JPS5866503A - Controlling method and device for electric motor vehicle - Google Patents

Controlling method and device for electric motor vehicle

Info

Publication number
JPS5866503A
JPS5866503A JP56162257A JP16225781A JPS5866503A JP S5866503 A JPS5866503 A JP S5866503A JP 56162257 A JP56162257 A JP 56162257A JP 16225781 A JP16225781 A JP 16225781A JP S5866503 A JPS5866503 A JP S5866503A
Authority
JP
Japan
Prior art keywords
current
armature
field
field winding
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56162257A
Other languages
Japanese (ja)
Other versions
JPH0241242B2 (en
Inventor
Junichiro Kaneda
金田 順一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56162257A priority Critical patent/JPS5866503A/en
Publication of JPS5866503A publication Critical patent/JPS5866503A/en
Publication of JPH0241242B2 publication Critical patent/JPH0241242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To prevent a shortcircuiting current from flowing through an armature by operating an armature chopper under the condition that the direction of a field current instructed by an operation command coincides with that of the detected field current. CONSTITUTION:An operation command discriminator 31 outputs an operation start allowable signal when the directin of a field current responsive to the command from an operating stand outputted from an operation command converter 20 coincides with that of a field current flowing through field coils 20, 21 detected by a current detector 15. An operation control circuit 31 starts the operations of armature choppers 11, 12 when an operation start allowable signal is applied. In this mannr, it can prevent a shortcircuiting current from flowing through an armature.

Description

【発明の詳細な説明】 本発明はチョッパ装置を使用しj、:↑a電気車制御方
法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling an electric vehicle using a chopper device.

電気車へのチョッパ装置の適用は一般化しつつあるが、
最近VVVFインバータでi’il/’!)#?tf動
機を駆動するシステムが代案とし゛C提案されCいる。
The application of chopper devices to electric vehicles is becoming more common,
Recently I'il/' with VVVF inverter! )#? A system driving the tf motive has been proposed as an alternative.

そし′C1これらの特徴を兼ね備えたチョッパ装置と直
流電動機との組合せによるシステムもその高信頼性の故
に望まれCいる。即ち、従来のチョッパ装置は無接点化
による保守の低臓、抵抗損失の削除と回生ブレーキによ
る車力節酷の面で大きな効果を」−げているか、史に一
層の数置の余地がある。
A system combining a chopper device and a DC motor that has these features is also desired because of its high reliability. In other words, the conventional chopper device has great effects in terms of low maintenance due to no contact, elimination of resistance loss, and conservation of vehicle power due to regenerative braking. .

従来、電気車をチョッパ制御するには界磁をI+1」御
するチョッパ装置と腹巻直流屯flij+機とを使用し
た方式及びチョッパ族j?7と直流直巻′1αルノ徐と
を使用した方式とが一般的である。前者は複巻電’dl
JI宛のためにカ行と回生におい°C1自巻W(aと分
巻界磁とで相差動接続となり特性が異なること、および
分巻界イ6に流れる111.’tAf、方向が−>i=
であることから、前進と後進の切換えには、電機子回路
を切換える逆転器を必要とする。後者はカ行とブレーキ
の切換、00進と後進の切換えに転換装置が必要である
こと、および界磁制御を連続的に行なうためには、界磁
回路が複雑となること等の欠点がある。
Conventionally, chopper control of an electric vehicle has been carried out using a chopper device that controls the field by I+1 and a belly band direct current flij+ machine, and a chopper family j? 7 and a direct current series winding '1α winding' are common. The former is a compound winding electric 'dl
For JI, in the C line and the regeneration ° C1 self-winding W (a and the shunt field are connected in a phase differential manner, and the characteristics are different, and the direction of 111.'tAf flowing in the shunt field A6 is -> i=
Therefore, switching between forward and reverse requires a reversing device that switches the armature circuit. The latter has drawbacks such as requiring a conversion device to switch between forward and brake, and between 00 and reverse, and that the field circuit becomes complicated in order to perform field control continuously.

上記欠点を解消するために、カ行と制動の切換えおよび
前進と後進の切換えを簡素な回路要素で連続的に行ない
、制御装置の大1plIIlな小形・軽量化と車両性能
の同上を図った第1図に示す電気車の制御装置が提案さ
れている。以下、図について説明する。
In order to eliminate the above-mentioned drawbacks, switching between forward and braking and switching between forward and reverse are performed continuously using simple circuit elements, and the control device is made smaller and lighter, and the vehicle performance is improved. A control device for an electric vehicle as shown in FIG. 1 has been proposed. The figures will be explained below.

第1図において、(1)はパンタグラフ、(2)〜(4
)は断流器、(5)はフィルタリアクトル、(6)はフ
ィルタコンデンサ、(7) (8)は第1および第2の
分巻電動機の電機子、(9) (1(IJは第1及び第
2の電機子(7) (8)の電流を平滑するりアクドル
、(1v(2)は電機子(7ン(3)の回路を制御する
電機子チョッパ装置、040弔は各電機子(7) (8
)の電流を検出する電流検出器、0Qは後述の分巻界磁
巻!! H01)の電流を検出する電流検出器、(IQ
Q力は平滑リアクトル(9)αqと共働して′ht機子
電子電流滑するフリーホイリングダイオード、((2)
01は回生ブレーキ時に各’flBM子(7) (8)
の電流を流すダイオード、翰e21)は第1および第2
の分巻tlz動機の界磁巻線、(イ)〜(ハ)は各界磁
巻線の1′イ流を制御するチョッパ制御される界磁開閉
器、いν〜四は界磁開閉器(ホ)〜に)が0N−OFF
制御された時に界磁tu流を平滑するための還流ダイオ
ードである。
In Figure 1, (1) is a pantograph, (2) to (4
) is the current interrupter, (5) is the filter reactor, (6) is the filter capacitor, (7) (8) is the armature of the first and second shunt motor, (9) (1 (IJ is the first and the second armature (7) (8) current smoothing or accelerating, (1V (2) is the armature chopper device that controls the circuit of the armature (7) (3), (7) (8
) current detector that detects the current, 0Q is the shunt field winding described later! ! A current detector detects the current of (H01), (IQ
The Q force cooperates with the smoothing reactor (9) αq to create a freewheeling diode, which causes the machine electron current to slip ((2)
01 is each 'flBM child (7) (8) during regenerative braking.
The diode, Kan e21) that passes the current is the first and second
The field windings of the shunt tlz motor, (a) to (c) are chopper-controlled field switches that control the 1'a current of each field winding, and ν to 4 are field switches ( e) to) is 0N-OFF
A freewheeling diode for smoothing the field tu current when controlled.

第1図におい°C,,動作を説明する。例えば、「11
工進力行の場合、界磁電流は+11− (2) −(5
+−畦→夛−aU −a〜−(ロ)の回路で順方向に電
流を供給し、界磁開閉器に)がOFFになれば、いり−
01)−θ!シー(ハ)−@の回路で界磁電流I、が還
流して流れる。すなわち、界磁開閉器(イ)(ハ)及び
還流ダイオード(ハ)にJ:つ′Cチョッパ作用を行っ
て界磁m流IFを制御する。この動作は、後進でm極子
″市圧が逆転される隅台(例えば、後進の停止ブレーキ
)も同様である。
In Fig. 1, the operation will be explained. For example, "11
In the case of power running, the field current is +11- (2) -(5
+-约→夛-aU Supply current in the forward direction through the circuits of -a to - (b), and when the field switch) turns OFF, the
01)-θ! The field current I, circulates and flows in the C(c)-@ circuit. That is, a J:'C chopper action is performed on the field switches (a) and (c) and the free-wheeling diode (c) to control the field m current IF. This operation is similar to a corner stand (for example, a stop brake in reverse) in which the m-pole "pressure" is reversed when the vehicle is reversed.

後進のカ行の場合は、(財)−〇〜−儲り−い享−翰の
回路で逆方向に電流を供給し、θ〜−〇al)=(ホ)
−φ9−四の回路で還流する。この動作はMif進で電
機子i(f圧を逆転させる場合(例えば前進の停止ブレ
ーキ)も同様である。
In the case of backward movement, the current is supplied in the opposite direction through the circuit of (goods) -〇~-profit-i-kyou-han, and θ~-〇al) = (ho)
- Reflux through the φ9-4 circuit. This operation is the same when the armature i (f pressure is reversed (for example, a forward stop brake) in Mif order).

一方、電気車のカ行の電機子電流を制御する場合には、
(2)−(7)−(J −Oa −01Jおよび(3)
 −(8) −(10−(14)−〇功の回路で電流が
供給される。電機子チョッパ装置(ill QLIがO
FFの場合には、(2) −(7) −(Q) −h 
−Qeおよび(3+ −(81−01−04,・−07
1の回路で還流する。各電機子チョッパ装置01′)(
J’sをON・OFF制御することによって、各電七・
、子’m M+:をそれぞれ制御する。電気車の停止ブ
レーキ(電機子電圧が逆極性となる)電流を制御する場
合は、断流器(2)(3)をOFF状態とし、電機子チ
ョッパ装置θ][がONの場合は、叫−(7) −(Q
) −(13・−θVおよびθ9J  (8)  OQ
  04−OZノ回路で電流を流し、電機子チョッパ装
置01)(6)がOFFの場合は、0〜−(7) −(
9) −03−8* −(5) −(2) −01およ
びa’4−(3)−〇Ts −0七−0η−(51−(
2) −(1)の回路で電流を流し“C1電機子チョッ
パ装置(n)θ4のON・OFF制御により電機子電流
を制御する。以上の説明のように、界磁回路は正逆転制
御が可能となるので、前後進切換およびカ行−停止ブレ
ーキの切換えを界磁回路で行うことが可能となり、連応
性の高い制御ができ、装置の無保守化と小形軽量化がで
きる。しかし、前進から後進への切換え指令が出された
とき、界磁電流の方向が順方向(例えば、翰→■υ→0
〜の方向に流れる)から逆方面(αυ→シυ→翰の方向
に流れる)に切換らないままで電機子チョッパ装置0υ
0′4のいずれかが動作を開始すると、電機子(7) 
(81の誘起電圧が逆(つまり架線側が○となり、平滑
リアクトル側が■)となるため電機子(7) (8)に
短絡電流が流れ、主回路機器の損傷をまねくことになる
。カ行−制動の切換えにおいても、界&電流の方向を確
認することなく、m様子チョッパ装置0])(ハ)を動
作させると同様の不具合をまねくことになる。
On the other hand, when controlling the armature current of the electric car,
(2)-(7)-(J-Oa-01J and (3)
-(8) -(10-(14)-〇) Current is supplied in the circuit. Armature chopper device (ill QLI is O
In the case of FF, (2) −(7) −(Q) −h
-Qe and (3+ -(81-01-04, -07
Reflux is carried out in circuit 1. Each armature chopper device 01')(
By controlling ON/OFF of J's, each electric
, child 'm M+:, respectively. When controlling the stop brake current of an electric vehicle (the armature voltage becomes reverse polarity), turn off the current breakers (2) and (3), and turn off the alarm when the armature chopper device θ][ is on. −(7) −(Q
) −(13・−θV and θ9J (8) OQ
When current is passed through the 04-OZ circuit and the armature chopper device 01) (6) is OFF, 0 to -(7) -(
9) -03-8* -(5) -(2) -01 and a'4-(3)-〇Ts -07-0η-(51-(
2) - The armature current is controlled by passing current through the circuit in (1) and controlling the ON/OFF of C1 armature chopper device (n) θ4.As explained above, the field circuit has forward and reverse control. This makes it possible to perform forward/reverse switching and switching between forward/stop braking using the field circuit, allowing for highly coordinated control, eliminating the need for maintenance, and reducing the size and weight of the device. When a command to switch to reverse is issued from
The armature chopper device 0υ without switching from the flow in the direction of
When any of 0'4 starts operating, armature (7)
(Since the induced voltage of 81 is reversed (that is, O on the overhead line side and ■ on the smoothing reactor side), a short circuit current will flow through the armature (7) (8), causing damage to the main circuit equipment. When switching braking, if the chopper device 0]) (c) is operated without checking the direction of the field and current, the same problem will occur.

本発明は上記に鑑みてなされたもので、運転指令によっ
て指令された界磁m流の方向と検出された界磁電流の方
向とが一致したことを確認してから電機子に電流を流す
ようにすることによって、電機子に短絡電流が流れるの
を防止できる電気車の制御方法及び装置を提供する。
The present invention has been made in view of the above, and is designed to allow current to flow through the armature after confirming that the direction of the field current instructed by the operation command matches the direction of the detected field current. To provide a control method and device for an electric vehicle that can prevent short-circuit current from flowing in the armature by doing so.

以下、図について説明する。第2図において、(7)は
運転台からの指名をディジタル信号に変換する運転指令
変換器で、力行−前進、力行−後進、ブレーキ−前進、
ブレーキ後進、のいずれかを指令する運転指令判別器、
01)は極性検知器で、電流検出器OQで検出した界磁
巻線(ホ)?!υの界磁電流の極性(方向)と、運転指
令変換器(7)で指令された運転モードによる界磁電流
の極性とが一致したか否かを判別する論理回路で栴成さ
れている。(2)は電機子チョッパ装置0υ0ダの動作
の開始および停止を制御する動作制御回路である。つま
り、運転台からの指令を運転指令判別器(7)で判断し
、電流検出器OFjで検出した電流が、指令に応じた必
要な方向に流れているか否かを極性検知器6υで判断し
、しかもそれが正しければ、電機子チョッパ装置0υO
Zの動作開始を許可する信号を動作制御回路に)に送出
する。電流方向が逆であれば、電機子チョッパ装置θ]
)etaの動作を停止しtコままとする。以上の制御を
行なうことで、力行−制動、前進−後進の切換え動作が
確実に行なわれ、主回路機器の損傷を招くような動作は
事前に防ぐことができる。
The figures will be explained below. In Fig. 2, (7) is a driving command converter that converts instructions from the driver's cab into digital signals, including power running - forward, power running - reverse, brake - forward,
A driving command discriminator that commands either brake or reverse,
01) is the polarity detector, and the field winding (E) detected by the current detector OQ? ! It is made up of a logic circuit that determines whether the polarity (direction) of the field current of υ matches the polarity of the field current according to the operation mode commanded by the operation command converter (7). (2) is an operation control circuit that controls the start and stop of the operation of the armature chopper device 0υ0da. In other words, the command from the driver's cab is judged by the driving command discriminator (7), and the polarity detector 6υ judges whether the current detected by the current detector OFj is flowing in the required direction according to the command. , and if that is correct, the armature chopper device 0υO
A signal is sent to the operation control circuit to permit the start of Z operation. If the current direction is reversed, the armature chopper device θ]
) Stop the operation of eta and leave it as is. By carrying out the above control, switching operations between power running and braking and between forward and backward movement can be performed reliably, and operations that may cause damage to the main circuit equipment can be prevented in advance.

上記実施例において、電機子(7) (8)と界磁巻線
−a])とを共通の電源から励磁している場合を示した
が、分巻電動機を用いて界磁巻線を切換えて、各運転モ
ードの連続制御を行なう場合において、別個の電源で励
磁しても安定かつ確実な切換え制御を実現できる。
In the above embodiment, a case was shown in which the armature (7) (8) and the field winding -a]) were excited from a common power source, but the field winding was switched using a shunt motor. Therefore, when performing continuous control of each operation mode, stable and reliable switching control can be achieved even when excited by separate power supplies.

本発明によると、運転指令によって指令された界磁電流
の方向と検出された界磁1′u流の方向とが一致したこ
とを条件として↑u機子ナヨツパ装置を作動させるので
、電機子に短絡1(11流が流れるのを防止できる。
According to the present invention, the ↑u armature navigation device is operated on the condition that the direction of the field current commanded by the operation command and the direction of the detected field 1'u flow match, so that the armature Short circuit 1 (11) can be prevented from flowing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電気中の制御装置の構成図、第2図は本
発明の一実施例を示す構成図である。図において、(7
) (8)は電機子、θ))勉は↑1m子チョッパ装置
、αQは電流検出器、翰3υは界(み巻線、(イ)〜に
)は界磁開閉器、Gυは極性検知器である。 なお各図中向−行事は同−又は相当部分を示す。 代理人  葛 野 信 −
FIG. 1 is a block diagram of a conventional electrical control device, and FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, (7
) (8) is the armature, θ)) Tsutomu is the ↑1m chopper device, αQ is the current detector, 翰3υ is the field winding, (A) ~ ni) is the field switch, Gυ is the polarity detection It is a vessel. Note that the events in each figure indicate the same or equivalent portions. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 (1〕m気車を駆動する分巻電動機を所定の運転指令で
運転する電気車の制御方法において、上記分巻電ti+
機の界磁巻線に流れる電流の方向を検出し、検出された
上記界磁巻線の電流の方向と、上記運転指令で決定され
た上記界磁巻線の電流の方向とが一致したことを確認し
°C1上記分巻電動機の電機子に電流を流すようにした
電気車の制御方法。 (2)電気車を駆動する分巻電動機に流れる電流を電機
子チョッパ装置で制御し、運転指令に応じて上記分巻電
動機の界磁巻線に流れる電流の方向を界磁切換装置で切
換えるものにおいて、電流検出器で上記界磁巻線の電流
の方向を検出し、検出された上記界磁巻線の電流の方向
と、上記運転指令で決定された上記界磁巻線の電流の方
向とを極性検知器で比較し、両方向が一致したことを条
件として上記f=tL[子チョッパ装置を作動させる電
気車の制御装置。
[Scope of Claims] (1) In a method for controlling an electric car in which a shunt motor driving an m-air car is operated according to a predetermined operation command, the shunt motor ti+
The direction of the current flowing in the field winding of the machine is detected, and the detected direction of the current in the field winding matches the direction of the current in the field winding determined by the operation command. A control method for an electric car in which a current is passed through the armature of the above-mentioned shunt motor. (2) An armature chopper device controls the current flowing through the shunt motor that drives the electric car, and a field switching device switches the direction of the current flowing through the field winding of the shunt motor in accordance with a driving command. , a current detector detects the direction of the current in the field winding, and the direction of the detected current in the field winding is determined by the operation command. are compared using a polarity detector, and on the condition that both directions match, the above f=tL [control device for an electric car that operates a child chopper device.
JP56162257A 1981-10-12 1981-10-12 Controlling method and device for electric motor vehicle Granted JPS5866503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162257A JPS5866503A (en) 1981-10-12 1981-10-12 Controlling method and device for electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162257A JPS5866503A (en) 1981-10-12 1981-10-12 Controlling method and device for electric motor vehicle

Publications (2)

Publication Number Publication Date
JPS5866503A true JPS5866503A (en) 1983-04-20
JPH0241242B2 JPH0241242B2 (en) 1990-09-17

Family

ID=15750990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162257A Granted JPS5866503A (en) 1981-10-12 1981-10-12 Controlling method and device for electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS5866503A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153516A (en) * 1976-06-17 1977-12-20 Mitsubishi Electric Corp Protector for electric motor vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153516A (en) * 1976-06-17 1977-12-20 Mitsubishi Electric Corp Protector for electric motor vehicle

Also Published As

Publication number Publication date
JPH0241242B2 (en) 1990-09-17

Similar Documents

Publication Publication Date Title
EP1504950B1 (en) Controller for driving a permanent magnet type synchronous motor
JPH0378355B2 (en)
JPH08340604A (en) Regenerative braking method and power control system for electrically driven vehicle
JPH06315201A (en) Driver for electric automobile
JPS5866503A (en) Controlling method and device for electric motor vehicle
JP2005253264A (en) Electric rolling stock controlling device
JP3750681B2 (en) Permanent magnet type synchronous motor drive control apparatus and method
JP2007325476A (en) Unit for controlling ac feeder electric motor car
JP3677534B2 (en) Electric vehicle control device
JP2007267544A (en) Electric vehicle controller
JPH06261403A (en) Method and system for protecting univarsal electric vehicle against ac risky run
JP2008113543A (en) Power controller of railway car
JP3482965B2 (en) Drive control device for permanent magnet type synchronous motor
JP3354953B2 (en) Linear motor
JPH11262104A (en) Power source unit of electric vehicle
JPS61224804A (en) Controlling method for electric railcar
JP2676957B2 (en) Electric car control device
JPS637101A (en) Controller for electric rolling stock
SU978309A2 (en) Excitation system for electric machine
JPH09308003A (en) Driver of dc rolling stock
JP2692909B2 (en) Inverter device for electric car
JPH0755633B2 (en) Substation control method for electric railway
JPS591041B2 (en) Regeneration control device for DC electric cars
JPS5937807A (en) Control device for electric motor coach
JPS61164405A (en) Controller for electric railcar