JPS5868521A - Impeller of fluid coupling - Google Patents

Impeller of fluid coupling

Info

Publication number
JPS5868521A
JPS5868521A JP16416281A JP16416281A JPS5868521A JP S5868521 A JPS5868521 A JP S5868521A JP 16416281 A JP16416281 A JP 16416281A JP 16416281 A JP16416281 A JP 16416281A JP S5868521 A JPS5868521 A JP S5868521A
Authority
JP
Japan
Prior art keywords
impeller
blades
working fluid
bending stress
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16416281A
Other languages
Japanese (ja)
Inventor
Shigeru Toida
滋 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16416281A priority Critical patent/JPS5868521A/en
Publication of JPS5868521A publication Critical patent/JPS5868521A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • F16D33/18Details
    • F16D33/20Shape of wheels, blades, or channels with respect to function

Abstract

PURPOSE:To reduce the maximum stress of blade root sections, and to increase transmission force by disposing blades so as to generate bending stress generated by a working fluid and bending stress in the opposite direction in the impeller manufactured by arranging a large number of the blades to a core plate fixed to a shaft. CONSTITUTION:With the fluid coupling, a working chamber to which the working fluid is supplied is formed between an impeller connected to an input shaft and a runner impeller connected to an output shaft, and power from the input shaft is transmitted to the output shaft through said both impellers. The impeller 7 is formed by disposing a large number of the rectilinear blades 8 to the core plate 9 fixed to the input shaft 1. In this case, the rectilinear blades 8 are arranged so as to be displaced to a shaft core O so that bending stress generated by the working fluid and bending stress in the opposite direction are generated. Accordingly, bending stress generated by the working fluid and bending stress generated by the displacement of the rectilinear blades 8 are mutually denied, and the maximum stress generated in the root sections of the rectilinear blades 8 can be reduced.

Description

【発明の詳細な説明】 本発明は流体継手の羽根車に関するものである。[Detailed description of the invention] The present invention relates to an impeller for a fluid coupling.

第1図は従来の流体継手の構造を示すもので、入力軸1
に連結するインペラ羽根車2と出力軸3に連結するラン
ナ羽根車4により形成される作動室5に作動流体を供給
した状態でインペラ羽根車を回転させると、遠心力によ
り作動流体はランチ羽根車4に流入すると共にその作動
流体のもつ運動エネルギーがランチ羽根車に与えられる
ため、入力軸1からの動力はインペラ羽根車2およびラ
ンナ羽根車4を経て出力軸3に伝達される。
Figure 1 shows the structure of a conventional fluid coupling, where the input shaft 1
When the impeller impeller is rotated with working fluid supplied to the working chamber 5 formed by the impeller impeller 2 connected to the output shaft 3 and the runner impeller 4 connected to the output shaft 3, the working fluid is transferred to the launch impeller due to centrifugal force. 4 and the kinetic energy of the working fluid is given to the launch impeller, so power from the input shaft 1 is transmitted to the output shaft 3 via the impeller impeller 2 and the runner impeller 4.

第2図および第3図はインペラ羽根車2またはランチ羽
根車4(以下インペラ羽根車2で説明する)の構造を示
すもので、入力軸1または出力軸3に固着された心根5
の側面には多数の直線羽根6が放射状に等間隔で取付け
られている。すなわち、直線羽根6は回転軸芯0に向っ
て配設されている。
2 and 3 show the structure of an impeller impeller 2 or launch impeller 4 (hereinafter described as impeller impeller 2), in which a core 5 is fixed to the input shaft 1 or the output shaft 3.
A large number of straight blades 6 are attached radially at equal intervals on the side surface of the blade. That is, the straight blade 6 is arranged toward the rotation axis 0.

第4図はインペラ羽根車2に作動流体が加わった場合に
、インペラ羽根車2に発生する力状態を説明するための
図である。
FIG. 4 is a diagram for explaining the force state generated in the impeller impeller 2 when working fluid is applied to the impeller impeller 2. FIG.

第4図において、1転状態にあるインペラ羽根車2に作
動流体が加わると、インペラ羽根車2はその作動流体を
押し出そうとする。このとき、インペラ羽根車2の直線
羽根6は作IElIf&体から図示矢印入方向の力、す
なわち直線羽根6を曲げようとする力を受ける。また、
インペラ羽根車2の直線羽根6にはインペラ羽根車2の
自重による遠心力により図示矢印B方向の力、すなわち
直線羽根6を引張ろうとする力を受ける。このとき、直
線羽根6に生ずる応力分布を第5図に示す。
In FIG. 4, when the working fluid is applied to the impeller impeller 2 which is in the first rotation state, the impeller impeller 2 tries to push out the working fluid. At this time, the straight blades 6 of the impeller impeller 2 receive a force from the IElIf& body in the direction of the arrow shown in the figure, that is, a force that tends to bend the straight blades 6. Also,
The linear blades 6 of the impeller impeller 2 receive a force in the direction of arrow B in the figure, that is, a force that attempts to pull the linear blades 6 due to centrifugal force due to the impeller impeller 2's own weight. At this time, the stress distribution generated in the straight blade 6 is shown in FIG.

近年、流体継手の伝達動力の増大および高速化が一段と
進んできており、これらに伴なって前記曲げ力または引
張力も増大しつつある。
In recent years, the transmission power and speed of fluid couplings have been increasing further, and the bending force or tensile force is also increasing accordingly.

ところで、従来のインペラ羽根車2の構造では、第6図
に示す如く回転によって発生する遠心応力(図示点線)
が許容限界値(図示一点鎖W>以下でも曲げ応力(図示
実線)が加わると、特に直線羽根6の付根部においては
最大応力が材料の許容限界値を越えてしまうことがあり
、伝達動力の増大および高速化を進める上で問題を有し
ていた。
By the way, in the structure of the conventional impeller impeller 2, as shown in FIG.
If bending stress (solid line in the figure) is applied even if the value is less than the allowable limit value (double chain W shown in the figure), the maximum stress may exceed the allowable limit value of the material, especially at the root of the straight blade 6, and the transmitted power may be There were problems in increasing the number and speeding up the process.

本発明は上記の点に鑑み、伝達動力の増大および高速化
を可能にした流体継手の羽根車を提供することを目的と
し、その%徴紘回転軸に固着した心根に羽根を多数配設
して成る流体継手の羽根車において、前記羽根を、作動
流体により生ずる曲げ応力と逆方向の曲げ応力を生じせ
しめるように配設したものである。
In view of the above-mentioned points, the present invention aims to provide an impeller for a fluid coupling that makes it possible to increase the transmission power and increase the speed. In the impeller of the fluid coupling, the blades are arranged so as to generate a bending stress in a direction opposite to the bending stress caused by the working fluid.

以下本発明の一実施例を図面により説明する。An embodiment of the present invention will be described below with reference to the drawings.

ものは同一部分を示す。Items refer to the same parts.

7はインペラ羽根車、8はインペラ羽根車7の心根9の
側面に接合される多数の直線羽根で、この1![i1羽
根8は、回転軸芯0に対してずれるように配設されてい
る。(図示ずれ角α) このように直線羽根8を配設した場合には、作動流体に
より発生する曲げ応力と直線羽根8のずれKより発生す
る曲げ応力とが打ち消し合うようになる。
7 is an impeller impeller, 8 is a large number of straight blades joined to the side surface of the core root 9 of the impeller impeller 7, and this 1! [i1 The blade 8 is arranged so as to be offset from the rotation axis 0. (Displacement angle α shown) When the straight blades 8 are arranged in this manner, the bending stress generated by the working fluid and the bending stress generated by the deviation K of the straight blades 8 cancel each other out.

上記のよりに構成されるインペラ羽根車7において、イ
ンペラ羽根車7に作動流体を加えない状態で図示矢印方
向へ回転させると、直線羽根8は遠心力の方向に沿って
半径方向へ伸びようとし、直線羽根8の両餉面ga、 
8bには図示矢印方向の応力がそれぞれ発生する。この
とさ、直線羽根8の一方の側面8aには第9図に示す如
く引張応力4F−が発生し、直線羽根8の他方の側面8
bには圧縮応力σ、が発生する。
In the impeller impeller 7 configured as described above, when the impeller impeller 7 is rotated in the direction of the arrow shown in the figure without applying working fluid, the linear blades 8 tend to extend radially along the direction of centrifugal force. , both hooked surfaces ga of the straight blade 8,
Stress in the direction of the arrow shown in the figure is generated in each of the parts 8b. At this time, a tensile stress 4F- is generated on one side surface 8a of the straight blade 8 as shown in FIG.
A compressive stress σ is generated in b.

次にインペラ羽根車7に作動流体を加えた状態で図示矢
印方向へ回転させると、インペラ羽根車7の直線羽根8
には第10図に示す如く作動流体から図示矢印方向の力
を受けるため、直線羽根の一方の側面8aには図示矢印
方向の応力がそれぞれ発生する。このため、直線羽根8
の一方の側面8aにおいては、第11図に示す如く作動
流体を加えない状態で発生する引張応力σ、と作動流体
を加えた状態で発生する圧縮応力σ、とが打ち消し合う
ようになる。また、直線羽根8の他方の側面8bにおい
ては、前記一方の側面8aとは逆方向の応力が発生し、
前記と同様に打ち消し合うようになる。
Next, when the impeller impeller 7 is rotated in the direction of the arrow shown with the working fluid added, the linear blades 8 of the impeller impeller 7
As shown in FIG. 10, since a force is applied from the working fluid in the direction of the arrow in the figure, stress in the direction of the arrow in the figure is generated on one side surface 8a of the straight blade. For this reason, the straight blade 8
On one side surface 8a, as shown in FIG. 11, the tensile stress σ generated when no working fluid is applied and the compressive stress σ generated when the working fluid is applied cancel each other out. Further, on the other side surface 8b of the straight blade 8, stress occurs in the opposite direction to the one side surface 8a,
As before, they cancel each other out.

結局、直線羽根8にはインペラ羽根車7の自重による遠
心力とほぼ同等の応力σ、が発生する。
As a result, a stress σ approximately equivalent to the centrifugal force due to the impeller impeller 7's own weight is generated in the straight blade 8.

したがって、直線羽根8の付根部においては、最大応力
が大幅に低減させることができるため、従来のように材
料の許容限界値を越えることがなくなる。
Therefore, the maximum stress at the root portion of the straight blade 8 can be significantly reduced, so that it does not exceed the allowable limit value of the material as in the conventional case.

本発明の流体継手によれば、羽根車を構成する羽根を、
作動流体による曲は応力と逆方向の曲げ応力を生じせし
めるように配設したので、従来羽根付根部に発生した最
大応力を大幅に低減できるため、伝達動力の増大および
高速化を図ることが可能となる。
According to the fluid coupling of the present invention, the blades constituting the impeller are
Since the bending caused by the working fluid is arranged so as to generate bending stress in the opposite direction to the stress, the maximum stress that conventionally occurs at the blade root can be significantly reduced, making it possible to increase the transmitted power and increase the speed. becomes.

尚、本発明の一実施例では、インペラ羽根車について説
明したが、ランチ羽根車に適用した場合にも同様の効果
を奏する。
In one embodiment of the present invention, an impeller impeller has been described, but the same effect can be obtained when applied to a launch impeller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流体継手の構造を示す概略図、第2図および第
3図は従来の羽根車の構造を示すもので、第2図は正面
図、第3図は第2図の3−3線断面図、第4図は従来の
羽根車に作動流体を加えて回転させた場合に羽根に加わ
る力状態を説明するための図、第5図は従来の羽根車に
発生する応力分布を示す図、第6図は従来の羽根車に発
生する応力と材料の許容限界値の関係を説明するための
図、第7図は本発明の羽根車における羽根の取付位置を
示す図、第8図は本発明の羽根車に作動流体を加えない
で回転させた場合に発生する力状態を説明するための図
、第9図は第8図の力状態で発生する応力分布を示す図
、第10図は本発明の羽根車に作動流体を加えて回転さ
せた場合に羽根に発生する応力分布を示す図、第11図
は本発明の羽根車に作動雌体を加えない場合と作動流体
を加えた場合に羽根の一側面に発生する応力分布を示す
図である。 1・・・入力軸、3・・・出力軸、5・・・作動室、7
・・・羽根車、8・・・直線羽根、9・・・心板 代理人 弁理士 薄田利幸 、−− (P゛ 第1口   第2口 才3日    才十凹 2;F 5 目 ;t7(21 才3 凹
Fig. 1 is a schematic diagram showing the structure of a fluid coupling, Figs. 2 and 3 show the structure of a conventional impeller, Fig. 2 is a front view, and Fig. 3 is 3-3 in Fig. 2. A line cross-sectional view, Figure 4 is a diagram to explain the state of force applied to the blades when a working fluid is added to a conventional impeller and it is rotated, and Figure 5 shows the stress distribution that occurs in the conventional impeller. Figure 6 is a diagram for explaining the relationship between the stress generated in a conventional impeller and the allowable limit value of the material, Figure 7 is a diagram showing the mounting position of the blade in the impeller of the present invention, and Figure 8 9 is a diagram for explaining the force state that occurs when the impeller of the present invention is rotated without applying a working fluid, FIG. 9 is a diagram showing the stress distribution that occurs in the force state of FIG. 8, and FIG. The figure shows the stress distribution that occurs in the impeller when a working fluid is added to the impeller of the present invention and the blade is rotated. Figure 11 shows the case where a working female body is not added to the impeller of the present invention and when a working fluid is added to the impeller. FIG. 3 is a diagram showing the stress distribution that occurs on one side of the blade when the blade is heated. 1...Input shaft, 3...Output shaft, 5...Working chamber, 7
...Impeller, 8...Straight blade, 9...Core plate agent, patent attorney Toshiyuki Usuda, -- (P゛1st mouth 2nd mouth 3 days old 10th concave 2;F 5th;t7( 21 years old 3 concave

Claims (1)

【特許請求の範囲】 1、回転軸に固着した心根に羽根を多数配設して成る流
体継手の羽根車において、前記羽根を、作動流体により
生ずる曲は応力と逆方向の曲は応力を生じせしめるよう
に配設したことを特徴とする流体継手の羽根車。 2 前記羽根を、回転軸芯に約しずらして配設したこと
を特徴とする特許請求の範囲第1項記載の流体継手の羽
根車。
[Claims] 1. In an impeller of a fluid coupling in which a large number of blades are arranged on a core fixed to a rotating shaft, bending of the blades caused by a working fluid causes stress, and bending in the opposite direction causes stress. An impeller of a fluid coupling characterized by being arranged so as to force the impeller. 2. The impeller for a fluid coupling according to claim 1, wherein the blades are arranged approximately offset from the rotation axis.
JP16416281A 1981-10-16 1981-10-16 Impeller of fluid coupling Pending JPS5868521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16416281A JPS5868521A (en) 1981-10-16 1981-10-16 Impeller of fluid coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16416281A JPS5868521A (en) 1981-10-16 1981-10-16 Impeller of fluid coupling

Publications (1)

Publication Number Publication Date
JPS5868521A true JPS5868521A (en) 1983-04-23

Family

ID=15787902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16416281A Pending JPS5868521A (en) 1981-10-16 1981-10-16 Impeller of fluid coupling

Country Status (1)

Country Link
JP (1) JPS5868521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586778A1 (en) * 1985-09-04 1987-03-06 Daimler Benz Ag RADIUS CONNECTING A HUB AND AN OUTER RING OF A DRIVE WHEEL IN A HYDRODYNAMIC TORQUE CONVERTER OPERATING WITH A POWER DIVISION
US10864203B2 (en) 2016-07-05 2020-12-15 Beigene, Ltd. Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676727A (en) * 1979-11-29 1981-06-24 Daihatsu Motor Co Ltd Fluid joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676727A (en) * 1979-11-29 1981-06-24 Daihatsu Motor Co Ltd Fluid joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586778A1 (en) * 1985-09-04 1987-03-06 Daimler Benz Ag RADIUS CONNECTING A HUB AND AN OUTER RING OF A DRIVE WHEEL IN A HYDRODYNAMIC TORQUE CONVERTER OPERATING WITH A POWER DIVISION
US10864203B2 (en) 2016-07-05 2020-12-15 Beigene, Ltd. Combination of a PD-1 antagonist and a RAF inhibitor for treating cancer

Similar Documents

Publication Publication Date Title
US1362074A (en) Turbine
EP1088755A3 (en) Prop rotor hub
US4076456A (en) Ceramic rotor for gas turbine engine
US2678537A (en) Axial flow turbine type hydraulic torque converter
JPS5868521A (en) Impeller of fluid coupling
CN103562556A (en) Method for reinforcing a mechanical component
CA2051580C (en) Keyway for refiner disc
GB2044861A (en) Centrifugal blower impeller
JPS55134701A (en) Turbine wheel for turbocharger and manufacture thereof
US5417549A (en) Expandable spar filler block device
GB1233022A (en)
JPS5735199A (en) Fan impeller
JPH1182674A (en) Press forming method for turbine shell of torque converter
GB1580552A (en) Flexible couplings
JPS61164002A (en) Turbine blade
JPS5676727A (en) Fluid joint
JPS5970802A (en) Turbine rotor
JPS5970803A (en) Turbine rotor
SU1100018A1 (en) Composite roll
JP2854722B2 (en) Steam turbine blade
JPS63124806A (en) Radial flow turbo machine
JPS5462503A (en) Runner
JPS6133966B2 (en)
JPH08121102A (en) Rotor for quick start steam turbine
JPS5970805A (en) Turbine rotor