JPS58674Y2 - Internal structure of blast furnace bottom - Google Patents

Internal structure of blast furnace bottom

Info

Publication number
JPS58674Y2
JPS58674Y2 JP1978040697U JP4069778U JPS58674Y2 JP S58674 Y2 JPS58674 Y2 JP S58674Y2 JP 1978040697 U JP1978040697 U JP 1978040697U JP 4069778 U JP4069778 U JP 4069778U JP S58674 Y2 JPS58674 Y2 JP S58674Y2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
furnace bottom
taphole
internal structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978040697U
Other languages
Japanese (ja)
Other versions
JPS54143307U (en
Inventor
豊 水野
淳一 山下
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP1978040697U priority Critical patent/JPS58674Y2/en
Publication of JPS54143307U publication Critical patent/JPS54143307U/ja
Application granted granted Critical
Publication of JPS58674Y2 publication Critical patent/JPS58674Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【考案の詳細な説明】 この考案は高炉の寿命を延長する炉底内部構造に関する
[Detailed description of the invention] This invention relates to the internal structure of the furnace bottom that extends the life of the blast furnace.

一般に高炉寿命は各種の要因に影響されるが、とりわけ
第1図に示す炉底部1の内壁2における浸蝕損傷aが問
題となる。
In general, the life of a blast furnace is affected by various factors, but corrosion damage a on the inner wall 2 of the furnace bottom 1 shown in FIG. 1 is particularly problematic.

すなわち従来の炉底構造は一般的には第2図のように内
壁2の全周に仮想した出銑口3の水準面すから下方の内
壁2′の形状は、湯溜4から出銑口水準面すまでの内壁
2形状と同様の水平底面5に対して垂直壁の円筒形に煉
瓦積して築炉されてきた。
In other words, in the conventional furnace bottom structure, as shown in FIG. Furnaces have been constructed by laying bricks in a cylindrical shape with vertical walls against a horizontal bottom surface 5 similar to the shape of the inner walls 2 up to the level facing.

ところが上記した浸蝕損傷aの特長として、第1図想像
線Cで示す築炉当初のプロフィルに対し、炉底面半径方
向の炉内壁近傍の浸蝕が炉心に比して大きい。
However, as a feature of the above-mentioned corrosion damage a, as compared to the profile at the time of construction as shown by the imaginary line C in FIG. 1, the erosion near the inner wall of the furnace in the radial direction of the bottom surface of the furnace is larger than that of the core.

この原因として、該炉底周辺部での溶銑、溶滓の流動の
問題、この部分の煉瓦材質や煉瓦積による構造上の問題
がある。
The causes of this include problems with the flow of hot metal and slag around the bottom of the furnace, and structural problems due to the brick material and brickwork in this area.

この考案は上記煉瓦積による炉底形状が溶銑滓の流動に
及ぼす影響、ならびに溶銑滓流動の炉底浸蝕損傷aに与
える影響について、模型流体実験を実施した結果なされ
たものである。
This idea was made as a result of conducting a model fluid experiment to examine the influence of the shape of the furnace bottom formed by the brickwork on the flow of hot metal slag, and the influence of the flow of hot metal slag on the corrosion damage a of the furnace bottom.

実験装置は第3図のように出銑口3の上り傾斜角αを1
5°として、出銃口水準面すから円形の水平底面5に到
る下り勾配の環形傾斜底面6を設けるとともに、その水
平底面5と傾斜底面6の炉底半径方向の挟角θ(以後コ
ーナ角θという)を90°から180°−α=165°
に種々変化させて出:銑時における流体の流れ方向を調
査した。
The experimental equipment was designed so that the upward inclination angle α of the taphole 3 was 1 as shown in Figure 3.
5°, an annular inclined bottom surface 6 with a downward slope from the level face of the gun outlet to the circular horizontal bottom surface 5 is provided, and an included angle θ (hereinafter referred to as corner angle) between the horizontal bottom surface 5 and the inclined bottom surface 6 in the radial direction of the hearth bottom. θ) from 90° to 180° - α = 165°
The direction of fluid flow during ironing was investigated with various changes.

その結果を第4図にθ=90°の場合を、第5図にθ=
150’の場合を一例として図示する。
The results are shown in Figure 4 for the case of θ = 90°, and Figure 5 for the case of θ = 90°.
150' is illustrated as an example.

すなわち矢印で示す出銑口水準面すから傾斜底面6に沿
って下方に進む渦流はコーナ角θが大きい程少くなり、
特にθが130°の場合より顕著に減少すること、およ
びθが180°−α=165°より大きい場合炉床の蓄
銑容量が少なくなり、炉内の溶銑レベルが上り問題とな
る。
In other words, the larger the corner angle θ, the smaller the vortex flow that moves downward along the inclined bottom surface 6 from the taphole level surface shown by the arrow.
In particular, when θ is more markedly reduced than when it is 130°, and when θ is larger than 180°-α=165°, the pig iron storage capacity of the hearth decreases, causing a problem in which the level of hot metal in the furnace increases.

又、炉底傾斜面への渦流による浸蝕量が増大するという
問題があることを確認した。
In addition, it was confirmed that there was a problem in that the amount of erosion caused by the eddy flow on the inclined surface of the furnace bottom increased.

そして、上記した出銑口水準面から下方に進む渦流が炉
底煉瓦の浸蝕に著しく悪影響を及ぼし浸蝕損傷a発生の
主要原因であることを認識した。
It was also recognized that the above-mentioned vortex flowing downward from the level of the taphole has a significant adverse effect on the erosion of the furnace bottom bricks and is the main cause of the occurrence of erosion damage a.

つぎにこの発明の実施結果を示す。Next, the results of implementing this invention will be shown.

上述の模型流体実験の結果により内容積2150m3の
高炉に対してコーナ角をこの発明の範囲に属するθ=1
40゜(但しα−15°)に設定した第6図に示す炉底
内部形状に築炉して操業したが、使用後の炉底煉瓦の浸
蝕状況は第7図の通りであり、第1図のごとき浸蝕損傷
aを生じることなく炉壁、傾斜底面の浸蝕は著しく軽減
され何等問題なく操業を継続している。
According to the results of the above-mentioned model fluid experiment, the corner angle for a blast furnace with an internal volume of 2150 m3 was set to θ = 1, which falls within the scope of this invention.
The furnace was built and operated with the inner shape of the hearth bottom set at 40° (α-15°) as shown in Figure 6, but the corrosion status of the hearth bricks after use was as shown in Figure 7. As shown in the figure, the corrosion of the furnace walls and slanted bottom surface has been significantly reduced without causing any corrosion damage a, and the operation continues without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉底の浸蝕損傷を示す高炉炉底要部の切断正面
図、第2図は第1図炉底要部の築炉時を示す切断正面図
、第3図は模型流体実験の説明図、第4図は同コーナ角
を90°とした場合の流動状況説明図、第5図は同コー
ナ角を150°とした場合の説明図、第6図はコーナ角
を140°にした本発明の築炉時の炉底内部形状を示す
正面図、第7図は使用中の第6図炉底の消耗状況を示す
正面図である。 図中 1・・・・・・炉底部、2.2′・・・・・・内
壁、3・・・・・・出1銑口、4・・・・・・湯溜、5
・・・・・・水平底面、6・・・・・・傾斜底面、a・
・・・・・浸蝕損傷、b・・・・・・出銑口水準面、C
・・・・・・築炉当初の炉底プロフィル。
Figure 1 is a cutaway front view of the main part of the blast furnace bottom showing corrosion damage to the bottom of the furnace, Figure 2 is a cutaway front view of the main part of the bottom of the blast furnace shown in Figure 1 during construction, and Figure 3 is a model fluid experiment. Figure 4 is an explanatory diagram of the flow situation when the corner angle is 90°, Figure 5 is an explanatory diagram when the corner angle is 150°, and Figure 6 is an explanatory diagram when the corner angle is 140°. FIG. 7 is a front view showing the internal shape of the hearth bottom during construction of the present invention, and FIG. 7 is a front view showing the state of consumption of the hearth bottom shown in FIG. 6 during use. In the diagram: 1...Furnace bottom, 2.2'...Inner wall, 3...Outlet 1 piglet, 4...Tap, 5
......Horizontal bottom surface, 6......Slanted bottom surface, a.
...Erosion damage, b...Taphole level surface, C
・・・・・・The bottom profile of the furnace at the time of construction.

Claims (1)

【実用新案登録請求の範囲】 高炉の炉底形を、湯溜の円筒形内壁から出銑口水準面に
到り、炉心に下り勾配の環形傾斜底面を経て、円形水平
底面に続く摺鉢形に形成し、上記傾斜底面と水平底面の
炉心方向挟角θを 130°くθ≦180°−α (αは出銑口傾斜角) にしてなる高炉の炉底内部構造。
[Claim for Utility Model Registration] The bottom shape of the blast furnace is a mortar shape that extends from the cylindrical inner wall of the sump to the level surface of the taphole, passes through the annular sloped bottom surface with a downward slope to the core, and continues to the circular horizontal bottom surface. The inner structure of the bottom of a blast furnace is formed so that the included angle θ between the inclined bottom face and the horizontal bottom face in the core direction is 130° and θ≦180°−α (α is the taphole inclination angle).
JP1978040697U 1978-03-28 1978-03-28 Internal structure of blast furnace bottom Expired JPS58674Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978040697U JPS58674Y2 (en) 1978-03-28 1978-03-28 Internal structure of blast furnace bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978040697U JPS58674Y2 (en) 1978-03-28 1978-03-28 Internal structure of blast furnace bottom

Publications (2)

Publication Number Publication Date
JPS54143307U JPS54143307U (en) 1979-10-04
JPS58674Y2 true JPS58674Y2 (en) 1983-01-07

Family

ID=28909899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978040697U Expired JPS58674Y2 (en) 1978-03-28 1978-03-28 Internal structure of blast furnace bottom

Country Status (1)

Country Link
JP (1) JPS58674Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111804A (en) * 1976-03-17 1977-09-19 Uss Eng & Consult Shaft furnace hearth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111804A (en) * 1976-03-17 1977-09-19 Uss Eng & Consult Shaft furnace hearth

Also Published As

Publication number Publication date
JPS54143307U (en) 1979-10-04

Similar Documents

Publication Publication Date Title
JPS58674Y2 (en) Internal structure of blast furnace bottom
CN205300256U (en) Metallurgical stove brickwork structure
US4792126A (en) Blow lance for treating molten metal in metallurgical vessels
JP2000204405A (en) Operation of blast furnace
JP4021948B2 (en) Blast furnace bottom cooling structure
CN112538552B (en) Method for determining depth of dead iron layer of blast furnace
CN213060916U (en) Slag discharging structure for smelting reduction furnace
JPH0421813Y2 (en)
JP3011066B2 (en) Blast furnace bottom structure
CN209229777U (en) A kind of water-cooling wall with Wear-resistant Treatment structure is by pipe bend
JPH01234510A (en) Method for starting reblowing in dead blast furnace
JP2928451B2 (en) Cross section of blast furnace tapping gutter
JP2001294912A (en) Method for operating blast furnace
CN208817464U (en) A kind of fluidized bed furnace scum pipe
JPS6028660Y2 (en) Structure of blast furnace taphole
JPH01263211A (en) Smelting reduction method
CN2606114Y (en) Tubular copper cooler of blast furnace
JP2000017312A (en) Blast furnace, method for designing furnace bottom part in blast furnace and operation of blast furnace
JPH04329810A (en) Blowing out method of blast furnace
JPH09227911A (en) Operation of blast furnace
JPS6050103A (en) Method for operating blast furnace
JP2830356B2 (en) Tube furnace for hot metal production
JPS6035037Y2 (en) Furnace construction structure in high-temperature metallurgical furnaces
JPS62194748U (en)
JPH11222615A (en) Structure of furnace hearth on blast furnace