greatly improved, and the solar cell has good characteristics as shown in the curves in Figure 1-2. can be obtained.
実施例3
また、n−1−p多層膜へテロ接合の太陽′−池に適用
することも可能であった。′まず、ステンレ−へティー
−基板上にあらかじめ、゛非晶質水素化シリコンよ如な
るn0型導電層(200人)、水素金含有する非晶質シ
リコンゲルマニウム(a−81o、a。(3’o)o’
: H) f主体とするi’ms電層(4000人)
・および非晶質水素化シリコンよりなるp・型導電層(
250人)を形成し、さらに、その上部に実施例1と同
様の方法で非晶質水素化シ、リコンよりなるn ” −
i −p構造(ただしi層の膜厚は800人)のホトダ
イオードを形成した後、実施例と同様の方法で透明電極
形成および熱処理を・行うと性能の良い太陽電池が得ら
れた。Example 3 It was also possible to apply the present invention to an n-1-p multilayer heterojunction solar cell. 'First, on a stainless steel substrate, an n0 type conductive layer (200 layers) such as amorphous hydrogenated silicon, amorphous silicon germanium containing hydrogen gold (a-81o, a (3) 'o)o'
: H) i'ms electric layer mainly composed of f (4000 people)
- and a p-type conductive layer made of amorphous hydrogenated silicon (
250 people), and furthermore, on top thereof, in the same manner as in Example 1, an n''-
After forming a photodiode with an i-p structure (however, the thickness of the i layer was 800 nm), transparent electrode formation and heat treatment were performed in the same manner as in the example, and a solar cell with good performance was obtained.
以主の実施例を用いて説明した如く本発明の一化シリコ
ンよりなるホトダイオードの上部にスパッタリング法で
透明電極を堆積したことによ多発生したホトダイオード
の光応答特性の劣化を改善することができ、−次元の、
画像情報を高速に読み取ること力j可能ミー次元センサ
ムいは高効率の太陽電池を得ることができる。As explained using the main embodiment, it is possible to improve the deterioration of the photoresponse characteristics of the photodiode that often occurs when a transparent electrode is deposited by sputtering on the photodiode made of monolithic silicon of the present invention. , -dimensional,
It is possible to read image information at high speed and obtain a multi-dimensional sensor or a highly efficient solar cell.
を用にても同様の効果を得ることができる。A similar effect can be obtained using .
第1図は本発明の一次元光センサ[の原理的な構造を示
した断面図(a)および平面図の)。第2図は本発明の
一般的な受光素子の断面図。第3図はスパッタリング法
で透明電極を形成した時の受光素子の光反応特性の一例
を示した図。第4図は本発明の熱処理方法で改善した効
果を光応答特性の一例で示した図。第5図は熱処理前(
a)後゛での光OFF後の光電流の減衰特性、を比較し
た図。第6図は本発明の効果を熱処理効果を熱処理温度
と3 ’m s後の残像との関係で示した図。第7図よ
シ第1゛1図は各々本発明の一次元光センサの製造工程
を示す主要部断面図。第12図は本発明の製造方法を太
陽電池に適用した場合°の改善例を示した図である。
1・・・基板、2・・・非透光性金楓電極、21・・・
ホトダイオードおよび分離ダイオード用金属電極、22
・・・二層配線用金塊電極、3・・・非晶質水素化シリ
コンを主体とするホトダイオード、4・・・非晶質水素
41・・・非晶質水素化シリコンを主体とするn9型尋
′屯層、32.42・・・非晶質水素化シリコンを主体
とiるn型もしくはi型導電層、33.43・・・ジl
= 、W、質水素化シリコンを主体とするp型導電層、
5・・・絶縁層、61,62,63.64・・・コンタ
クト穴、7.14・・・透明電極もしくは半透明金輌電
惨、81.82・・・金属配線、10・・・入射光、1
1・・・基板、12・・・下部′i!極、13・・・非
晶質水素化シ!l’l責水素化シリコンを主体とするn
9型導電層、132・・・非晶實水索化シリコンを主体
とするn型もしくはi型専軍/m、133・・・非晶質
水素化シリコンを主体とするp型導電層、14・・・透
明*極もり、<)ユ半透明金縞篭極、15・・・光パル
ス、16・・・’IiJびil it 0
代理人 弁理士 薄田利幸、′f
C1゜
vII 図
(久)
n
(1))
■3図
¥3 4 図
′f36図
f冬処五!L5jL洩 (C)
−葛′7図
fJ g 図
vi q 図
第 10 図
¥J12 図FIG. 1 is a cross-sectional view (a) and a plan view showing the basic structure of a one-dimensional optical sensor according to the present invention. FIG. 2 is a sectional view of a general light receiving element of the present invention. FIG. 3 is a diagram showing an example of the photoreaction characteristics of a light-receiving element when a transparent electrode is formed by sputtering. FIG. 4 is a diagram showing an example of the photoresponse characteristics of the effect improved by the heat treatment method of the present invention. Figure 5 shows before heat treatment (
a) A diagram comparing the attenuation characteristics of the photocurrent after the light is turned off. FIG. 6 is a diagram showing the heat treatment effect of the present invention in terms of the relationship between heat treatment temperature and afterimage after 3'ms. FIGS. 7 and 11 are sectional views of main parts showing the manufacturing process of the one-dimensional optical sensor of the present invention. FIG. 12 is a diagram showing an example of improvement when the manufacturing method of the present invention is applied to a solar cell. 1... Substrate, 2... Non-transparent gold maple electrode, 21...
Metal electrode for photodiode and isolation diode, 22
... Gold bullion electrode for two-layer wiring, 3 ... Photodiode mainly made of amorphous hydrogenated silicon, 4 ... Amorphous hydrogen 41 ... N9 type mainly made of amorphous hydrogenated silicon 32.42... n-type or i-type conductive layer mainly composed of amorphous hydrogenated silicon, 33.43... dil
=, W, p-type conductive layer mainly composed of hydrogenated silicon,
5... Insulating layer, 61, 62, 63.64... Contact hole, 7.14... Transparent electrode or translucent metal wire, 81.82... Metal wiring, 10... Incident light, 1
1... Board, 12... Lower part'i! Extreme, 13...Amorphous hydrogenation! n mainly composed of hydrogenated silicon
9-type conductive layer, 132... N-type or i-type exclusive layer mainly composed of amorphous hydrogenated silicon, 133... P-type conductive layer mainly composed of amorphous hydrogenated silicon, 14 ...transparent*polar,<)u translucent gold-striped gable, 15...light pulse, 16...' ) n (1)) ■3 figure ¥3 4 figure 'f36 figure f winter place five! L5jL leak (C)
-Ku'7 Figure fJ g Figure vi q Figure 10 Figure ¥J12 Figure
Claims (1)
する非晶質材料よシ成る光導電膜をn0型導電〜、iも
しくはn型導電層、p銅導電層の順に槓/#形成する工
程と、該光導電膜上にスパッタリング法によって透明導
電性膜を形成する工程を有する受光素子の製造方法にお
いて、・前記透明導電性膜を形成した後、該受光素子を
少なくとも140C以上で加熱する工程を有することを
特徴とする受光素子の製造方法。 2、上記加熱温度が170Cから250Cの範囲にある
ことを特徴とする特許請求の範囲第1項記載の受光素子
の製造方法。 3、上記基板が一次元に配列された非透光性金鵬奄極を
少なくとも有し、該金属電極上に一対一に対応するよう
に上記光導電膜および上記透明′電極を形成後−次元の
画像信号が取シ出せるように配線がなされた絶縁性基板
であることを特徴とする特許請求の範囲第1項記載の受
光素子の製造方法。 4、上記基板が二次元状に配列したスイッチと該スイッ
チを介して取シ出した光学像に相当する光電荷を転送す
る走査素子を少なくとも有。する半導体基板であること
を特徴とする特許請求の範囲第1項記載の受光素子の製
造方法。 5、上記の透明導電性膜がスパッタリング法にょ多形成
した酸化インジウム、酸化錫およびそれらの混合物から
選ばれた一つを主成分とする透明導電性膜であることを
特徴とする特許請求の範囲第1項記載の受光素子の製造
方法。 6、上記の透明導電性膜がスパッタリング法にょ多形成
した金、白金、タンタル、モリブデン、1アルミニウム
、クロム、ニッケルおよびそれらの混合物からなる群か
ら選ばれた一つを主成分とする半透明状の金属膜である
ことを特徴とする特許請求の範囲第1項記載の受光素子
の製造方法。[Claims] l. A photoconductive film made of an amorphous material mainly composed of silicon and containing hydrogen is formed on a desired substrate in the order of an n0-type conductive layer, an i- or n-type conductive layer, and a p copper conductive layer. In the method for manufacturing a light receiving element, the method includes a step of forming a transparent conductive film on the photoconductive film and a step of forming a transparent conductive film on the photoconductive film by a sputtering method: After forming the transparent conductive film, the light receiving element is A method for manufacturing a light receiving element, comprising a step of heating at 140C or higher. 2. The method of manufacturing a light receiving element according to claim 1, wherein the heating temperature is in a range of 170C to 250C. 3. The substrate has at least non-transparent metal electrodes arranged in one dimension, and after forming the photoconductive film and the transparent electrode in one-to-one correspondence on the metal electrodes, 2. The method of manufacturing a light receiving element according to claim 1, wherein the substrate is an insulating substrate with wiring so that an image signal can be extracted. 4. The substrate has at least two-dimensionally arranged switches and a scanning element that transfers photoelectric charges corresponding to an optical image taken out through the switches. 2. The method of manufacturing a light receiving element according to claim 1, wherein the semiconductor substrate is a semiconductor substrate. 5. Claims characterized in that the above-mentioned transparent conductive film is a transparent conductive film formed by a sputtering method and whose main component is one selected from indium oxide, tin oxide, and a mixture thereof. 2. A method for manufacturing a light-receiving element according to item 1. 6. The above-mentioned transparent conductive film is multi-formed by a sputtering method and has a translucent shape mainly composed of one selected from the group consisting of gold, platinum, tantalum, molybdenum, aluminum, chromium, nickel, and mixtures thereof. 2. The method of manufacturing a light-receiving element according to claim 1, wherein the light-receiving element is a metal film.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56167208A JPS5868965A (en) | 1981-10-21 | 1981-10-21 | Manufacture of light-receiving element |
US06/357,076 US4412900A (en) | 1981-03-13 | 1982-03-11 | Method of manufacturing photosensors |
DE8282301284T DE3276889D1 (en) | 1981-03-13 | 1982-03-12 | Method of manufacturing photosensors |
CA000398275A CA1168739A (en) | 1981-03-13 | 1982-03-12 | Method of manufacturing photosensors |
EP82301284A EP0060699B1 (en) | 1981-03-13 | 1982-03-12 | Method of manufacturing photosensors |
KR8201078A KR860000160B1 (en) | 1981-03-13 | 1982-03-13 | Method of manufacturing photosensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56167208A JPS5868965A (en) | 1981-10-21 | 1981-10-21 | Manufacture of light-receiving element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5868965A true JPS5868965A (en) | 1983-04-25 |
JPH0451983B2 JPH0451983B2 (en) | 1992-08-20 |
Family
ID=15845420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56167208A Granted JPS5868965A (en) | 1981-03-13 | 1981-10-21 | Manufacture of light-receiving element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5868965A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140853U (en) * | 1989-04-26 | 1990-11-26 | ||
US5162644A (en) * | 1988-03-14 | 1992-11-10 | Hitachi, Ltd. | Contact type image sensor having photoelectric conversion elements to reduce signal variation caused by luminous intensity variation of light source |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5342693A (en) * | 1976-09-29 | 1978-04-18 | Rca Corp | Semiconductor device including amorphous silicone layer |
JPH0214790A (en) * | 1988-05-06 | 1990-01-18 | Steamatic Inc | Cleaner for air duct |
-
1981
- 1981-10-21 JP JP56167208A patent/JPS5868965A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5342693A (en) * | 1976-09-29 | 1978-04-18 | Rca Corp | Semiconductor device including amorphous silicone layer |
JPH0214790A (en) * | 1988-05-06 | 1990-01-18 | Steamatic Inc | Cleaner for air duct |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162644A (en) * | 1988-03-14 | 1992-11-10 | Hitachi, Ltd. | Contact type image sensor having photoelectric conversion elements to reduce signal variation caused by luminous intensity variation of light source |
JPH02140853U (en) * | 1989-04-26 | 1990-11-26 |
Also Published As
Publication number | Publication date |
---|---|
JPH0451983B2 (en) | 1992-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR860000160B1 (en) | Method of manufacturing photosensors | |
US4605813A (en) | Amorphous silicon solar battery | |
US4163677A (en) | Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier | |
US5419781A (en) | Flexible photovoltaic device | |
CA1232051A (en) | Semiconductor device and method of manufacturing the same | |
US4117506A (en) | Amorphous silicon photovoltaic device having an insulating layer | |
US4528082A (en) | Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers | |
EP0005543B1 (en) | Photosensor | |
US4320248A (en) | Semiconductor photoelectric conversion device | |
JPH0783098B2 (en) | Optical image detector manufacturing method and two-dimensional matrix detector manufactured by the manufacturing method | |
US4570332A (en) | Method of forming contact to thin film semiconductor device | |
EP0567111B1 (en) | Electrode of a photovoltaic element and method for forming the same | |
JPS5868965A (en) | Manufacture of light-receiving element | |
JPS61159771A (en) | Photovoltaic device | |
JPS6134268B2 (en) | ||
JP3398161B2 (en) | Photoelectric conversion device | |
JPH0214790B2 (en) | ||
JP3049889B2 (en) | Solar cell and manufacturing method thereof | |
EP0341756B2 (en) | Flexible photovoltaic device | |
EP0601200A1 (en) | Semiconductor device | |
EP0067722A2 (en) | A method of producing a photoelectric conversion layer and a method of producing an image pickup device | |
JPH0810582B2 (en) | Light receiving element | |
JP2892782B2 (en) | Electric element using hydrogenated amorphous silicon | |
JP2889963B2 (en) | Contact image sensor | |
JPH05291607A (en) | Pin diode and contact image sensor using it |