JPS58677A - Solenoid proportional valve driving circuit - Google Patents

Solenoid proportional valve driving circuit

Info

Publication number
JPS58677A
JPS58677A JP9793181A JP9793181A JPS58677A JP S58677 A JPS58677 A JP S58677A JP 9793181 A JP9793181 A JP 9793181A JP 9793181 A JP9793181 A JP 9793181A JP S58677 A JPS58677 A JP S58677A
Authority
JP
Japan
Prior art keywords
temperature
magnet
proportional valve
resistor
solenoid proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9793181A
Other languages
Japanese (ja)
Other versions
JPS6234994B2 (en
Inventor
Hiroshi Fujieda
藤枝 博
Shinichi Nakane
伸一 中根
Hirokuni Murakami
博邦 村上
Makoto Tsuboi
誠 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9793181A priority Critical patent/JPS58677A/en
Publication of JPS58677A publication Critical patent/JPS58677A/en
Publication of JPS6234994B2 publication Critical patent/JPS6234994B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To accomplish correct temperature compensation by controlling a temperature characteristic of a solenoid proportional valve corresponding to a value of a temperature-sensitive resistance disposed near a magnet. CONSTITUTION:A temperature-sensitive resistance 8 is disposed near a magnet 1 to detect the temperature of the magnet correctly as much as possible. The temperature-sensitive resistance 8 has a linear and positive temperature characteristic so as to control a driving current corresponding to the resistance. Thus, a change in flux due to a temperature characteristic of the magnet 1 is compensated correctly.

Description

【発明の詳細な説明】 本発明はガス機器のガス流量調節等に用いられ、永久磁
石と駆動コイルとを具備する電磁式比例弁の駆動回路に
関し、特に、永久磁石温度に応じて駆動コイル電流を制
御することにより、永久研石温度変動によるガス流量変
動を補償し、常に安定したガス流量が得られる駆動回路
を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drive circuit for an electromagnetic proportional valve that is used to adjust the gas flow rate of gas appliances and is equipped with a permanent magnet and a drive coil. The present invention aims to provide a drive circuit that compensates for gas flow rate fluctuations due to permanent grinding stone temperature fluctuations and provides a stable gas flow rate at all times.

永久磁石と駆動コイルとを組合せた電磁式比例弁として
は、例えば第6図に示すような構造のものが従来より使
用されている。第1図で、1は永久磁石、2は駆動コイ
ルである1、永久磁石1の残留出朱雀度をBとし、コイ
ル2の有効長をL、コイル2の通電電流をI6とすると
、コイルと磁石相斤に作用する力Fは(1)式で表わせ
る。
As an electromagnetic proportional valve that combines a permanent magnet and a drive coil, one having a structure as shown in FIG. 6, for example, has been conventionally used. In Fig. 1, 1 is a permanent magnet, 2 is a driving coil, 1 is the residual radiance of permanent magnet 1, B is the effective length of coil 2, and current flowing through coil 2 is I6. The force F acting on the magnet can be expressed by equation (1).

F=J  BL          ・・・−・・(1
)この力Fは、支持部品3f:介してダイアフラム4に
印加される。一方ダイアフラム4には、入[−1圧力t
 Pl +ダイアフラム有効径をSDとすると、PlS
Dなる力が印加されている。6は弁体で、入[1圧力P
により、その有効径をSvとすると、P1Svなる力を
受ける。弁体6はさらに、PlSvとは逆向きに、出口
圧力をPとし、バネ6の反力をF8とすると、P2Sv
+F8なる力を受ける。なお7は、弁のハウジング、1
4はダイアフラムの片面を大気圧とする通気口である。
F=JBL...-(1
) This force F is applied to the diaphragm 4 via the support part 3f. On the other hand, the diaphragm 4 has an input [-1 pressure t
If Pl + diaphragm effective diameter is SD, then PlS
A force D is applied. 6 is the valve body, the input [1 pressure P
Therefore, if its effective diameter is Sv, it receives a force of P1Sv. Further, the valve body 6 is opposite to PlSv, and when the outlet pressure is P and the reaction force of the spring 6 is F8, P2Sv
Receives the force +F8. Note that 7 is the valve housing, 1
Reference numeral 4 denotes a vent hole that allows atmospheric pressure to be applied to one side of the diaphragm.

以上の力関係をまとめると、(2)戊で表わ亡る。なお
(2)式では弁体5、コF+P1SV=P1SD+P2
SV+FS  、、、、(2)イル2、支持部品3の自
重は無視している。今、5v=SD=Sとすると、(3
)式のようになる。従がF =P 2 S + F s
         ・・・・ (3)って、電流Iδを
制御すれば、電磁力Fが制御され、出口圧力P2が側倒
され、ガス流かが制御さtすることとなる。
To summarize the above power relationships, (2) 把 is expressed and destroyed. In addition, in equation (2), valve body 5, koF+P1SV=P1SD+P2
SV+FS, (2) The weight of the coil 2 and the support part 3 is ignored. Now, if 5v=SD=S, (3
) is as follows. Minor is F = P 2 S + F s
(3) If the current Iδ is controlled, the electromagnetic force F is controlled, the outlet pressure P2 is shifted, and the gas flow is controlled.

第6図の電磁式比例弁の電流1 対出口圧力P2の関係
を示すと第7図のようになる。永久磁石1の残留磁束密
度Bは通常温ル″特性を有し1.例對−ばバリウムフェ
ライト製のそれでは、−0、I 8%、6■程度の温度
特性を有する。ゆえに、コイル電流I。
The relationship between current 1 and outlet pressure P2 of the electromagnetic proportional valve shown in FIG. 6 is shown in FIG. 7. The residual magnetic flux density B of the permanent magnet 1 usually has a temperature characteristic of 1.For example, a permanent magnet made of barium ferrite has a temperature characteristic of about -0, I 8%, and 6■.Therefore, the coil current I .

全一定にして、磁石1の温度Tを変化させれば、温度T
が高くなるにつれ、残留磁束密度Bが減ぜられ、電磁力
Fが小となり、出口圧力P2が低下し、流量すなわちバ
ーナ燃焼部は低下する。すなわち、電流工 をI  と
し温兜Tが低い(T、)、中程度Omax (T )、高い(TH)に応じて出口圧力P は、PM
                         
2   23’P22I P21と低下する。このこと
は、電流Ima!により、電磁式比例弁を装着するガス
機器7)最大燃゛;算量Q  を規制ビんとする場合、
温度Tが中 a r 程度のTMで規制すると、温度T、では、Qmaxが大
きくなりすぎ、機器に悪影響を及ぼし、温1辻THでは
QmaXが小さくなり機器のフル能力を発揮できなくな
る。例えば、温度TMK対し、TL、THが各々50d
eg変動するとすれば、バリウムフェライト製の磁石で
あれば、TLでは+9%、THでは−9%変動すること
になる。
If the temperature T of magnet 1 is changed while keeping it completely constant, the temperature T
As becomes higher, the residual magnetic flux density B decreases, the electromagnetic force F becomes smaller, the outlet pressure P2 decreases, and the flow rate, that is, the burner combustion section decreases. In other words, assuming that the electric current is I, the outlet pressure P is PM

2 23'P22I P21. This means that the current Ima! According to gas equipment equipped with an electromagnetic proportional valve 7) maximum combustion; when the calculation Q is used as the regulation bottle,
If the temperature T is regulated by a TM of about medium ar, then at the temperature T, Qmax will become too large, which will have an adverse effect on the equipment, and at a warm TH, Qmax will become small and the equipment will not be able to demonstrate its full capacity. For example, TL and TH are each 50d with respect to temperature TMK.
If eg changes, in the case of a barium ferrite magnet, it will change by +9% in TL and -9% in TH.

この種電極式比例弁の、駆動−1路としては、例えば第
8図に示す回路が従来より用られてきた。第81y、1
で、Viは制御電圧、12はオペアンプ12へトランジ
スタ12B、エミッタ抵抗12Cて形成する一紳のボル
テージツメロワで、これが駆動回路である。2は比例弁
の駆動コイルである。抵抗12Cの抵抗値をRとすると
、 vt=x  R、、、(4) となる。ゆえに、制御人力V i f制御することによ
り、コイル電流Iδが制御され、ガス流量が制御される
。この回路では、永久磁石1の温度補償がされていない
ので、上述した問題点が発生する。
For example, a circuit shown in FIG. 8 has been conventionally used as the drive-1 path of this type of electrode proportional valve. No. 81y, 1
Here, Vi is a control voltage, and 12 is a voltage regulator formed by an operational amplifier 12, a transistor 12B, and an emitter resistor 12C, and this is a drive circuit. 2 is a drive coil for the proportional valve. If the resistance value of the resistor 12C is R, then vt=x R, (4). Therefore, by controlling the human power V i f, the coil current Iδ is controlled and the gas flow rate is controlled. In this circuit, since the temperature of the permanent magnet 1 is not compensated for, the above-mentioned problem occurs.

そこで、従来より提案されている温度補償回路を示すと
、例えば第9図に示すように、P板子r(設けたサーミ
スタ等の非直税感副抵抗素子13に固定抵抗12C1,
12C3,12C4を直列ま/こは並列に設け、これら
の合成抵抗値を抵抗12Cの抵抗値とし、永久磁石1の
温匣袖イ1:を・せ4占した3、第(4)式から明らか
な、Lうに、温度Tの変化(・二対して、磁石1の残留
磁束密1長Bが負の濡出係数/J ff−有する場合、
すなわちB−Bo(1+αT)7′i−る場合、電流I
。f:□ lo−I。。(i + (−a )T )に
なるように変化させれは、磁石1の温度特性を補償でき
る3、すなわち抵抗Rf l 1 /1 + (−a 
) T iの」二うに変化させれば2Lい。
Therefore, a conventionally proposed temperature compensation circuit is shown, for example, as shown in FIG.
12C3 and 12C4 are connected in series and in parallel, their combined resistance value is the resistance value of the resistor 12C, and the permanent magnet 1's warm sleeve A1: is set to 4. 3. From equation (4), Obviously, when the residual magnetic flux density 1 length B of the magnet 1 has a negative wetting coefficient /J ff-,
That is, if B-Bo(1+αT)7'i-, the current I
. f: □ lo-I. . (i + (-a)T), the resistance Rfl 1 /1 + (-a
) If you change T i's to 2, it becomes 2L.

(7かしながら、第9図でIJ<ずような回路ては、忰
めて秋い範囲の+!+7.吸変動に対しては近(Jj的
に抵抗Rを」述の」:うにてきても、最も補償を必〃と
する磁石1のJ′1.低温IB伺近、 /f〕高幅吸付
近で仁1補償1、 ?に、 −h fx イ。寸/コ、
磁石1の温IJJf テfCjなく1.!lr! #I
JJM路(,1近の温度分・検出するために、LA 度
のズレか)1じ1F血な補償ができない、。
(However, in Fig. 9, the circuit where IJ < is +! +7. Even if it comes, J'1 of magnet 1, which requires the most compensation, near low-temperature IB, /f] In the vicinity of high width suction, 1 compensation 1, -h fx A. size/ko,
Temperature of magnet 1 IJJf Te fCj 1. ! lr! #I
JJM road (, 1 degree difference in LA degree to detect temperature near 1F) cannot compensate for 1F blood.

本発明tl1、l’、 +!L f+’l’−末例に鑑
み、寸ず峰イ11の近傍に感温枦抗87を一般け、砒イ
11のl!、M 1B−をできるだけ11確に+9・出
する1、うにし、第2pC1感温抵4ル器として直イコ
・・的かつ11の温度時r1を有する感渦抵J!゛[1
’!:”i S−使用し1.’c J) IJ(抗f+
?j ニ1心U テ駆動IIL+(C5制御iluする
ものであり、これにより、磁石1の温度前件7こよる流
歌変劾を正確に補償玄るもっでちる。
The present invention tl1, l', +! L f + 'l' - In view of the last example, a temperature-sensitive resistor 87 is generally placed near Tsuzumine I11, and l of A11 is set. , M 1B- as 11 as accurately as possible +9.1, the second pC1 temperature-sensitive resistor 4 is directly equal... and has r1 at a temperature of 11.゛[1
'! :”i S-use 1.'c J) IJ (anti-f+
? j Ni1 core U Te drive IIL+ (C5 control ilu) This makes it possible to accurately compensate for fluctuations caused by the temperature antecedent 7 of the magnet 1.

第1スは、本発明ゴ実施例で、電磁式比例弁の磁石1に
感温抵抗器8を装着した場合でちる。この例では、磁石
1の温度Tを感温抵抗器8により、i1E確に検出でき
る。より簡便かつ容易な方θミとしては、磁石2とハウ
ジング7との温度がほぼ同一と見なせる場合に使用打止
で、・・ウジング7表r11設置4またはハウジングT
内に感温抵抗奏子8を狸込むことによってもげ能でちる
The first case is an embodiment of the present invention in which a temperature-sensitive resistor 8 is attached to the magnet 1 of the electromagnetic proportional valve. In this example, the temperature T of the magnet 1 can be accurately detected by the temperature sensitive resistor 8. A simpler and easier method is to stop using it when the temperatures of the magnet 2 and the housing 7 can be considered to be almost the same.
By inserting the temperature-sensitive resistor 8 inside, it is possible to perform a moge-noh performance.

第2図は本発明−実施例の駆動回路であって、10が駆
動回路で、オペアンプ10A、トランジスタ10B1エ
ミツタ抵抗10C,エミツタ抵抗10C両端電圧v6を
正特性直線特性の感?J、iU(抗器8と抵抗10Dよ
りなる帰還回路を通して、オペアンプに負帰還する。こ
こで制仰入力電月4をVi。
FIG. 2 shows a drive circuit according to an embodiment of the present invention, where 10 is a drive circuit, an operational amplifier 10A, a transistor 10B, an emitter resistor 10C, and a voltage v6 across the emitter resistor 10C, which has a positive linear characteristic. J, iU (negative feedback is provided to the operational amplifier through a feedback circuit consisting of a resistor 8 and a resistor 10D. Here, the suppressor input voltage 4 is Vi.

比例弁コイル電流を工6、抵抗器10Cの抵抗器をRc
、抵抗器10Dの抵抗値をRD、感温抵抗2:(8つ抵
抗値をARDとすると、次式う;成立する。
Set the proportional valve coil current as 6, and set the resistor of resistor 10C as Rc.
, the resistance value of the resistor 10D is RD, and the resistance value of the temperature-sensitive resistor 2: (8) is ARD. Then, the following formula holds true.

これをI。について書くと、 ここで、感温抵抗器8は正特性直線特性を示すから、温
度係数をβで示すと(7)式のように書・1する。
This is I. Here, since the temperature sensitive resistor 8 exhibits a positive linear characteristic, if the temperature coefficient is denoted by β, it can be written as equation (7).

A=A  (1+βT)    ・・・・(′7)(6
)と(7)より。
A=A (1+βT) ...('7)(6
) and (7).

(@式より、■。=−αTなる温度係数をもたせるため
1+A。
(From @formula, ■. = 1+A to have a temperature coefficient of -αT.

を満足するA。、βがちればよい。例えば、αが−0,
18%/deq、Ao−1 とすれば、:0.36φ/
deg となる。このように例えば、0.36係7/degなる
温度係数を何する感温抵抗器8は大手可能で、例えばニ
ッケルを主成分とする感温抵抗器で、この温度係数を有
するものが存在する。この例で6寸、八〇が1の場合、
βを0.36%/deqの感温抵抗器を使用することに
より、バリウムフェライト製7)磁石1の温度特性によ
る流計変動を正確に補償できることとなる。
A that satisfies. , β should be different. For example, α is −0,
If 18%/deq, Ao-1, then: 0.36φ/
It becomes deg. In this way, for example, there are temperature-sensitive resistors 8 that have a temperature coefficient of 0.36/7/deg, and there are, for example, temperature-sensitive resistors whose main component is nickel that has this temperature coefficient. . In this example, if 6 sun and 80 are 1,
By using a temperature sensitive resistor with β of 0.36%/deq, it is possible to accurately compensate for flow meter fluctuations due to the temperature characteristics of the barium ferrite magnet 1.

第3図は、本発明の他の実施例の回路図で、第2図の回
路では、(9)1式に示すように、ゲインにはる回路で
、側副入力電圧v1を抵抗10E 、 1 oFで分割
してオペアンプ10Aに入力する。オペアンプ1oAつ
入力電圧Vi’は、抵抗10E 、1oFの抵抗器をA
。RF 、 RFとすると、で表する。従がって、Io
は、 となり、ゲインは、V i /Rcとなり、抵抗8゜1
0Dを付加しない場合のゲインと同一にできろ。
FIG. 3 is a circuit diagram of another embodiment of the present invention. In the circuit of FIG. 2, as shown in equation (9) 1, the secondary input voltage v1 is connected to the resistor 10E, The signal is divided by 1 oF and input to the operational amplifier 10A. The input voltage Vi' of an operational amplifier 1oA is 10E, 1oF resistor is A
. RF, RF is expressed as. Therefore, Io
is, the gain is V i /Rc, and the resistance is 8゜1
Make it the same as the gain without adding 0D.

第4図の回路は本@凋つ池の実施例で、制御入力電圧V
iが負入力の場合の実施例である。ここで、制御人力V
iと、コイル電流工。との関係は、但し、Rcは、抵抗
器10Cの抵抗値、Bは感温抵抗器と抵抗10Gとり抵
抗値の比、γは感温抵抗器8の温度係数でちる。電流X
。に、(−α)なる温度係数をもたするたv)Vcは、
T−−αを満足すればよい。
The circuit shown in Fig. 4 is an example of the book@Shintsuike, and the control input voltage V
This is an example in which i is a negative input. Here, control human power V
i and coil electrician. However, Rc is the resistance value of the resistor 10C, B is the ratio of the resistance value of the temperature sensitive resistor and the resistor 10G, and γ is the temperature coefficient of the temperature sensitive resistor 8. current
. v) Vc has a temperature coefficient of (-α),
It is sufficient if T--α is satisfied.

こ、う回路により、制御人力Viが負電圧に?4La、
でき、またB==1に選べばゲインはV i /RCと
することができる。またBの値に無因係にγ=−αと選
ぶことによって、正確に温度補償ができる。
Is the control force Vi a negative voltage due to this bypass circuit? 4La,
If B==1 is selected, the gain can be set to V i /RC. Moreover, by selecting γ=-α regardless of the value of B, accurate temperature compensation can be achieved.

第6図の回路は、本発明の他の実施例で、感温抵抗器8
−や抵抗10Dの抵抗値が、抵抗10Cのそれに比し充
分大きくないときに用いることができる回路である。す
なわち10Hなるオペアンプで、ボルテージフォロワを
構成することによりインピーダンス変換を行ない、感温
抵抗器8、抵抗1oDの負荷効果をなくすことができる
The circuit of FIG. 6 is another embodiment of the present invention, in which the temperature sensitive resistor 8
- This circuit can be used when the resistance value of the resistor 10D is not sufficiently larger than that of the resistor 10C. That is, by configuring a voltage follower with a 10H operational amplifier, impedance conversion can be performed and the load effect of the temperature sensitive resistor 8 and the 1oD resistor can be eliminated.

以上詳述したように、本発明は、永久磁石として比較的
安価愼あるが温度特性を有する材質のもの・を使用した
電磁式抗例弁の温度特性を、磁石イ」近に設けた感温抵
抗器の抵抗値に応じてコイル電流を制御して、補償する
ものであり、極めて正確な温度補償ができる、安価な磁
石を用いることができるといった優れた効果を奏する。
As described in detail above, the present invention improves the temperature characteristics of an electromagnetic counter valve using a material that is relatively inexpensive but has temperature characteristics as a permanent magnet. The coil current is controlled and compensated according to the resistance value of the resistor, and has excellent effects such as extremely accurate temperature compensation and the ability to use inexpensive magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の感温抵抗器の電磁式比例弁
への装着例を示す断面図、第2図は本発明/)一実施例
の駆動回路図、第3図は本発明の他の実施例の駆動回路
図、第4図は本発明のさらに他り実施例の駆動回路図、
第6図は本発明のさらに他の実施例の駆動回路図、第6
図は従来の電磁式比例弁の構造断面図、第7図は第6図
の比例弁のIP特性図、第8図は従来の駆動回路図、第
9図イ1口は従来の温度補償回路図である。 1・・・・・・磁石、2・・・・・・駆゛動コイル、8
・・・・・・感温抵抗器、10・・・・・・駆動回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 図 第3図 廠 第 4 図 賑 第5511 蘂6図 J@7図 第8図 7 為9図 何)            (ロ)
Fig. 1 is a sectional view showing an example of mounting a temperature-sensitive resistor according to an embodiment of the present invention on an electromagnetic proportional valve, Fig. 2 is a drive circuit diagram of an embodiment of the present invention, and Fig. 3 is a diagram of the present invention. A drive circuit diagram of another embodiment of the invention, FIG. 4 is a drive circuit diagram of still another embodiment of the invention,
FIG. 6 is a driving circuit diagram of still another embodiment of the present invention.
The figure is a cross-sectional view of the structure of a conventional electromagnetic proportional valve, Figure 7 is an IP characteristic diagram of the proportional valve in Figure 6, Figure 8 is a conventional drive circuit diagram, and Figure 9 A1 is a conventional temperature compensation circuit. It is a diagram. 1... Magnet, 2... Drive coil, 8
... Temperature sensitive resistor, 10 ... Drive circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person
2 Figure 3 Factory No. 4 Figure Busy No. 5511 Figure 6 J@7 Figure 8 Figure 7 To Figure 9 What) (B)

Claims (1)

【特許請求の範囲】[Claims] 58石と駆動コイルを具備する電磁式比例弁の前記永久
磁石近傍に設けた感温抵抗器の抵抗値に応じて前記駆動
コイルへの通電電流を制御する電磁式比例弁駆動回路。
An electromagnetic proportional valve drive circuit that controls the current applied to the drive coil according to the resistance value of a temperature-sensitive resistor provided near the permanent magnet of the electromagnetic proportional valve, which is equipped with a 58-stone magnet and a drive coil.
JP9793181A 1981-06-23 1981-06-23 Solenoid proportional valve driving circuit Granted JPS58677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9793181A JPS58677A (en) 1981-06-23 1981-06-23 Solenoid proportional valve driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9793181A JPS58677A (en) 1981-06-23 1981-06-23 Solenoid proportional valve driving circuit

Publications (2)

Publication Number Publication Date
JPS58677A true JPS58677A (en) 1983-01-05
JPS6234994B2 JPS6234994B2 (en) 1987-07-30

Family

ID=14205414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9793181A Granted JPS58677A (en) 1981-06-23 1981-06-23 Solenoid proportional valve driving circuit

Country Status (1)

Country Link
JP (1) JPS58677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246383A (en) * 1988-08-05 1990-02-15 Takagi Ind Co Ltd Vibration suppressing mechanism for gas regulator valve
US5265842A (en) * 1992-10-01 1993-11-30 Federal-Mogul Corporation Emission control metering valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130114A (en) * 1981-02-04 1982-08-12 Matsushita Electric Ind Co Ltd Fluid proportional control valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130114A (en) * 1981-02-04 1982-08-12 Matsushita Electric Ind Co Ltd Fluid proportional control valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246383A (en) * 1988-08-05 1990-02-15 Takagi Ind Co Ltd Vibration suppressing mechanism for gas regulator valve
US5265842A (en) * 1992-10-01 1993-11-30 Federal-Mogul Corporation Emission control metering valve

Also Published As

Publication number Publication date
JPS6234994B2 (en) 1987-07-30

Similar Documents

Publication Publication Date Title
US5220831A (en) Closed loop temperature compensation for accelerometer current scale factor
JPH0315722A (en) Hot wire type air flow meter
JPS58677A (en) Solenoid proportional valve driving circuit
EP0024151A1 (en) Motor speed control device for DC motor
JPH0432617Y2 (en)
JPH0353645B2 (en)
US6038921A (en) Mass flow sensor system for fast temperature sensing responses
SE439224B (en) NIVAN MONITORING MONITOR TO A NIVAR REGULATOR SUPPLY INPUT
US6204657B1 (en) Temperature compensated closed-loop hall effect current transformer
KR100261315B1 (en) Signal conditioning circuit for pressure sensor
US4437136A (en) Electromagnet
JP2732751B2 (en) Humidity detection circuit
JP2705645B2 (en) Respiratory measurement device with automatic gain control function
JPH0682286A (en) Thermal type flowmeter
JPS6122766B2 (en)
US3058067A (en) Bridge producing direct current output in response to amplitude or phase difference of alternating current input or inputs
JPS5844330Y2 (en) drive circuit
JPH01191505A (en) Heat balance device for parallel transistor
JPS6141437Y2 (en)
JPS6395376A (en) Radiation detector
JPH01196609A (en) Control circuit for mass-flow controller
JPH0119599Y2 (en)
JPS6155357B2 (en)
JPH01102217A (en) Control device for heater and the like
JPH0213003A (en) Temperature compensating circuit