JPS5868456A - Production of clean steel - Google Patents

Production of clean steel

Info

Publication number
JPS5868456A
JPS5868456A JP16702081A JP16702081A JPS5868456A JP S5868456 A JPS5868456 A JP S5868456A JP 16702081 A JP16702081 A JP 16702081A JP 16702081 A JP16702081 A JP 16702081A JP S5868456 A JPS5868456 A JP S5868456A
Authority
JP
Japan
Prior art keywords
molten steel
steel
tundish
inclusions
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16702081A
Other languages
Japanese (ja)
Inventor
Masayuki Nakada
正之 中田
Katsuhiko Murakami
勝彦 村上
Kozo Yano
矢野 幸三
Akio Kuribayashi
栗林 章雄
Koichi Ozawa
小沢 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16702081A priority Critical patent/JPS5868456A/en
Publication of JPS5868456A publication Critical patent/JPS5868456A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain clean steel by efficient floatation of slag by blowing an inert gas into a tundish from its bottom surface in the direction intersecting orthogonally with the flow of the molten steel therein and regulating the agitating flow of the molten steel with a weir provided under the surface of the molten steel. CONSTITUTION:An inert gas is blown from a piping 6 through the refractories 5 of good permeability such as porous brick provided on the bottom surface 1a of a tundish 1 into the molten steel 2 flowing in the tundish from the upper stream side to the down stream side in the direction intersecting orthogonally with the flow of the steel 2 at 0.10-0.38 Nl/cm<2>.min flow rate to agitate the steel 2 and to accelerate the floatation of inclusions. In parallel with said blowing, a weir 7 which is dipped in the steel 2 down to the position of 10-50% the depth of the steel 2 from the surface thereof is provided on the lower stream side near the position where said gas is blown in the direction intersecting orthogonaly with the flow of the steel 2 to regulate the agitating flow of the steel 2 generated by blowing of said inert gas and to accelerate the floatation of the inclusions additionally.

Description

【発明の詳細な説明】 この発明は、鋼の連続鋳造において、連続鋳造用タンデ
ィツシュ内に収容された溶鋼中に混入して℃・る介在物
の浮上分離を促進せしめ、溶鋼の清浄化を図る清浄鋼の
製造方法に関するものである。
[Detailed Description of the Invention] The present invention aims at cleaning the molten steel by promoting the floating separation of inclusions mixed into the molten steel housed in the tundish for continuous casting at temperatures of °C in the continuous casting of steel. This invention relates to a method for producing clean steel.

鋼の連続鋳造工程において、鋳造される溶鋼中に介在物
が残留すると鋳片に内部欠陥が生ずる原因となる。その
ため、従来から鋳造される溶鋼中に介在物が残留しない
ように、例えば下記のような対策が講じられてきた。
In the continuous steel casting process, if inclusions remain in the molten steel being cast, it causes internal defects in the slab. Therefore, conventionally, the following measures have been taken to prevent inclusions from remaining in the molten steel that is cast.

(1)取鍋スラグがタンディツシュ内に混入することを
防止する。
(1) Prevent ladle slag from entering the tundish.

(2)溶鋼の空気酸化を防止する。(2) Preventing air oxidation of molten steel.

(3)  タンディツシュ内における溶鋼中の介在物の
浮上分離を促進する。
(3) Promote flotation and separation of inclusions in molten steel in the tundish.

(4)モールド内における溶鋼中の介在物の浮上分離を
促進する。
(4) Promote floating separation of inclusions in molten steel in the mold.

上述した対策のうち、(3)項の対策がもつとも重要で
あり、仮にタンディツシュ内に取鍋かも多量に介在物の
混入する溶鋼が注入されたとしても、タンディツシュ内
において前記介在物の浮上分離を促進することができれ
ば、清浄な鋳片を鋳造することができる。
Among the above-mentioned measures, the measure in item (3) is also important, and even if molten steel containing a large amount of ladle inclusions is injected into the tundish, it will prevent the inclusions from flotation and separation in the tundish. If this can be promoted, clean slabs can be cast.

タンディツシュ内において溶鋼中の介在物を浮上分離せ
しめるための手段としては、従来タンディツシュ内をそ
の一端側から他端側に流れる溶鋼の流れと直交する方向
の種々の場所に耐火物製のせきを設け、前記せきによっ
て溶鋼の流れを変えることが行なわれている。
Conventionally, as a means for floating and separating inclusions in molten steel in a tundish, weirs made of refractories are provided at various locations in the direction orthogonal to the flow of molten steel flowing from one end of the tundish to the other end. The weir is used to change the flow of molten steel.

第1図は、上述した従来方法の一例をタンディツシュの
部分断面で示した説明図で、タンディツシュ1の底面1
aに、溶鋼2の流れ方向と直交する方向に、耐火物製の
せき3が設けられている。
FIG. 1 is an explanatory diagram showing an example of the conventional method described above in a partial cross section of a tundish.
A weir 3 made of refractory material is provided in a direction perpendicular to the flow direction of the molten steel 2.

4は湯面保護のためのタンディツシュパウダーで、取鍋
(図示せず)からタンディツシュ1の一端側に注入され
た溶鋼2は、タンディツシュ1内をその他端側に向けて
矢印のように流れ、せき3に当ってその流れが上向きに
変る。従って溶鋼中の介在物の浮上距離は短くなり、介
在物の浮上分離は促進される。
4 is a tundish powder for protecting the hot water surface, and the molten steel 2 poured into one end of the tundish 1 from a ladle (not shown) flows inside the tundish 1 toward the other end as shown by the arrow. When it hits cough 3, the flow changes upward. Therefore, the floating distance of the inclusions in the molten steel is shortened, and the floating separation of the inclusions is promoted.

第2図は、このような従来の方法による介在物の分離効
果を示す図で、横軸は介在物の粒径、縦軸は溶鋼中の介
在物量で、第1図においてせき3を設置しなかった場合
におけるモールド内の溶鋼中の介在物量を100L%と
した比である。図面かられかるように、上述した従来の
方法によれば、粒径300μ以上の大粒介在物の分離効
果は大きいが、粒径300μ未満の小粒介在物の分離効
果は低い。
Figure 2 is a diagram showing the effect of separating inclusions by such a conventional method. The horizontal axis is the particle size of inclusions, and the vertical axis is the amount of inclusions in molten steel. The ratio is based on the amount of inclusions in the molten steel in the mold when no inclusions were present, which is 100L%. As can be seen from the drawings, according to the conventional method described above, the effect of separating large inclusions with a particle size of 300 μm or more is large, but the effect of separating small inclusions with a particle size of less than 300 μm is low.

しかも、溶鋼中の介在物の存在個数は、小粒介在物はど
多いため、上述した従来の方法では、最近の鋳片品質に
対する高度の要求を満足するに至らず、前記小粒介在物
も分離除去し得る方法の開発が強く望まれている。
Moreover, since the number of inclusions present in molten steel is large, the conventional method described above cannot meet the recent high requirements for slab quality, and the small inclusions are also separated and removed. There is a strong desire to develop a method that can do this.

そこで第3図に示す如く、タンデイツシ:i、1の底面
1aに、溶鋼2の流れ方向と直交する方向に、ポーラス
煉瓦の如き通気性の良好な耐火物5を設け、配管6かも
送られてきた不活性ガスを前記耐火物5を通じて溶鋼2
中に吹込み、これによって生じた微細な不活性ガス気泡
により溶鋼2に上向きの流れを起させると共に、溶鋼中
の介在物を気泡に吸着させる方法が開発されている。
Therefore, as shown in Fig. 3, a refractory material 5 with good air permeability, such as a porous brick, is provided on the bottom surface 1a of the tandye 1 in a direction perpendicular to the flow direction of the molten steel 2, and a pipe 6 is also fed. The inert gas is passed through the refractory 5 to the molten steel 2.
A method has been developed in which the molten steel 2 is caused to flow upward by the fine inert gas bubbles that are blown into the molten steel, and inclusions in the molten steel are adsorbed by the bubbles.

しかしこの方法では、タンディツシュ1の底面1aから
吹込まれた不活性ガスによって、タンディツシーLl内
の溶鋼がかき回される結果、湯面に浮遊するタンディツ
シュパウダー4を溶鋼2内に巻込むことになる。
However, in this method, the molten steel in the tundish Ll is stirred by the inert gas blown from the bottom surface 1a of the tundish 1, and as a result, the tundish powder 4 floating on the surface of the tundish is drawn into the molten steel 2.

更に発明者等の最近の研究によれば、第4図のタンディ
ツシュ内溶鋼の深さ方向における流速分布図に、第3図
I−I線部分における流速を黒丸印で示した如く、不活
性ガスが吹込まれている位置の溶鋼流速は、湯面直下部
分が犬となり、タンディツシュ底面付近の溶鋼は逆に上
流側に流れるため、浮上過程にある介在物はこの溶鋼流
によってタンディツシュ底面付近に引込まれてしまうこ
とがわかった。
Furthermore, according to recent research by the inventors, in the flow velocity distribution diagram in the depth direction of molten steel in the tundish in Figure 4, the flow velocity in the I-I line section of Figure 3 is indicated by the black circle, and it is found that inert gas The flow velocity of the molten steel at the position where it is blown into the molten steel is the same as the part just below the molten metal surface, and the molten steel near the bottom of the tundish flows in the opposite direction to the upstream side, so inclusions in the floating process are drawn into the vicinity of the bottom of the tundish by this molten steel flow. I found out that it can happen.

この発明は、上述のような観点から、タンディツシュ内
において、溶鋼中に混入している介在物を、その粒径に
かかわらずすべて効率的に浮上分離せしめることにより
、清浄な鋳片を製造する清浄鋼の製造方法を提供するも
ので、タンディツシュ内を、その一端側から他端側に流
れる溶鋼に対し、タンディツシュ底面から前記溶鋼の流
れと直交する方向に、0. 10〜0. 38 Nil
/crL TiAの流量の不活性ガスを吹込み、前記溶
鋼を攪拌すると共に、前記不活性ガス吹込位置近傍の下
流側に、前記溶鋼の流れと直交する方向に設けられた、
溶鋼湯面かも、溶鋼深さの10〜50%の位置まで浸漬
するせきによって、前記不活性ガスの吹込みにより生じ
た溶鋼の攪拌流を整流し、溶鋼中に混入する介在物の浮
上分離を促進して前記溶鋼の清浄化を図ることに特徴を
有するものである。
From the above-mentioned viewpoint, the present invention has been developed to produce a clean slab by efficiently flotation-separating all inclusions mixed in molten steel in a tundish, regardless of their particle size. The present invention provides a method for producing steel, in which molten steel flowing in a tundish from one end to the other end has a 0. 10-0. 38 Nil
/crL TiA is injected with an inert gas at a flow rate of TiA to stir the molten steel, and is provided downstream in the vicinity of the inert gas injection position in a direction perpendicular to the flow of the molten steel.
A weir that is immersed at the surface of the molten steel to a position of 10 to 50% of the depth of the molten steel rectifies the agitation flow of the molten steel caused by the injection of the inert gas, and floats and separates inclusions mixed into the molten steel. It is characterized in that it accelerates the cleaning of the molten steel.

次に、この発明を実施例により図面と共に説明する。Next, the present invention will be explained with reference to examples and drawings.

第5図はこの発明方法の一例を示すタンディツシュの部
分断面図、第6図は同じく部分平面図、第7図は第6図
A−A線断面図である。図面に示す如く、この発明方法
においても、タンディツシュ1の底面1aに、溶鋼2の
流れ方向と直交する方向に、ポーラス煉瓦の如と通気性
の良好な耐火物5を設け、前記耐火物5に沿ってその下
面に設けられた配管6かも不活性ガスを前記耐火物5を
通じて溶鋼2中に吹込むことは、上述した従来の方法と
同じである。
FIG. 5 is a partial sectional view of a tundish showing an example of the method of this invention, FIG. 6 is a partial plan view of the same, and FIG. 7 is a sectional view taken along the line A--A in FIG. 6. As shown in the drawings, also in the method of this invention, a refractory material 5 with good air permeability, such as a porous brick, is provided on the bottom surface 1a of the tundish 1 in a direction perpendicular to the flow direction of the molten steel 2. Blowing inert gas into the molten steel 2 through the refractory 5 through the pipe 6 provided along the lower surface thereof is the same as the conventional method described above.

この発明方法においては、上述した通気性の良好な耐火
物5かもの不活性ガス吹込み位置近傍の溶鋼下流側に、
溶鋼上面側から溶鋼の流れ方向と直交する方向に、その
湯面より溶鋼深さの10〜50チの位置まで浸漬する耐
火物製のせき(以下上せきという)7を設け、前記上せ
き7によって、不活性ガスの吹込みにより生じた溶鋼の
攪拌流を整流している。
In the method of this invention, the above-mentioned five well-ventilated refractories are placed on the downstream side of the molten steel near the inert gas injection position.
A refractory weir (hereinafter referred to as upper weir) 7 is provided from the upper surface of the molten steel in a direction perpendicular to the flow direction of the molten steel to a position 10 to 50 inches below the molten steel surface, and the upper weir 7 This rectifies the stirring flow of molten steel generated by blowing inert gas.

この結果、タンディツシュ1内を流れる溶鋼2は、第5
図に図示の如く上せき7より上流側においてのみ、通気
性の良好な耐火物5かも吹込まれる不活性ガスによって
攪拌され、上せき7より下流側では湯面直下の溶鋼に強
い流れは生じない。
As a result, the molten steel 2 flowing inside the tundish 1 is
As shown in the figure, only on the upstream side of the upper weir 7, the refractory 5 with good air permeability is also stirred by the inert gas blown in, and on the downstream side of the upper weir 7, a strong flow occurs in the molten steel just below the molten metal surface. do not have.

第4図には第5図■−■線部分における溶鋼の流速分布
が白丸印で示されている。同図に併記した前述の黒丸印
で示す従来方法の流速分布と比較して明らかな如く、こ
の発明方法の場合には、タンディツシュの湯面付近より
底面付近までほぼ同じ流速であり、底面付近で上流側に
逆流する流れは生じない。
In FIG. 4, the flow velocity distribution of molten steel in the section marked by the line ■-■ in FIG. 5 is shown by white circles. As is clear from the comparison with the flow velocity distribution of the conventional method shown by the black circles mentioned above in the figure, in the case of the method of this invention, the flow velocity is almost the same from near the surface of the tundish to near the bottom, and near the bottom of the tanditsu, the flow velocity is almost the same. No flow flows backward to the upstream side.

第8図には、この発明方法を実施した場合の、タンディ
ツシュを通過してモールド内に持ちこまれる介在物の割
合がスライム分析によりせきを設置しない場合を100
%として、従来例と共に示されている。図面において、
Aはせきを設置しない場合、Bは第1図に示したタンデ
ィツシュ底面にせきを設置した場合、Cは上せきを湯面
かも溶鋼深さの30%の位置まで浸漬させて設置した場
合、■)はタンディツシュ底面から不活性ガスを0 、
 ’22 Nl/crL酊の流量で吹込んだ場合、Eは
この発明方法によりタンディツシュ底面から不活性ガス
を0 、 22 N l /crLmmの流量で吹込む
と共に、上せきを湯面かも溶鋼深さの30係の位置まで
浸漬させて設置した場合である。図面かられかるように
、この発明方法によれば、従来方法と比較して、溶鋼中
の介在物量を大幅に低減することができた。
Figure 8 shows that when the method of this invention is carried out, the ratio of inclusions that pass through the tundish and are brought into the mold is 100% when no weir is installed, as determined by slime analysis.
It is shown as % together with the conventional example. In the drawing,
A is when no weir is installed, B is when a weir is installed on the bottom of the tundish shown in Figure 1, C is when the upper weir is installed by immersing it to the molten metal level or 30% of the molten steel depth, ■ ) is 0 inert gas from the bottom of the tanditshu,
When injecting at a flow rate of 22 Nl/crL mm, E injects inert gas from the bottom of the tundish at a flow rate of 0. This is the case where it is immersed and installed up to the 30th position. As can be seen from the drawings, the method of this invention was able to significantly reduce the amount of inclusions in molten steel compared to the conventional method.

第9図には、この発明方法を実施した場合の、モールド
内溶鋼中の粒径毎の介在物混入割合が、せきを設置しな
い場合を100%として、上述したB、C,Dの従来例
と共に示されている。図面において、白丸印はB、白三
角印はC1白四角印はD、黒丸印はEのこの発明方法の
場合である。
FIG. 9 shows the proportion of inclusions for each particle size in the molten steel in the mold when the method of the present invention is implemented, with the case where no weir is installed as 100%, and the conventional examples B, C, and D described above. is shown with. In the drawings, open circles indicate B, open triangles indicate C, open squares indicate D, and closed circles indicate the method of this invention.

図面かられかるように、この発明方法によれば、従来方
法では分離が困難であった80〜300μ程度の小粒の
介在物も適確に分離することができた。
As can be seen from the drawings, according to the method of the present invention, it was possible to accurately separate small inclusions of about 80 to 300 microns, which were difficult to separate using conventional methods.

本発明方法のこのような効果は、単に溶鋼中に不活性ガ
スを吹込んだだけでは得られないことは第8図および第
9図に示した通りであるが、更にタンディツシュ内にお
けるし一ドルからの受鋼相当位置に、トレーサーを添加
して、受鋼かもモールドへの排鋼までの時間を水モデル
実験により調べた。その結果、上せきを併用しない場合
は、タンディツシュに供給された溶鋼がモールドへ排出
されるまでの時間が極めて短いことがわかり、これから
、湯面直下における溶鋼の流速は、かなり大きいことが
推定された。
As shown in Figures 8 and 9, such effects of the method of the present invention cannot be obtained simply by blowing inert gas into the molten steel, but in addition, A tracer was added to the position corresponding to the receiving steel, and the time from receiving the steel to discharging the steel into the mold was investigated using a water model experiment. As a result, it was found that when an upper weir is not used, the time required for the molten steel supplied to the tundish to be discharged into the mold is extremely short, and from this it can be inferred that the flow velocity of molten steel just below the molten metal surface is quite high. Ta.

第10図には、溶鋼中に不活性ガスを0.22N l/
cwt、 minの流量で吹込んだときの上せきの溶鋼
中の浸漬深さと、タンディツシュを通過してモールドへ
持ちこまれた介在物の量との関係が、上せきを設置しな
い場合の介在物の量を100%として示されている。図
面かられかるように、上せきの溶鋼中の浸漬深さを、溶
鋼全体深さの10〜50チとするときは、介在物は効率
的に分離浮上するが、その浸漬深さが10%未満、また
は50係を超えると、介在物の分離浮上効果は低くなる
Figure 10 shows the inert gas added to the molten steel at a rate of 0.22Nl/
The relationship between the immersion depth of the upper weir in molten steel when injected at a flow rate of cwt, min and the amount of inclusions brought into the mold after passing through the tundish is Amounts are shown as 100%. As can be seen from the drawing, when the immersion depth of the upper weir in the molten steel is 10 to 50 inches of the total molten steel depth, the inclusions are effectively separated and floated, but the immersion depth is 10%. When the ratio is less than 50 or more than 50, the effect of separating and flotating inclusions becomes low.

また上せきの浸漬深さが50%を超えると、溶鋼がタン
ディツシュ内を通過する断面積が狭くなり、かつタンデ
ィツシュ底面に涜う溶鋼の流れが生じて、介在物の浮上
分離効果が悪化する。
Further, if the immersion depth of the upper weir exceeds 50%, the cross-sectional area through which molten steel passes through the tundish becomes narrow, and a flow of molten steel against the bottom surface of the tundish occurs, which deteriorates the effect of flotation and separation of inclusions.

従って、タンディツシュの溶鋼中への浸漬深さは、不活
性ガス吹込み位置の湯面直下の溶鋼を、直接下流側に流
さないようにするための最少限の深さ、即ち溶鋼深さの
10〜50チとすべきである。
Therefore, the immersion depth of the tundish into the molten steel is the minimum depth to prevent the molten steel directly below the molten steel surface at the inert gas injection position from flowing directly downstream, that is, 10 times the molten steel depth. It should be ~50chi.

第11図には、溶鋼中への不活性ガス吹込量とタンディ
ツシュを通過してモールドへ持ちこまれた介在物の量と
の関係が、不活性ガスを吹込まない場合の介在物の量1
100%として示されている。図面かられかるように、
不活性ガスを溶鋼中に、通気性の良好な耐火物を通して
、前記耐火物の単位面積当り0. 10〜0. 38 
Nl/a1. m1yr (D’量で吹込むときは、介
在物の分離浮上に優れた効果が得られるが、その吹込量
が0.10 Nl /lyj0miy+未満では溶鋼の
攪拌が弱く、また0、38 Nl/crl。
Figure 11 shows the relationship between the amount of inert gas blown into molten steel and the amount of inclusions brought into the mold after passing through the tundish.
Shown as 100%. As you can see from the drawing,
An inert gas is passed through a refractory with good air permeability into the molten steel, and the gas per unit area of the refractory is 0. 10-0. 38
Nl/a1. m1yr (When blowing at an amount of D', an excellent effect is obtained in separating and flotating inclusions, but when the blowing amount is less than 0.10 Nl/lyj0miy+, stirring of the molten steel is weak, and 0.38 Nl/crl .

騙を超えると逆に攪拌が強すぎて、何れもその効果が薄
くなる。
If it goes beyond deception, on the other hand, the stirring will be too strong, and the effect will be diminished.

以上述べたように、この発明方法によれば、タンディツ
シュ内において、溶鋼中に混入している介在物を、その
粒径にかかわらず、効率的に浮上分離せしめることがで
き、従って、介在物のない清浄な鋼を鋳造することがで
きる工業上優れた利点がもたらされる。
As described above, according to the method of the present invention, inclusions mixed in molten steel can be efficiently floated and separated in the tundish, regardless of their particle size. This provides the industrial advantage of being able to cast clean steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の介在物浮上分離手段の一例を示す説明図
、第2図は従来方法による介在物の分離効果を示す図、
第3図は従来の介在物浮上分離手段の他の例を示す説明
図、第4図はタンディツシュ内溶鋼の流速分布を示す図
、第5図乃至第7図はこの発明を示す説明図で、第5図
はタンディツシュの部分断面図、第6図は第5図の平面
図、第7図は第6図A−A線断面図、第8図はこの発明
方法による溶鋼中の介在物の量を従来例と比較して示す
図、第9図はこの発明方法による溶鋼中の粒径毎の介在
物混入割合を従来例と比較して示す図、第10図は上せ
きの溶鋼中の浸漬深さと溶鋼中の介在物の量との関係を
示す図、第11図は不活性ガス吹込み量と溶鋼中の介在
物の量との関係を示す図である。図面において、 1・・・タンディツシュ、2・・・溶鋼、3・・・従来
のせき、  4・・・パウダー、5・・・通気性の良好
な耐火物6・・・配管、7・・・上せき。 第1図 介在q勿の粒径OJ) 溶綱の;危速0質几)
FIG. 1 is an explanatory diagram showing an example of a conventional inclusion flotation separation means, and FIG. 2 is a diagram showing the effect of separating inclusions by the conventional method.
FIG. 3 is an explanatory view showing another example of the conventional inclusion flotation separation means, FIG. 4 is an explanatory view showing the flow velocity distribution of molten steel in the tundish, and FIGS. 5 to 7 are explanatory views showing the present invention. Fig. 5 is a partial sectional view of the tundish, Fig. 6 is a plan view of Fig. 5, Fig. 7 is a sectional view taken along line A-A in Fig. 6, and Fig. 8 is the amount of inclusions in molten steel according to the method of this invention. Figure 9 is a diagram showing the proportion of inclusions for each particle size in molten steel obtained by the method of the present invention in comparison with the conventional example. FIG. 11 is a diagram showing the relationship between the depth and the amount of inclusions in molten steel, and FIG. 11 is a diagram showing the relationship between the amount of inert gas blown and the amount of inclusions in molten steel. In the drawings, 1... Tandish, 2... Molten steel, 3... Conventional weir, 4... Powder, 5... Refractory material with good air permeability, 6... Piping, 7... Upper cough. Fig. 1 Grain size of intercalated metal (OJ) of molten steel;

Claims (1)

【特許請求の範囲】[Claims] タンディツシュ内を、その一端側から他端側に流れる溶
鋼に対し、タンディツシュ底面から前記溶鋼の流れと直
交する方向に、0゜10〜0.38N l /cd、―
の流量の不活性ガスを吹込み、前記溶鋼を攪拌すると共
に、前記不活性ガス吹込位置近傍の下流側に、前記溶鋼
の流れと直交する方向に設けられた、溶鋼湯面から、溶
鋼深さの10〜50チの位置まで浸漬するせきによって
、前記不活性ガスの吹込みにより生じた溶鋼の攪拌流を
整流し、溶鋼中に混入する介在物の浮上分離を促進して
前記溶鋼の清浄化を図ることを特徴とする清浄鋼の製造
方法。
For the molten steel flowing inside the tundish from one end side to the other end, from the bottom of the tundish in a direction perpendicular to the flow of the molten steel, 0° 10 to 0.38 N l /cd, -
A flow rate of inert gas is injected to stir the molten steel, and at the same time, the molten steel depth is set from the molten steel surface to the molten steel surface, which is provided on the downstream side near the inert gas injection position in a direction perpendicular to the flow of the molten steel. The weir, which is immersed to a position of 10 to 50 inches, rectifies the stirring flow of the molten steel caused by the injection of the inert gas, promotes floating separation of inclusions mixed in the molten steel, and cleans the molten steel. A method for producing clean steel, characterized by:
JP16702081A 1981-10-21 1981-10-21 Production of clean steel Pending JPS5868456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16702081A JPS5868456A (en) 1981-10-21 1981-10-21 Production of clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16702081A JPS5868456A (en) 1981-10-21 1981-10-21 Production of clean steel

Publications (1)

Publication Number Publication Date
JPS5868456A true JPS5868456A (en) 1983-04-23

Family

ID=15841897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16702081A Pending JPS5868456A (en) 1981-10-21 1981-10-21 Production of clean steel

Country Status (1)

Country Link
JP (1) JPS5868456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422161U (en) * 1990-06-16 1992-02-24
CN110891710A (en) * 2017-07-14 2020-03-17 株式会社Posco Molten material processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825866A (en) * 1971-08-10 1973-04-04
JPS5325291A (en) * 1976-06-17 1978-03-08 Commissariat Energie Atomique Oxidation and reduction catalysts for treating combustion gases and the manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825866A (en) * 1971-08-10 1973-04-04
JPS5325291A (en) * 1976-06-17 1978-03-08 Commissariat Energie Atomique Oxidation and reduction catalysts for treating combustion gases and the manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422161U (en) * 1990-06-16 1992-02-24
CN110891710A (en) * 2017-07-14 2020-03-17 株式会社Posco Molten material processing apparatus
US11203059B2 (en) 2017-07-14 2021-12-21 Posco Molten material treatment apparatus
CN110891710B (en) * 2017-07-14 2022-01-18 株式会社Posco Molten material processing apparatus

Similar Documents

Publication Publication Date Title
JP5014934B2 (en) Steel continuous casting method
US4770395A (en) Tundish
JP6515388B2 (en) Upper nozzle for continuous casting
US4619443A (en) Gas distributing tundish barrier
JPS5868456A (en) Production of clean steel
CN110947921A (en) Tundish flow control system capable of filtering impurities in steel
JPH07132353A (en) Method for removing inclusion in tundish for continuous casting
JPH09122848A (en) Cleaning method for molten steel in tundish
JP4402751B2 (en) Method for producing clean continuous cast slab
JP4319072B2 (en) Tundish with excellent inclusion levitation
JPH08224659A (en) Method for separating molten metal and slag
US2947622A (en) Method of making lead-containing steels
JPS5844912Y2 (en) Molten steel injection equipment
JPS6340652A (en) Simulation method for molten metal flow in tundish
JPS6372452A (en) Tundish weir
JPH0255649A (en) Method for promoting floating-up of inclusion
JPH04365809A (en) Device for removing non-metallic inclusion in molten metal
JPH11179497A (en) Tundish for casting clean steel
JP2976848B2 (en) Highly clean method for molten steel in tundish
JPH08112654A (en) Tundish for continuously casting steel
JPH0466251A (en) Method for preventing involution of slag into molten steel
JPS63157745A (en) Promoting method for removing inclusion in molten steel
JPS62156055A (en) Separating method for inclusion in intermediate vessel of continuous casting
JPS57154357A (en) Continuous casting method and tundish used for its execution
JPS61111749A (en) Method for accelerating floating of inclusion