JP3677534B2 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP3677534B2
JP3677534B2 JP32270097A JP32270097A JP3677534B2 JP 3677534 B2 JP3677534 B2 JP 3677534B2 JP 32270097 A JP32270097 A JP 32270097A JP 32270097 A JP32270097 A JP 32270097A JP 3677534 B2 JP3677534 B2 JP 3677534B2
Authority
JP
Japan
Prior art keywords
contactor
section
voltage
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32270097A
Other languages
Japanese (ja)
Other versions
JPH11155204A (en
Inventor
寛之 小澤
哲 堀江
清 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32270097A priority Critical patent/JP3677534B2/en
Publication of JPH11155204A publication Critical patent/JPH11155204A/en
Application granted granted Critical
Publication of JP3677534B2 publication Critical patent/JP3677534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気車制御装置に関し、特に架線から得られる電力が交流である区間と直流である区間とを直通して運転される交直流電気車の制御装置に関する。
【0002】
【従来の技術】
本発明の図1の構成に類似した公知例としては、特開平6−141404 号公報が挙げられる。特開平6−141404 号公報によれば、交流区間であれば集電器1により架線から集電された交流電力は遮断器2を介した後、交直切替器3にて交流側に接続され、変圧器4で降圧された後交流接触器11を介してコンバータ装置6に入力され、ここで直流電力に変換してフィルタコンデンサ7を充電し、インバータ装置8にて誘導電動機9を駆動する。このとき、交流接触器11を閉し、直流接触器14を開く。
【0003】
また、直流区間であれば集電された直流電力は、交直切替器3にて直流側に接続された直流接触器14及びフィルタリアクトル17を介してフィルタコンデンサ7を充電し、インバータ装置8にて誘導電動機9を駆動する。このとき、交流接触器11は開き、直流接触器14は閉じる。
【0004】
ここで、交流接触器11と直流接触器14の動作を考える。
【0005】
従来の直流電気車の接触器の動作を示す例として、特開昭63−18905 号公報が挙げられる。図2に一般的なインバータ装置を用いた直流電気車の主回路構成を示す。集電器1により取り込まれた直流電力は、直列に接続された遮断器2,直流接触器14,フィルタリアクトル17を介してインバータ装置8に供給され誘導電動機9を駆動する。インバータ装置の入力側両極間にはフィルタコンデンサが接続され、負極側は接地ブラシ10に接続されている。また、直流接触器14と並列に充電抵抗器16と補助直流接触器15の直列体が接続され、フィルタコンデンサ7の充電時には補助直流接触器15が閉じ、充電抵抗器16により制限された充電電流で充電される。
【0006】
特開昭63−18905 号公報によると図2における直流接触器14の動作は、設定速度より高い条件下で力行オフ又は回生ブレーキゆるめを行った後の惰行状態時には、直流接触器14を開かずにインバータ装置8のみの運転を停止させておき、再ブレーキ時にはインバータ装置8の運転を開始させるとある。図3に特開昭63−18905 号公報によるノッチ指令や直流接触器14の動作のタイムチャートを示す。最初の運転時には直流接触器14は開いている。ここでノッチ指令があるとはじめに補助直流接触器15を閉じフィルタコンデンサを充電した後、補助直流接触器15を開き直流接触器14を閉じてインバータ装置8のゲートがスタートし運転を開始する。
【0007】
次にノッチ指令がオフし惰行運転に移るときはインバータ装置8のゲートは停止するが直流接触器14は閉じたままである。そして再度のノッチ指令時には直流接触器14は既に閉じているので、直ちにインバータ装置8はゲートがスタートし運転を再開する。
【0008】
このようにインバータ装置8の停止中に直流接触器14を開放しないことにより、再運転時のフィルタコンデンサ7の充電時間が不要になり、ノッチ指令からインバータ装置の運転開始までの時間を短縮できる。交流電気車における変圧器とコンバータ装置の間に挿入される交流接触器においても同様である。このようなことから、直流電気車,交流電気車共にノッチオフ中においても接触器を閉じておく方式が最近の主流である。
【0009】
【発明が解決しようとする課題】
しかしながら、交直流電気車が直流区間を走行中において、ノッチオフ時に直流接触器を開かないと直流区間から交流区間に切り替わる際に、直流と交流の境界点にある架線の無電圧区間に進入しても、架線の直流電圧がなくなったことを検知できないという問題がある。
【0010】
図1に交直流電気車の回路図を示す。集電器1で集電された電力は、車両を駆動するための電力として遮断器2へ接続されると共に、架線の電気方式が交流であるか、直流であるかを検出するために計器用変圧器21の1次巻線へも接続される。計器用変圧器21の接地側には第1直流電圧継電器抵抗器23と第2直流電圧継電器抵抗器24が直列に接続され接地される。計器用変圧器21の2次側には交流電圧継電器22が接続され、第2直流電圧継電器抵抗器24には並列に直流電圧継電器25が接続される。
【0011】
交流区間であれば、計器用変圧器21の2次側には計器用変圧器21の巻数比で降圧された架線電圧が発生し、交流電圧継電器22が動作して架線の電圧が交流であることを検知する。このとき、直流電圧継電器25には計器用変圧器21,第1直流電圧継電器抵抗器23,第2直流電圧継電器抵抗器24で分圧された電圧が印加されるが、第2直流電圧継電器抵抗器24の抵抗値より計器用変圧器21の1次巻線のインピーダンスの方が格段に大きく、第2直流電圧継電器抵抗器24にはほとんど電圧が発生しない。
【0012】
直流区間であれば、計器用変圧器21の1次巻線のインピーダンスは巻線の抵抗分のみになり無視できるほど小さな値になるため、直流電圧継電器25には第1直流電圧継電器抵抗器と第2直流電圧継電器抵抗器で分圧された電圧が印加され、直流電圧継電器25が動作して架線の電圧が直流であることを検知する。
【0013】
交直切替えの際は、無電圧区間に進入する前に乗務員が交直切替えの操作を行うと、まず遮断器2が開放され交直切替器3がこれから進入する電気方式の回路側に転換する。その後、車両が無電圧区間を通過し、新たな電気方式の区間に進入して交直切替器3の接続されている電気方式と、交流電圧継電器22または直流電圧継電器25で検出された電気方式が一致すると遮断器2が投入され新たな電気方式での運転が可能となる。ここで、直流区間から交流区間に進入する際に、乗務員が交直切替えの操作を失念すると回路を切り替えないままで交流区間に進入してしまうため、無電圧区間に進入し直流電圧継電器25が直流電圧がないことを検知したら遮断器2を開放するシーケンスが組まれている。
【0014】
図1において直流区間走行中は、交直切替器3は直流接触器14側に接続されていて、集電器1から集電された電力は遮断器2,交直切替器3,直流接触器 14、及びフィルタリアクトル17を介してフィルタコンデンサ7を充電し、インバータ装置8へ供給される。
【0015】
ここで、惰行中においても直流接触器14を開かないと、上述の直流から交流へ転換する際に乗務員が交直切替えの操作を失念して無電圧区間に進入したときに、フィルタコンデンサ7に充電されている電荷がフィルタリアクトル17,直流接触器14,交直切替器3,遮断器2を介して逆流し、直流電圧継電器25を動作させ無電圧区間に進入したことを検出できなくなり、直流回路のままで交流区間に進入して機器を破損することになってしまう。
【0016】
【課題を解決するための手段】
上記問題点を解決するため、交流電源区間運転時は、交流接触器を常時閉じて直流接触器は常時開き、直流電源区間運転時は、交流接触器を常時開き、インバータ装置を動作させる指令(ゲートスタート指令)が発せられた時のみ直流接触器を閉じさせる手段を備え、交流電源区間運転から直流電源区間運転に切り替る時、直流電源区間運転に切り替える前はゲートスタート指令をオフし、充電抵抗器と補助直流接触器の直列体を介してフィルタコンデンサを充電した後、インバータ装置を動作させるゲートスタート指令を発し、交流電源区間運転時に開いていた直流接触器を閉じる。
【0017】
これにより、直流区間ではインバータ装置の動作が停止したことで直流接触器14を開くことによって、無電圧区間に進入し架線電圧がなくなったことを検出でき交流区間に進入する前に遮断器3を開き機器を保護することができる。
【0018】
また、万一インバータ動作中に無電圧区間に進入しても、力行動作中であればフィルタコンデンサ7への電力の供給が途絶えるためにフィルタコンデンサ7の電圧が急速に低下して、あらかじめセットした電圧まで低下すれば低電圧検知の保護動作が動作してインバータ装置の動作を停止し、直流接触器14を開くことができる。
【0019】
回生ブレーキ動作中であれば架線に回生電力を戻せなくなるためフィルタコンデンサ7の電圧が急速に上昇し、過電圧検知の保護動作が動作してインバータ装置の動作を停止し、直流接触器14を開くことができる。なお、交流区間では、コンバータ装置6側から交流電圧継電器22を逆加圧することはないため、交流接触器11が閉じていても無電圧区間に進入して架線電圧がなくなったことを検出できる。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
【0021】
図4は本発明による交直流電気車の詳細な回路図である。本発明の特徴である交流接触器11や直流接触器14の動作を図5を用いて説明する。
【0022】
車両の運転を開始する前は交流接触器11,補助交流接触器12,直流接触器14,補助直流接触器15はいずれも開いている。
【0023】
交流区間においては、最初のノッチ投入によりまず補助交流接触器12を閉じ、充電抵抗器13で制限された充電電流が単相PWMコンバータ30に流れ込む。単相PWMコンバータ装置30では各アームのIGBT31〜34と並列に接続されたフリーホイールダイオード35〜38にて整流されフィルタコンデンサ7を充電する。フィルタコンデンサ7が充電されたことで補助交流接触器12を開き、交流接触器11を閉じて単相PWMコンバータ装置30がゲートスタートし、その後インバータ装置8がゲートスタートする。
【0024】
ノッチオフ時にはインバータ装置8及び単相PWMコンバータ装置30のゲートがストップするのみである。そして、再度のノッチ投入時には既に交流接触器11が投入されているので、フィルタコンデンサ7の充電時間が不要となり、直ちに単相PWMコンバータ装置30、及びインバータ装置8がゲートスタートする。
【0025】
直流区間においては、最初のノッチ投入によりまず補助直流接触器15を閉じ、充電抵抗器16で制限された電流がフィルタリアクトル17を介してフィルタコンデンサ7を充電する。フィルタコンデンサ7が充電されたことで補助直流接触器15を開き、直流接触器14を閉じてインバータ装置8がゲートスタートする。
【0026】
ノッチオフ時にはインバータ装置8のゲートがストップし、その後直流接触器15を開く。これにより、乗務員が交直切替えの操作を失念したまま無電圧区間に進入したときに、直流電圧継電器25にフィルタコンデンサ7の電圧が逆加圧されず、架線の電圧がなくなったことを検知して遮断器2を開くことにより、回路が直流区間の状態のまま交流区間に進入し機器を破損することを防止することができる。
【0027】
再度のノッチ投入時には、最初のノッチ投入時と同様にまず補助直流接触器
15を閉じ、フィルタコンデンサ7が充電された後に補助直流接触器15を開き直流接触器14を閉じてインバータ装置8がゲートスタートする。
【0028】
【発明の効果】
以上説明したように、本発明によれば交直流電気車が直流区間から交流区間に進入する際に乗務員が交直切替えを失念しても、無電圧区間に進入して架線に直流電圧がなくなったことを検知して遮断器を開くことにより、回路が直流区間の状態のまま交流区間に進入して機器を破損することを防止することができる。
【図面の簡単な説明】
【図1】本発明に基づく実施例の交直流電気車の回路図。
【図2】従来の直流電車の回路図。
【図3】従来の直流電車の接触器等の動作のタイムシーケンス。
【図4】本発明に基づく実施例の交直流電気車の詳細な回路図。
【図5】本発明に基づく接触器等の動作のタイムシーケンス。
【符号の説明】
1…集電器、2…遮断器、3…交直切替器、4…変圧器、6…コンバータ装置、7…フィルタコンデンサ、8…インバータ装置、9…誘導電動機、10…接地ブラシ、11…交流接触器、12…補助交流接触器、13…充電抵抗器、14…直流接触器、15…補助直流接触器、16…充電抵抗器、17…フィルタリアクトル、21…計器用変圧器、22…交流電圧継電器、23…第1直流電圧継電器抵抗器、24…第2直流電圧継電器抵抗器、25…直流電圧継電器、31〜34…IGBT、35〜38…フリーホイールダイオード。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric vehicle control device, and more particularly to a control device for an AC / DC electric vehicle that is operated through a section in which power obtained from an overhead line is alternating current and a section in which direct current is direct.
[0002]
[Prior art]
As a known example similar to the configuration of FIG. 1 of the present invention, JP-A-6-141404 is cited. According to Japanese Patent Laid-Open No. 6-141404, the AC power collected from the overhead line by the current collector 1 is connected to the AC side by the AC / DC switch 3 after passing through the circuit breaker 2 in the AC section. After being stepped down by the voltage generator 4, the voltage is input to the converter device 6 via the AC contactor 11, where it is converted to DC power to charge the filter capacitor 7, and the inverter motor 8 drives the induction motor 9. At this time, the AC contactor 11 is closed and the DC contactor 14 is opened.
[0003]
In the DC section, the collected DC power charges the filter capacitor 7 via the DC contactor 14 and the filter reactor 17 connected to the DC side by the AC / DC switch 3, and the inverter device 8 The induction motor 9 is driven. At this time, the AC contactor 11 is opened and the DC contactor 14 is closed.
[0004]
Here, the operation of the AC contactor 11 and the DC contactor 14 will be considered.
[0005]
Japanese Patent Laid-Open No. Sho 63-18905 is an example showing the operation of a conventional DC electric vehicle contactor. FIG. 2 shows a main circuit configuration of a DC electric vehicle using a general inverter device. The DC power taken in by the current collector 1 is supplied to the inverter device 8 via the circuit breaker 2, the DC contactor 14, and the filter reactor 17 connected in series to drive the induction motor 9. A filter capacitor is connected between the input-side electrodes of the inverter device, and the negative-side is connected to the ground brush 10. Further, the DC contactors 14 and the series of charging resistor 16 and the auxiliary DC contactor 15 are connected in parallel, the auxiliary DC contactor 15 during charging of the filter capacitor 7 is closed, it is limited by the charging resistor 16 charges It is charged with current.
[0006]
According to Japanese Patent Laid-Open No. 63-18905, the operation of the DC contactor 14 in FIG. 2 does not open the DC contactor 14 in the coasting state after powering off or regenerative braking loosening under conditions higher than the set speed. The operation of only the inverter device 8 is stopped, and the operation of the inverter device 8 is started at the time of re-braking. FIG. 3 shows a time chart of the notch command and the operation of the DC contactor 14 according to Japanese Patent Laid-Open No. 63-18905. In the initial operation, the DC contactor 14 is open. When the notch command is issued, the auxiliary DC contactor 15 is first closed and the filter capacitor is charged, then the auxiliary DC contactor 15 is opened, the DC contactor 14 is closed, and the gate of the inverter device 8 is started to start operation.
[0007]
Next, when the notch command is turned off and the coasting operation is started, the gate of the inverter device 8 stops, but the DC contactor 14 remains closed. Since the DC contactor 14 is already closed at the time of another notch command, the inverter device 8 immediately starts the gate and resumes operation.
[0008]
Thus, by not opening the DC contactor 14 while the inverter device 8 is stopped, the charging time of the filter capacitor 7 at the time of re-operation becomes unnecessary, and the time from the notch command to the start of operation of the inverter device can be shortened. The same applies to an AC contactor inserted between a transformer and a converter device in an AC electric vehicle. For this reason, a method in which the contactor is closed even during notch-off for both DC electric cars and AC electric cars is a recent mainstream.
[0009]
[Problems to be solved by the invention]
However, when the AC / DC electric vehicle is traveling in the DC section and the DC contactor is not opened at the time of notch-off, when the DC section is switched to the AC section, it enters the overhead voltage non-voltage section at the boundary between DC and AC. However, there is a problem that it is impossible to detect that the DC voltage of the overhead wire is lost.
[0010]
FIG. 1 is a circuit diagram of an AC / DC electric vehicle. The electric power collected by the current collector 1 is connected to the circuit breaker 2 as electric power for driving the vehicle, and is used for measuring the voltage of the instrument to detect whether the electrical system of the overhead line is alternating current or direct current. Also connected to the primary winding of the vessel 21. A first DC voltage relay resistor 23 and a second DC voltage relay resistor 24 are connected in series to the ground side of the instrument transformer 21 and grounded. An AC voltage relay 22 is connected to the secondary side of the instrument transformer 21, and a DC voltage relay 25 is connected to the second DC voltage relay resistor 24 in parallel.
[0011]
In the AC section, an overhead voltage that is stepped down at the turn ratio of the instrument transformer 21 is generated on the secondary side of the instrument transformer 21, and the AC voltage relay 22 operates and the voltage of the overhead line is AC. Detect that. At this time, the voltage divided by the instrument transformer 21, the first DC voltage relay resistor 23, and the second DC voltage relay resistor 24 is applied to the DC voltage relay 25, but the second DC voltage relay resistor The impedance of the primary winding of the instrument transformer 21 is much larger than the resistance value of the voltage transformer 24, and almost no voltage is generated in the second DC voltage relay resistor 24.
[0012]
In the DC section, since the impedance of the primary winding of the instrument transformer 21 is only the resistance of the winding and becomes a negligible value, the DC voltage relay 25 includes the first DC voltage relay resistor and The voltage divided by the second DC voltage relay resistor is applied, and the DC voltage relay 25 operates to detect that the voltage of the overhead wire is DC.
[0013]
At the time of AC / DC switching, if the crew performs the AC / DC switching operation before entering the non-voltage section, the circuit breaker 2 is first opened, and the AC / DC switching device 3 is switched to the electric circuit side to enter. After that, the vehicle passes through the no-voltage section, enters the section of the new electrical system, and the electrical system connected to the AC / DC switch 3 and the electrical system detected by the AC voltage relay 22 or the DC voltage relay 25 are When they coincide with each other, the circuit breaker 2 is turned on and operation by a new electric system becomes possible. Here, when entering the AC section from the DC section, if the crew member forgets the AC / DC switching operation, the crew enters the AC section without switching the circuit, and therefore enters the non-voltage section and the DC voltage relay 25 is connected to the DC section. A sequence for opening the circuit breaker 2 when it is detected that there is no voltage is set up.
[0014]
1, the AC / DC switch 3 is connected to the DC contactor 14 side during traveling in the DC section, and the power collected from the current collector 1 is the circuit breaker 2, AC / DC switch 3, DC contactor 14, and The filter capacitor 7 is charged via the filter reactor 17 and supplied to the inverter device 8.
[0015]
Here, if the DC contactor 14 is not opened even during coasting, the filter capacitor 7 is charged when the crew member forgets the AC / DC switching operation and enters the no-voltage section when switching from DC to AC described above. It is impossible to detect that the charged electric charge flows backward through the filter reactor 17, the DC contactor 14, the AC / DC switch 3, and the circuit breaker 2 to operate the DC voltage relay 25 and enter the no-voltage section, and the DC circuit It will enter the AC section and damage the equipment.
[0016]
[Means for Solving the Problems]
In order to solve the above problems, the AC contactor is always closed and the DC contactor is always open during the AC power supply section operation, and the AC contactor is always opened and the inverter device is operated during the DC power supply section operation ( only when the gate start command) is issued with a means to close the DC contactor, when the AC power supply section operating Ru you switch to the DC power supply section operation, turns off the gate start command before switching to the DC power supply section operation, After charging the filter capacitor through the series body of the charging resistor and the auxiliary DC contactor, a gate start command for operating the inverter device is issued, and the DC contactor opened during the AC power supply section operation is closed.
[0017]
Thus, in the DC section, the operation of the inverter device is stopped, so that the DC contactor 14 is opened, so that it can be detected that the overhead line voltage has disappeared by entering the non-voltage section, and the breaker 3 is turned on before entering the AC section. The opening device can be protected.
[0018]
Even if the inverter enters the no-voltage section during the operation of the inverter, the power supply to the filter capacitor 7 is interrupted during the powering operation, so the voltage of the filter capacitor 7 rapidly decreases and is set in advance. When the voltage drops to the voltage, the protection operation for detecting the low voltage is activated, the operation of the inverter device is stopped, and the DC contactor 14 can be opened.
[0019]
If the regenerative braking is in operation, the regenerative power cannot be returned to the overhead wire, so the voltage of the filter capacitor 7 rapidly rises, the overvoltage detection protection operation is activated, the inverter device is stopped, and the DC contactor 14 is opened. Can do. In the AC section, since the AC voltage relay 22 is not reversely pressurized from the converter device 6 side, it can be detected that the overhead wire voltage has disappeared by entering the non-voltage section even if the AC contactor 11 is closed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
FIG. 4 is a detailed circuit diagram of the AC / DC electric vehicle according to the present invention. The operation of the AC contactor 11 and the DC contactor 14 which are features of the present invention will be described with reference to FIG.
[0022]
Before starting operation of the vehicle, the AC contactor 11, the auxiliary AC contactor 12, the DC contactor 14, and the auxiliary DC contactor 15 are all open.
[0023]
In the AC section, the auxiliary AC contactor 12 is first closed by the first notch insertion, and the charging current limited by the charging resistor 13 flows into the single-phase PWM converter 30. In the single-phase PWM converter device 30, the filter capacitor 7 is charged by being rectified by the free wheel diodes 35 to 38 connected in parallel to the IGBTs 31 to 34 of each arm. When the filter capacitor 7 is charged, the auxiliary AC contactor 12 is opened, the AC contactor 11 is closed, the single-phase PWM converter device 30 is gate-started, and then the inverter device 8 is gate-started.
[0024]
At the time of notch-off, the gates of the inverter device 8 and the single-phase PWM converter device 30 only stop. Since the AC contactor 11 is already turned on when the notch is turned on again, the charging time for the filter capacitor 7 becomes unnecessary, and the single-phase PWM converter device 30 and the inverter device 8 immediately start to gate.
[0025]
In the DC section, the auxiliary DC contactor 15 is first closed by the first notch insertion, and the current limited by the charging resistor 16 charges the filter capacitor 7 through the filter reactor 17. When the filter capacitor 7 is charged, the auxiliary DC contactor 15 is opened, the DC contactor 14 is closed, and the inverter device 8 is gate-started.
[0026]
At the time of notch-off, the gate of the inverter device 8 is stopped, and then the DC contactor 15 is opened. As a result, when the crew member forgets the AC / DC switching operation and enters the no-voltage section, it is detected that the voltage of the filter capacitor 7 is not reversely pressurized to the DC voltage relay 25 and the overhead line voltage is lost. By opening the circuit breaker 2, it is possible to prevent the circuit from entering the AC section while being in the DC section and damaging the device.
[0027]
When the notch is turned on again, the auxiliary DC contactor 15 is first closed, and after the filter capacitor 7 is charged, the auxiliary DC contactor 15 is opened and the DC contactor 14 is closed. Start.
[0028]
【The invention's effect】
As described above, according to the present invention, even if the crew member forgets to switch between AC and DC when the AC / DC electric vehicle enters the AC section from the DC section, the DC voltage disappears in the overhead line by entering the non-voltage section. By detecting this and opening the circuit breaker, it is possible to prevent the circuit from entering the AC section while being in the state of the DC section and damaging the device.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an AC / DC electric vehicle according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional DC train.
FIG. 3 is a time sequence of operations of a conventional DC train contactor and the like.
FIG. 4 is a detailed circuit diagram of an AC / DC electric vehicle according to an embodiment of the present invention.
FIG. 5 is a time sequence of operation of a contactor or the like according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Current collector, 2 ... Circuit breaker, 3 ... AC / DC switcher, 4 ... Transformer, 6 ... Converter device, 7 ... Filter capacitor, 8 ... Inverter device, 9 ... Induction motor, 10 ... Grounding brush, 11 ... AC contact 12 ... auxiliary AC contactor, 13 ... charging resistor, 14 ... DC contactor, 15 ... auxiliary DC contactor, 16 ... charging resistor, 17 ... filter reactor, 21 ... instrument transformer, 22 ... AC voltage Relay, 23 ... 1st DC voltage relay resistor, 24 ... 2nd DC voltage relay resistor, 25 ... DC voltage relay, 31-34 ... IGBT, 35-38 ... Freewheel diode.

Claims (1)

架線に交流区間と直流区間を有し、この両区間を走行可能な電気鉄道車両システムにおいて、架線から電源を取り込むための集電器と、電源を遮断するために前記集電器に接続された遮断器と、前記集電器,遮断器を介して得られる架線からの電力を交流側と直流側とに切り替える交直切替器と、前記交直切替器の交流出力側に接続された変圧器と、前記変圧器の2次側出力に交流接触器を介して接続され、交流電力を直流電力に変換するコンバータ装置と、前記コンバータ装置の直流出力側に接続されたインバータ装置と、前記交直切替器の直流出力側と前記インバータ装置の直流入力側との間に直列に接続された直流接触器、前記直流接触器と並列に接続される充電抵抗器と補助直流接触器の直列体、及びフィルタリアクトルと、前記インバータ装置の直流入力側の正負両極間に接続されたフィルタコンデンサと、交流電源区間運転時は、前記交流接触器を常時閉じて前記直流接触器は常時開き、直流電源区間運転時は、前記交流接触器を常時開き、インバータ装置を動作させる指令(ゲートスタート指令)が発せられた時のみ前記直流接触器を閉じさせる手段を備え、前記交流電源区間運転から前記直流電源区間運転に切り替る時、前記直流電源区間運転に切り替える前は前記ゲートスタート指令をオフし、前記直列体を介して前記フィルタコンデンサを充電した後、インバータ装置を動作させる前記ゲートスタート指令を発し、前記交流電源区間運転時に開いていた前記直流接触器を閉じることを特徴とする電気車制御装置。In an electric railway vehicle system having an AC section and a DC section on an overhead line and capable of traveling in both sections, a current collector for taking in power from the overhead line, and a circuit breaker connected to the current collector to shut off the power source An AC / DC switch that switches power from an overhead line obtained via the current collector and circuit breaker between an AC side and a DC side, a transformer connected to an AC output side of the AC / DC switch, and the transformer A converter device that is connected to the secondary output of the converter through an AC contactor and converts AC power into DC power, an inverter device that is connected to a DC output side of the converter device, and a DC output side of the AC / DC switch A DC contactor connected in series between the inverter and the DC input side of the inverter device, a series body of a charging resistor and an auxiliary DC contactor connected in parallel with the DC contactor, a filter reactor, The filter capacitor connected between the positive and negative poles on the DC input side of the barter device and the AC contactor is always closed and the DC contactor is always open during AC power supply operation, and the AC contactor is open during DC power supply operation. open the contactor always only when the command for operating the inverter device (gate start command) is issued with a means to close the DC contactor, when from the alternating current power supply section operating Ru you switch to the DC power supply section operation Before switching to the DC power supply section operation, the gate start command is turned off, and after charging the filter capacitor through the series body, the gate start command for operating the inverter device is issued. An electric vehicle control device characterized by closing the open DC contactor.
JP32270097A 1997-11-25 1997-11-25 Electric vehicle control device Expired - Lifetime JP3677534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32270097A JP3677534B2 (en) 1997-11-25 1997-11-25 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32270097A JP3677534B2 (en) 1997-11-25 1997-11-25 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JPH11155204A JPH11155204A (en) 1999-06-08
JP3677534B2 true JP3677534B2 (en) 2005-08-03

Family

ID=18146651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32270097A Expired - Lifetime JP3677534B2 (en) 1997-11-25 1997-11-25 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3677534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081066B2 (en) * 2004-11-05 2008-04-23 三菱電機株式会社 Electric vehicle control device
JP5346184B2 (en) * 2008-08-01 2013-11-20 パナソニック株式会社 Power distribution system and power receiving terminal
US9716442B2 (en) 2012-07-13 2017-07-25 Mitsubishi Electric Corporation Power converter, electric rolling stock and method for controlling sequence test
JP6078442B2 (en) * 2013-09-13 2017-02-08 株式会社日立製作所 Railway vehicle drive system
JP6154266B2 (en) * 2013-09-18 2017-06-28 公益財団法人鉄道総合技術研究所 Electric vehicle, voltage conversion method, and program

Also Published As

Publication number Publication date
JPH11155204A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
CN1037331C (en) Electric vehicle control device
KR101169343B1 (en) Restoration-electric power storage system of DC electric railway car
CN100550599C (en) Control apparatus for electric railcar
KR940013983A (en) Electric system of electric car
US20060224360A1 (en) Fault diagnosing apparatus for vehicle and fault diagnosing method for vehicle
JP6064657B2 (en) Rotating electric machine drive
CN103987561A (en) Electric vehicle drive system
JP2008086077A (en) Railroad vehicle drive control device
JP3677534B2 (en) Electric vehicle control device
JP4269197B2 (en) A drive device for a permanent magnet motor for an electric vehicle.
TWI670189B (en) Rail vehicle circuit system
RU2620128C9 (en) Improved system of hard precharging for parallel inverters
JP2000050410A (en) Drive circuit of permanent magnet synchronous motor train
JPH07274529A (en) Power converter
JPH05959B2 (en)
JPH0526402B2 (en)
JPH0759359A (en) Power converter for power regeneration
JP3606760B2 (en) Hybrid electric vehicle power supply system
JPH06315201A (en) Driver for electric automobile
JP3678582B2 (en) Power conversion device and additional device for regeneration of the device
KR101169342B1 (en) Restoration-electric power storage system of AC electric railway car
JPS6271404A (en) Controller for electric rolling stock
JPS63186505A (en) Controller for ac electric car
JP2837989B2 (en) Electric car control device
JPH06245564A (en) Motor controller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

EXPY Cancellation because of completion of term