JP4269197B2 - A drive device for a permanent magnet motor for an electric vehicle. - Google Patents

A drive device for a permanent magnet motor for an electric vehicle. Download PDF

Info

Publication number
JP4269197B2
JP4269197B2 JP10930799A JP10930799A JP4269197B2 JP 4269197 B2 JP4269197 B2 JP 4269197B2 JP 10930799 A JP10930799 A JP 10930799A JP 10930799 A JP10930799 A JP 10930799A JP 4269197 B2 JP4269197 B2 JP 4269197B2
Authority
JP
Japan
Prior art keywords
inverter
motor
voltage
permanent magnet
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10930799A
Other languages
Japanese (ja)
Other versions
JP2000308388A (en
Inventor
覚 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP10930799A priority Critical patent/JP4269197B2/en
Publication of JP2000308388A publication Critical patent/JP2000308388A/en
Application granted granted Critical
Publication of JP4269197B2 publication Critical patent/JP4269197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄道車両や電気自動車などのように永久磁石電動機を備え、惰行運転を行なうことがある場合に用いて好適な永久磁石電動機駆動装置に関する。
【0002】
【従来の技術】
近年、二酸化炭素による地球温暖化や大気汚染等の環境問題に対する取り組みとして、電気自動車の実用化が進められている。また、鉄道車両においても省エネルギーや保守軽減等の観点から、VVVFインバータを利用した交流電動機駆動システムが主流となりつつある。
図3に交流電動機(誘導電動機)駆動システムの従来例を示す。
同図において、1は電源(架線)、2はパンタグラフ、3は遮断器、4はフィルタリアクトル、9は交流電動機、10は例えばIGBT(絶縁ゲートバイポーラトランジスタ)等の電力変換素子11〜16およびフリーホイーリングダイオード21〜26などからなるインバータ、30はフィルタコンデンサ、31〜33はスナバコンデンサである。
【0003】
すなわち、架線1またはバッテリ等から供給される直流電力を、半導体電力変換素子11〜16およびダイオード21〜26からなるインバータ10で可変電圧可変周波数(VVVF)の交流電力に変換し、交流電動機9を可変速駆動する。交流電動機9としては通常誘導電動機を使用し、いわゆるベクトル制御にもとづいて、その励磁電流成分やトルク電流成分を調整することで、電動機の発生トルクや端子電圧を制御する。
【0004】
これらの駆動システムに適用される電動機は、低速で大トルクを発生する必要があるが、同時に小形軽量であることが必須であることから、電動機を高速回転形とし、減速ギアを用いて低速におけるトルク不足を補うようにしている。
近年、希土類磁石の高性能化により、低速トルクの発生が容易でエネルギー効率にも優れた、永久磁石形同期電動機(以下、PMモータとも略記する)を用いた自動車,電車の駆動システムの研究開発が盛んになっている。
【0005】
PMモータの場合、永久磁石による磁束が一定であるため、電動機単体の特性としては、磁束密度と電動機の回転速度との積に比例した誘起電圧を発生する。これを無負荷誘起電圧といい、図4に点線で示すような特性を持つ。これに対して、インバータは入力の直流電圧以上の電圧を発生することはできないことから、無負荷誘起電圧がインバータの最大出力電圧を越える領域では、永久磁石による磁束を打ち消すような磁束を電機子巻線で発生させる、いわゆる界磁弱め制御を行なって、高速までの運転を行なっている(図4の実線参照)。
【0006】
自動車や電車では、駆動システムによる加速,減速を行なわずに惰性で走行(惰行)することがその運転モードの大きな特徴である。このような場合、PMモータを使用する駆動システムでは前述のような無負荷誘起電圧が発生し、この無負荷誘起電圧がインバータの直流電圧(コンデンサ30の両端電圧に相当)よりも大きな領域では、PMモータの誘起電圧が半導体電力変換素子11〜16に逆並列接続されたダイオード21〜26を介して全波整流され、直流中間電圧(コンデンサ30の両端電圧)を上昇させたり、電源側1に電力回生されて、駆動システム全体としてはブレーキ動作を行なうことになる。
【0007】
このため、PMモータを使用した自動車,電車駆動システムでは加速/減速/惰行にかかわらず、PMモータの端子電圧を一定のレベルになるように、常時、弱め界磁制御のための励磁電流を流したり、あるいは、図5のシステム構成に示すように、インバータ10の出力とPMモータ5の端子間に断路器6を設け、インバータ停止(惰行)時にPMモータ5の無負荷誘起電圧がインバータ10の出力端子に直接印加されないようにしている。
【0008】
【発明が解決しようとする課題】
電車や自動車が惰行中に、界磁弱め制御のための励磁電流を流すべくインバータ運転することは、PMモータの巻線に電流が流れることによって生じる銅損やインバータの変換損失が発生するため、省エネルギーの観点から好ましくない。特に、エネルギー効率が最重要課題の電気自動車では、致命的な問題である。
また、惰行中に断路器6を開放する図5のような方式では、惰行中の電力損失や不要な制動力は発生しないが、惰行状態から再度加速したり減速したりするためにインバータ運転を再開する場合は、断路器6を閉じる必要がある。
【0009】
しかしながら、PMモータ5が高速回転中に断路器6を閉じることは、PMモータ5の過大な無負荷誘起電圧がインバータ10を構成する素子11〜16および21〜26に一気に印加されることになり、急激な電圧上昇による半導体電力変換素子の破壊や、無負荷誘起電圧の急激な電源回生による走行速度のショックで乗り心地に悪影響を与えるおそれがあった。このため、一旦、断路器6を開放してしまうと、電車または自動車が減速してPMモータ5の過大な無負荷誘起電圧がインバータ10の出力電圧以下に低下するまで、断路器6の閉成(導通)とインバータ運転の再開を待たねばならず、実用にならないという問題が生じる。さらには、図3のような従来の誘導電動機駆動システムでは断路器は不要であるのに対し、図5では部品点数の増加によるコスト,質量,サイズの増加や、有接点部品であることから保守,信頼性の点からも問題があった。
したがって、この発明の課題は部品点数を増加させることなく、電動機の無負荷誘起電圧による過電圧対策やインバータの再起動を容易とすることにある。
【0010】
【課題を解決するための手段】
このような課題を解決するため、この発明では、インバータの電源とインバータアーム間に一方向導通手段と開閉手段との並列接続回路を直列に挿入し、インバータを介して永久磁石形同期電動機を駆動する駆動装置であって、
インバータの停止中には前記開閉手段を開放し、
インバータの運転開始時には前記開閉手段を開放したままで、前記電動機の端子電圧が所定の値になるように励磁電流を制御し、前記電動機の端子電圧が所定値に達したとき前記開閉手段を閉とした状態で前記電動機のトルク電流を制御して電動機を加減速運転し、
運転中のインバータを停止させるときは、前記電動機の端子電圧が所定値になるように励磁電流を制御したままでトルク電流をゼロに減少させた後、前記開閉手段を開放し、しかる後励磁電流を減少させてインバータの運転を停止させることを特徴とする。
【0011】
【発明の実施の形態】
図1はこの発明の実施の形態を示す構成図である。
同図からも明らかなように、図3に示すものに対し主コンデンサ30とインバータ10との間に直列に、スイッチのような開閉手段7とダイオードのような電力の一方向の導通手段8との並列回路を挿入した点が特徴である。導通手段8は駆動システムが加速運転を行なうとき、電源1側からインバータ10に電力を供給する方向に導通する。
また、40は制御装置で、所定のアルゴリズム(例えば、交流電動機のベクトル制御のための)に従い、インバータ10および開閉手段7のオン,オフ制御を行なう。なお、制御に必要な電圧,電流を含む諸量の検出、IGBTへのゲート信号の供給等については記述を省略した。
【0012】
そして、インバータ運転の停止中には、制御装置40により開閉手段7を開放することで、インバータアームの各相ごとのコンデンサ31〜33は、フリーホイーリングダイオード21〜26を介して、そのときPMモータ5が発生する無負荷誘起電圧までいわゆるピーク充電されるが、この電圧はPMモータの諸特性と回転速度から決まる有限の電圧であり、ダイオード21〜26によって全波整流された比較的安定した電圧であることから、半導体素子11〜16とコンデンサ31〜33の電圧定格を適切に選ぶことで、十分に対処できる。
【0013】
また、無負荷誘起電圧は電力の一方向の導通手段8によって電源1側と遮断されるため、惰行運転中の無負荷誘起電圧が電源側に回生されることによって生じる無用なブレーキ力の発生とそれに伴うエネルギーの損失を防ぐことができる。さらに、電力の一方向の導通手段8から電源側の電圧が通常の電源電圧以上に上昇することがないので、大容量が要求されるフィルタコンデンサ30は通常の電圧定格のものが適用可能であり、過電圧で駆動システム外の電機品へ影響を及ぼすおそれもない。また、インバータの各アームに付随したスナバコンデンサ31,32および33の電圧はいわゆるピーク充電によって上昇するため、定格電圧を高くとる必要があるが、フィルタコンデンサに比べて低容量でよいことから選定は比較的容易である。
【0014】
PMモータ5の回転中にインバータ運転を再開する場合、制御装置40により開閉手段7を開放したままでインバータ運転を再開し、有効電力(トルク電流)成分はゼロのまま、無効電力(励磁電流)成分のみを制御してPMモータの端子電圧が所定の値になるようにする。その結果、PMモータ5の磁束は弱められて誘起電圧は低下するとともに、コンデンサ31〜33に充電された電荷は、この間のインバータ動作のスイッチング損失やPMモータ5の巻線の銅損で消費されて低下する。このときの損失が電源電圧に対するコンデンサ31〜33の充電電圧の過剰分を上回っている場合は、電力は一方向の導通手段8を介して電源側1から供給される。しかる後、開閉手段7を閉じることで、駆動(力行)/回生(制動)運転にかかわらず、通常の運転動作を始めることができる。
回生(制動)運転の場合、負荷電流がインバータ10を介してPMモータ5から電源1側へ回生されることになるが、開閉手段7の開放中は上述のように、トルク電流成分をゼロに制御することで、開閉手段7を閉じたままでも回生動作による電圧上昇は起こらない。
【0015】
以上の動作を状態遷移図で示すと図2のようになる。なお、図1の架線電圧は常に印加、開閉器3は常に閉としている。また、VPMおよびVINVはそれぞれPMモータの誘起電圧およびインバータの出力電圧を示している。
▲1▼モード1:初期状態
▲2▼モード2:制御装置40は開閉手段7を開放状態にする。その結果、PMモータ5の運転状態,その無負荷誘起電圧の有無にかかわらず、コンデンサ30の電圧は架線電圧1と一致している。
▲3▼モード3:制御装置40はインバータ運転に先立ち、開閉手段7を開放のままでインバータ10を運転して、PMモータ5の端子電圧が所定のレベルになるよう励磁電流を制御する。このとき、PMモータ5の誘起電圧がインバータ10の出力電圧以下であれば、励磁電流の通流に伴う電力損失は、電力の一方向の導通手段8を介して電源1側から供給される。また、PMモータ5の誘起電圧がインバータ10の出力電圧を超える場合、励磁電流の通流に伴う電力損失は、インバータ10の各アームに備わるコンデンサ31〜33に充電されたエネルギー、または、電力の一方向の導通手段8を介して電源側から供給され、コンデンサ31〜33の電圧およびPMモータ5の誘起電圧は所定の電圧に制御されるようになる。
【0016】
▲4▼モード4:制御装置40はPMモータ5の誘起電圧が所定のレベルになったことを確認して、開閉手段7を閉じる(接続する)。
▲5▼モード5:制御装置40はPMモータ5のトルク分電流の制御を開始して、所定の加速トルクまたは減速トルクが得られるようにする。
▲6▼モード6:加速または減速動作が終了したら、制御装置40は、PMモータ5の端子電圧が所定のレベルに保たれるようインバータ10の励磁電流を制御しながら、トルク分電流を減少させる。
▲7▼モード7:制御装置40はトルク分電流がゼロになったところで、開閉手段7を開放するとともに励磁電流を減少させ、励磁電流がゼロになったところで、インバータ10の運転を終了する。
以上を表にすると表1となる。
【表1】

Figure 0004269197
【0017】
【発明の効果】
この発明によれば、下記のような効果を期待することができる。
1)電動機の惰行運転中の無負荷誘起電圧によってピーク充電される部位が限定され、かつ、その電圧も安定していることから、適切な電圧定格の素子,部品を適用することで、電動機の無負荷誘起電圧による過電圧の対策が容易となる。
2)電動機の惰行運転中の無負荷誘起電圧が電源側に回生されることがないため、不必要なブレーキ力が発生しない。
3)惰行運転中に停止しているインバータを起動する場合でも、インバータ起動および電動機巻線の初期励磁に必要な電力を負荷側の高電圧を阻止した状態で供給できるため、容易に起動することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す構成図である。
【図2】図1の動作を説明するための状態遷移図である。
【図3】第1の従来例を示す構成図である。
【図4】界磁弱め制御の説明図である。
【図5】第2の従来例を示す構成図である。
【符号の説明】
1…電源(架線)、2…パンタグラフ、3…遮断器、4…フィルタリアクトル、5…永久磁石電動機(PM)、6…断路器、7…開閉手段、8…一方向の導通手段、9…交流電動機、10…インバータ、11〜16…半導体電力変換素子、21〜26…フリーホイーリングダイオード、30…フィルタコンデンサ(主コンデンサ)、31〜33…スナバコンデンサ、40…制御装置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet motor driving apparatus suitable for use in a case where a permanent magnet motor is provided, such as a railway vehicle or an electric vehicle, and coasting operation is sometimes performed.
[0002]
[Prior art]
In recent years, electric vehicles have been put into practical use as an approach to environmental problems such as global warming caused by carbon dioxide and air pollution. Also, in the railway vehicles, AC motor drive systems using VVVF inverters are becoming mainstream from the viewpoints of energy saving and maintenance reduction.
FIG. 3 shows a conventional example of an AC motor (induction motor) drive system.
In the figure, 1 is a power source (overhead wire), 2 is a pantograph, 3 is a circuit breaker, 4 is a filter reactor, 9 is an AC motor, 10 is a power conversion element 11-16 such as an IGBT (insulated gate bipolar transistor), and a free An inverter composed of wheeling diodes 21 to 26, 30 is a filter capacitor, and 31 to 33 are snubber capacitors.
[0003]
That is, the DC power supplied from the overhead wire 1 or the battery is converted into AC power of variable voltage variable frequency (VVVF) by the inverter 10 including the semiconductor power conversion elements 11 to 16 and the diodes 21 to 26, and the AC motor 9 is Variable speed drive. A normal induction motor is used as the AC motor 9, and the generated torque and terminal voltage of the motor are controlled by adjusting the excitation current component and torque current component based on so-called vector control.
[0004]
Electric motors applied to these drive systems need to generate large torque at low speeds, but at the same time, it is essential that they be small and light. I try to make up for the lack of torque.
Research and development of drive systems for automobiles and trains using permanent magnet synchronous motors (hereinafter also abbreviated as PM motors), which are easy to generate low-speed torque and excellent in energy efficiency due to high performance of rare earth magnets in recent years. Has become popular.
[0005]
In the case of a PM motor, since the magnetic flux generated by the permanent magnet is constant, an induced voltage proportional to the product of the magnetic flux density and the rotational speed of the motor is generated as a characteristic of the motor alone. This is called a no-load induced voltage and has a characteristic as shown by a dotted line in FIG. On the other hand, since the inverter cannot generate a voltage higher than the input DC voltage, in the region where the no-load induced voltage exceeds the maximum output voltage of the inverter, a magnetic flux that cancels the magnetic flux generated by the permanent magnet is applied to the armature. The so-called field weakening control generated by the winding is performed, and operation up to high speed is performed (see the solid line in FIG. 4).
[0006]
In automobiles and trains, driving (coasting) by inertia without acceleration or deceleration by the drive system is a major feature of the driving mode. In such a case, the drive system using the PM motor generates a no-load induced voltage as described above, and in a region where the no-load induced voltage is larger than the DC voltage of the inverter (corresponding to the voltage across the capacitor 30), The induced voltage of the PM motor is full-wave rectified via diodes 21 to 26 connected in reverse parallel to the semiconductor power conversion elements 11 to 16 to increase the DC intermediate voltage (voltage across the capacitor 30) or to the power source side 1. Electric power is regenerated, and the entire drive system performs a braking operation.
[0007]
For this reason, in motor vehicles and train drive systems using PM motors, an excitation current for field weakening control is always applied so that the terminal voltage of the PM motor becomes a constant level regardless of acceleration / deceleration / coasting, Alternatively, as shown in the system configuration of FIG. 5, a disconnector 6 is provided between the output of the inverter 10 and the terminal of the PM motor 5, and the no-load induced voltage of the PM motor 5 is the output terminal of the inverter 10 when the inverter is stopped (coasting). So that it is not directly applied.
[0008]
[Problems to be solved by the invention]
When an inverter is operated to flow an exciting current for field weakening control while a train or automobile is coasting, copper loss or inverter conversion loss caused by current flowing in the winding of the PM motor occurs. It is not preferable from the viewpoint of energy saving. In particular, it is a fatal problem in an electric vehicle in which energy efficiency is the most important issue.
In the method shown in FIG. 5 in which the disconnector 6 is opened during coasting, no power loss or unnecessary braking force is generated during coasting, but inverter operation is performed to accelerate or decelerate again from the coasting state. When restarting, it is necessary to close the disconnector 6.
[0009]
However, closing the disconnector 6 while the PM motor 5 rotates at a high speed means that an excessive no-load induced voltage of the PM motor 5 is applied to the elements 11 to 16 and 21 to 26 constituting the inverter 10 at once. Further, there is a possibility that the riding comfort is adversely affected by the destruction of the semiconductor power conversion element due to a rapid voltage rise or the shock of the traveling speed due to the rapid power regeneration of the no-load induced voltage. For this reason, once the disconnector 6 is opened, the disconnector 6 is closed until the train or automobile decelerates and the excessive no-load induced voltage of the PM motor 5 drops below the output voltage of the inverter 10. (Continuity) and the restart of inverter operation must be waited, causing a problem that it is not practical. Furthermore, the disconnector is not required in the conventional induction motor drive system as shown in FIG. 3, whereas in FIG. 5, the cost, mass and size increase due to the increase in the number of parts, and maintenance is due to the contact parts. There was also a problem in terms of reliability.
Accordingly, an object of the present invention is to facilitate measures against overvoltage due to no-load induced voltage of an electric motor and restart of an inverter without increasing the number of parts.
[0010]
[Means for Solving the Problems]
In order to solve such problems, in the present invention, a parallel connection circuit of a one-way conduction means and an opening / closing means is inserted in series between the inverter power supply and the inverter arm, and the permanent magnet type synchronous motor is driven through the inverter. A driving device for
While the inverter is stopped, open the opening and closing means,
The excitation current is controlled so that the terminal voltage of the motor becomes a predetermined value while the switching means is opened at the start of the inverter operation, and the switching means is closed when the terminal voltage of the motor reaches a predetermined value. In such a state, the torque current of the motor is controlled and the motor is accelerated / decelerated,
When stopping the inverter during operation, the torque current is reduced to zero while controlling the excitation current so that the terminal voltage of the electric motor becomes a predetermined value, then the switching means is opened, and then the excitation current Is reduced to stop the operation of the inverter.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing an embodiment of the present invention.
As can be seen from FIG. 3, the switching means 7 such as a switch and the one-way conduction means 8 such as a diode are connected in series between the main capacitor 30 and the inverter 10 as shown in FIG. The feature is that a parallel circuit is inserted. The conducting means 8 conducts in the direction in which power is supplied from the power source 1 side to the inverter 10 when the drive system performs an acceleration operation.
Reference numeral 40 denotes a control device that performs on / off control of the inverter 10 and the opening / closing means 7 according to a predetermined algorithm (for example, for vector control of an AC motor). Note that description of detection of various amounts including voltage and current necessary for control, supply of a gate signal to the IGBT, and the like is omitted.
[0012]
When the inverter operation is stopped, the control device 40 opens the opening / closing means 7 so that the capacitors 31 to 33 for each phase of the inverter arm are connected to the PM via the freewheeling diodes 21 to 26 at that time. The so-called peak charge is performed up to the no-load induced voltage generated by the motor 5, but this voltage is a finite voltage determined by the various characteristics and rotational speed of the PM motor, and is relatively stable that is full-wave rectified by the diodes 21 to 26. Since it is a voltage, it can fully cope with by selecting appropriately the voltage rating of the semiconductor elements 11-16 and the capacitors 31-33.
[0013]
Further, since the no-load induced voltage is interrupted from the power source 1 side by the unidirectional conduction means 8 of the electric power, generation of useless braking force generated by regenerating the no-load induced voltage during coasting operation to the power source side The loss of energy accompanying it can be prevented. Further, since the voltage on the power supply side from the conduction means 8 in one direction of power does not rise above the normal power supply voltage, the filter capacitor 30 requiring a large capacity can be applied with a normal voltage rating. In addition, there is no possibility that the overvoltage causes an electrical product outside the drive system. Further, the voltage of the snubber capacitors 31, 32 and 33 attached to each arm of the inverter rises by so-called peak charging, so it is necessary to take a high rated voltage. It is relatively easy.
[0014]
When the inverter operation is resumed while the PM motor 5 is rotating, the inverter operation is resumed with the opening / closing means 7 being opened by the control device 40, the active power (torque current) component remains zero, and the reactive power (excitation current). Only the components are controlled so that the terminal voltage of the PM motor becomes a predetermined value. As a result, the magnetic flux of the PM motor 5 is weakened and the induced voltage is lowered, and the charges charged in the capacitors 31 to 33 are consumed by the switching loss of the inverter operation during this period and the copper loss of the winding of the PM motor 5. Will drop. If the loss at this time exceeds the excess of the charging voltage of the capacitors 31 to 33 with respect to the power supply voltage, the power is supplied from the power supply side 1 through the one-way conduction means 8. Thereafter, by closing the opening / closing means 7, a normal driving operation can be started regardless of the driving (power running) / regenerative (braking) operation.
In the case of regenerative (braking) operation, load current is regenerated from the PM motor 5 to the power source 1 via the inverter 10, but the torque current component is set to zero while the opening / closing means 7 is open as described above. By controlling, the voltage rise due to the regenerative operation does not occur even when the opening / closing means 7 is closed.
[0015]
The above operation is shown in a state transition diagram as shown in FIG. 1 is always applied, and the switch 3 is always closed. V PM and V INV represent the induced voltage of the PM motor and the output voltage of the inverter, respectively.
(1) Mode 1: Initial state (2) Mode 2: The control device 40 opens the opening / closing means 7. As a result, the voltage of the capacitor 30 matches the overhead wire voltage 1 regardless of the operating state of the PM motor 5 and the presence or absence of the no-load induced voltage.
{Circle around (3)} Mode 3: Prior to the inverter operation, the control device 40 operates the inverter 10 with the opening / closing means 7 open, and controls the excitation current so that the terminal voltage of the PM motor 5 becomes a predetermined level. At this time, if the induced voltage of the PM motor 5 is equal to or lower than the output voltage of the inverter 10, the power loss accompanying the flow of the excitation current is supplied from the power source 1 side through the unidirectional conduction means 8 of the power. Further, when the induced voltage of the PM motor 5 exceeds the output voltage of the inverter 10, the power loss due to the excitation current flowing is the energy charged in the capacitors 31 to 33 provided in each arm of the inverter 10 or the power The voltage is supplied from the power supply side through the one-way conduction means 8 and the voltages of the capacitors 31 to 33 and the induced voltage of the PM motor 5 are controlled to predetermined voltages.
[0016]
(4) Mode 4: The control device 40 confirms that the induced voltage of the PM motor 5 has reached a predetermined level, and closes (connects) the opening / closing means 7.
{Circle around (5)} Mode 5: The control device 40 starts control of the current corresponding to the torque of the PM motor 5 so as to obtain a predetermined acceleration torque or deceleration torque.
{Circle around (6)} Mode 6: When the acceleration or deceleration operation is completed, the control device 40 decreases the current for torque while controlling the excitation current of the inverter 10 so that the terminal voltage of the PM motor 5 is maintained at a predetermined level. .
{Circle around (7)} Mode 7: When the torque component current becomes zero, the controller 40 opens the switching means 7 and decreases the excitation current. When the excitation current becomes zero, the operation of the inverter 10 is terminated.
Table 1 shows the above.
[Table 1]
Figure 0004269197
[0017]
【The invention's effect】
According to the present invention, the following effects can be expected.
1) The peak charged part is limited by the no-load induced voltage during coasting operation of the motor, and the voltage is also stable. By applying elements and parts with appropriate voltage ratings, This makes it easy to take measures against overvoltage caused by no-load induced voltage.
2) Since no-load induced voltage during coasting operation of the motor is not regenerated to the power source side, unnecessary braking force is not generated.
3) Even when starting an inverter that is stopped during coasting operation, the power necessary for starting the inverter and initial excitation of the motor winding can be supplied in a state where the high voltage on the load side is blocked, so it can be started easily Can do.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a state transition diagram for explaining the operation of FIG. 1;
FIG. 3 is a block diagram showing a first conventional example.
FIG. 4 is an explanatory diagram of field weakening control.
FIG. 5 is a block diagram showing a second conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Power supply (overhead wire), 2 ... Pantograph, 3 ... Circuit breaker, 4 ... Filter reactor, 5 ... Permanent magnet motor (PM), 6 ... Disconnector, 7 ... Opening / closing means, 8 ... One-way conduction means, 9 ... AC motor, 10 ... inverter, 11-16 ... semiconductor power conversion element, 21-26 ... freewheeling diode, 30 ... filter capacitor (main capacitor), 31-33 ... snubber capacitor, 40 ... control device.

Claims (1)

インバータの電源とインバータアーム間に一方向導通手段と開閉手段との並列接続回路を直列に挿入し、インバータを介して永久磁石形同期電動機を駆動する駆動装置であって、
インバータの停止中には前記開閉手段を開放し、
インバータの運転開始時には前記開閉手段を開放したままで、前記電動機の端子電圧が所定の値になるように励磁電流を制御し、前記電動機の端子電圧が所定値に達したとき前記開閉手段を閉とした状態で前記電動機のトルク電流を制御して電動機を加減速運転し、
運転中のインバータを停止させるときは、前記電動機の端子電圧が所定値になるように励磁電流を制御したままでトルク電流をゼロに減少させた後、前記開閉手段を開放し、しかる後励磁電流を減少させてインバータの運転を停止させることを特徴とする電気車用永久磁石電動機の駆動装置。
A drive device for driving a permanent magnet synchronous motor through an inverter by inserting a parallel connection circuit of a one-way conduction means and an opening / closing means in series between a power source of the inverter and an inverter arm,
While the inverter is stopped, open the opening and closing means,
The excitation current is controlled so that the terminal voltage of the motor becomes a predetermined value while the switching means is opened at the start of the inverter operation, and the switching means is closed when the terminal voltage of the motor reaches a predetermined value. In such a state, the torque current of the electric motor is controlled to accelerate and decelerate the electric motor,
When stopping the inverter during operation, the torque current is reduced to zero while controlling the excitation current so that the terminal voltage of the electric motor becomes a predetermined value, then the switching means is opened, and then the excitation current The drive device for a permanent magnet motor for an electric vehicle is characterized in that the operation of the inverter is stopped by reducing the motor.
JP10930799A 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle. Expired - Lifetime JP4269197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10930799A JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10930799A JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Publications (2)

Publication Number Publication Date
JP2000308388A JP2000308388A (en) 2000-11-02
JP4269197B2 true JP4269197B2 (en) 2009-05-27

Family

ID=14506893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10930799A Expired - Lifetime JP4269197B2 (en) 1999-04-16 1999-04-16 A drive device for a permanent magnet motor for an electric vehicle.

Country Status (1)

Country Link
JP (1) JP4269197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764220B1 (en) 2004-03-23 2007-10-05 주식회사 만도 Fail safty control apparatus in motor driving system for car
US7193378B1 (en) * 2006-03-14 2007-03-20 Gm Global Technology Operations, Inc. Wye switch inverter for electric and hybrid vehicles
JP4768524B2 (en) * 2006-06-13 2011-09-07 株式会社東芝 Electric vehicle control device
JP4987495B2 (en) 2007-01-25 2012-07-25 株式会社東芝 Motor drive system for rail car drive
JP4908327B2 (en) * 2007-06-26 2012-04-04 株式会社日立製作所 Electric vehicle control device and electric vehicle
JP5191351B2 (en) * 2008-11-05 2013-05-08 三菱電機株式会社 Power converter
JP5283751B2 (en) 2009-05-13 2013-09-04 三菱電機株式会社 Power converter and capacitor voltage control method for power converter
KR101308791B1 (en) 2010-03-26 2013-09-17 미쓰비시덴키 가부시키가이샤 Power conversion device
JP5170270B2 (en) * 2011-03-09 2013-03-27 三菱電機株式会社 Power supply
JP6190327B2 (en) * 2014-06-19 2017-08-30 本田技研工業株式会社 Electric motor control system
CN109936320A (en) * 2019-04-26 2019-06-25 福州大学 A kind of bi-motor series connection Direct Torque Control based on duty ratio modulation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008854B2 (en) 2015-02-19 2018-06-26 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
US10951037B2 (en) 2015-02-19 2021-03-16 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control
US11355936B2 (en) 2015-02-19 2022-06-07 Enphase Energy, Inc. Method and apparatus for time-domain droop control with integrated phasor current control

Also Published As

Publication number Publication date
JP2000308388A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP5206130B2 (en) Coil field type synchronous motor regeneration system and control method thereof
JP3597591B2 (en) Motor drive
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP4269197B2 (en) A drive device for a permanent magnet motor for an electric vehicle.
JP5766640B2 (en) Electric vehicle control device
JP5191351B2 (en) Power converter
JP2013062961A (en) Drive control device for railway vehicle
JP3972322B2 (en) Electric vehicle control device
JP3612572B2 (en) Motor drive power supply
US10960769B2 (en) Onboard charging apparatus
JP3290542B2 (en) Hybrid power supply for electric vehicles
JP3606760B2 (en) Hybrid electric vehicle power supply system
CN1949661B (en) Method for maintaining a direct voltage at the input of a DC/AC voltage converter, recording medium for this method, and electric vehicle
CN1209254C (en) Energy regeneration auxiliary power for electric bicycle
JPH0463639B2 (en)
JPH07131905A (en) Hybrid power source for electric vehicle
JPH06261421A (en) Power generator for motor vehicle
JP6851502B2 (en) Power conversion system for railway vehicles
JP4282365B2 (en) Automotive power equipment
JP2011201441A (en) Bi-directional energy conversion device for vehicle
Prajeesh et al. An Efficient Regenerative Braking System for BLDCM driven Electric Vehicles
RU2373077C1 (en) Automotive wheel electric drive
JPH07111710A (en) Hybrid power supply for motor running vehicle
Zhang et al. Investigation and development of a new brushless DC generator system for extended-range electric vehicle application
JPH0819116A (en) Driver for motor driven vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term