JP3972322B2 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP3972322B2
JP3972322B2 JP2001175415A JP2001175415A JP3972322B2 JP 3972322 B2 JP3972322 B2 JP 3972322B2 JP 2001175415 A JP2001175415 A JP 2001175415A JP 2001175415 A JP2001175415 A JP 2001175415A JP 3972322 B2 JP3972322 B2 JP 3972322B2
Authority
JP
Japan
Prior art keywords
power
voltage
electric vehicle
power conversion
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001175415A
Other languages
Japanese (ja)
Other versions
JP2002369304A (en
Inventor
基巳 嶋田
清 仲田
瑛一 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001175415A priority Critical patent/JP3972322B2/en
Publication of JP2002369304A publication Critical patent/JP2002369304A/en
Application granted granted Critical
Publication of JP3972322B2 publication Critical patent/JP3972322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気車の制御装置に係り、特に、電気車の回生ブレーキ制御において回生ブレーキが作用する速度域を拡大する電気車の制御技術に関する。
【0002】
【従来の技術】
鉄道用電気車においては、減速力を得るためにモータを発電機として動作させ、その回生電力を架線に返す回生ブレーキが一般化している。特に近年の地球環境への関心から、電気車のおける回生エネルギ効率向上の要求が高まりつつあり、関連する技術の開発が進められている。
その一環として速度がゼロになるまで回生ブレーキを活用できる全電気ブレーキ停止制御が提案され、速度ゼロで停止するための制御方式および停止精度と乗り心地を両立するための方式である『全電気ブレーキ停止制御』が第7回鉄道技術連合シンポジウム(J−RAIL2000)講演論文集などに示されている。
【0003】
【発明が解決しようとする課題】
第7回鉄道技術連合シンポジウム(J−RAIL2000)講演論文集に示されている『全電気ブレーキ停止制御』は、電力変換器制御手段により電力変換器を制御して電動トルクを制御し、速度検出手段の出力である電動機の検出速度に基づき減速度を演算し、電動機の検出速度が所定速度を下回った時点における電動機の検出速度および減速度に基づいて以後の速度を推定し、その推定速度に基づいて電力変換器制御手段によるトルク制御を行う。すなわち、第7回鉄道技術連合シンポジウム(J−RAIL2000)講演論文集に示されている『全電気ブレーキ停止制御』では、停止まで確実に回生(電気)ブレーキを作用させることによる回生エネルギ効率の向上は可能だが、高速域においてモータ特性上、回生出来ない速度域の回生エネルギ効率向上については考慮していない。
エネルギーの面から言えば、高速域での運動エネルギーは全電気停止ブレーキの守備範囲である速度ゼロ付近に比べての百倍に近い大きさを有しており、省エネ、ブレーキシュー摩耗などの問題に関しても、殆ど高速側の空気ブレーキ作用により決定されている。高速域の空気ブレーキ作用を電気に置き換える全速度域電気ブレーキが可能となれば、画期的改善が行えるものと考える。
【0004】
本発明の課題は、高速域から速度ゼロまでの全速度域で回生ブレーキまたは電気ブレーキを作用させるために、必要なブレーキ力特性を実現し、回生エネルギ効率が向上する電気車の制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、回生ブレーキ力が不足する高速域において、インバータ装置の入力端子に充電・放電が可能な電力蓄積手段を架線などの直流電圧取得手段より得られる電力と同一の電圧印加方向となるように直列接続する構成とする。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の電気車の制御装置の一実施形態を示すブロック図である。
直流電源(A)(または、直流電圧取得手段)1から取得した電源電圧Vaは、電流遮断器(A)2を介してインバータ装置3に供給する。電流遮断器(A)2は、インバータ装置を稼働しないとき、あるいは、インバータ装置3に異常が発生したときに開放することでインバータ装置3への電力供給を遮断する。インバータ装置3は、直流電源(A)1より得られる直流電力を三相交流電力に変換し、その電力を誘導電動機4に供給する。
本実施形態の特徴部分である電力蓄積器5は、インバータ装置3に接続し、電流遮断器(B)6、整流器7、整流器8、充電・放電が可能な直流電源(B)(電力蓄積手段)9、電流遮断器(C)10によって構成する。通常、走行時は電流遮断器(B)6は開放し、電流遮断器(C)10を投入する。このとき整流器8により直流電源(B)9に電流は流れないため、直流電源(B)9がない状態に等しくなり、インバータ入力電圧Vcと電源電圧Vaが等しい(Vc=Va)従来の電気車の制御装置と同じとなる。
高速域において回生ブレーキ力が不足したときには、電流遮断器(C)10を開放し、整流器8を通してインバータ装置3と直流電源(B)9を直列に接続する。ここで、電源電圧Vaの向きと直流電源(B)9の出力端電圧Vbの向きが同じ向きとなるように接続する。このときインバータ装置3の負側直流入力端子の電位は−Vbとなり、インバータ入力電圧Vcは電源電圧Vaと電力蓄積手段出力端電圧Vbの和(Vc=Va+Vb)となる。
これにより、インバータ入力電圧Vcを増大できるため、高速域でのブレーキ力増強が可能になる。このとき、インバータ装置3を回生運転することにより、回生電流Ibが流れるため、直流電源(A)1にはVa×Ibの電力が回生され、直流電源(B)9にはVb×Ibの電力が充電される。
一方、インバータ起動時には、電流遮断機(A)2を開放し、電流遮断機(B)6を投入すると、インバータ装置3には直流電源(B)9の出力端電圧Vbのみが印加され、回生時に直流電源(B)9に充電された電力を有効に利用することができる。さらに、直流電源(B)9の出力端電圧Vbは電源電圧Vaに比し低電圧であることから、インバータ装置3あるいは電動機4から発生する電磁音を低減でき、駅出発時にホーム周辺の乗客に与えるインバータ騒音の影響を改善することが可能である。
【0007】
図2は、本発明の電気車の制御装置の動作原理を示す波形図である。
前述の方式により、インバータ装置3と直流電源(B)9と直列に接続したとき、インバータ装置3のインバータ入力電圧Vcは電源電圧Vaと直流電源(B)9の出力端電圧Vbの和(Vc=Va+Vb)となる。ここで、電動機4への入力電圧(モータ電圧)の最大値はインバータ入力電圧Vcに等しいことから、直流電源(B)9の出力端電圧Vbの分だけ上昇する。これに伴い、モータ電圧を制限することなく制御できる定トルク領域は(Va+Vb)/Va倍に拡大するため、一定の回生ブレーキ力を発生できる速度域も(Va+Vb)/Va倍になる(回生ブレーキ力の点線から実線に拡大する。)。これにより高速域におけるブレーキ力増強が可能になる。なお、モータ電流、すべり周波数は図示のように点線から実線に変化する。
【0008】
図3は、本発明の電気車の制御装置の他の実施形態を示すブロック図である。直流電源(A)1から取得した電源電圧Vaは、電流遮断器(A)2を介してインバータ装置3に供給する。電流遮断器(A)2は、インバータ装置を稼働しないとき、あるいは、インバータ装置3に異常が発生したときに開放することでインバータ装置3への電力供給を遮断する。インバータ装置3は、直流電源(A)1より得られる直流電力を三相交流電力に変換し、その電力を誘導電動機4に供給する。
本実施形態の特徴部分である電力蓄積器5は、インバータ装置3に接続し、電流遮断器(B)6、整流器7、整流器8、充電・放電が可能な2次電池11、電流遮断器(C)10によって構成する。通常、走行時は電流遮断器(B)6は開放し、電流遮断器(C)10を投入する。このとき整流器8により2次電池11に電流は流れないため、2次電池11がない状態に等しくなり、インバータ入力電圧Vcと電源電圧Vaが等しい(Vc=Va)従来の電気車の制御装置と同じとなる。
高速域において回生ブレーキ力が不足したときには、電流遮断器(C)10を開放し、整流器8を通してインバータ装置3と直流電源(B)9と直列に接続する。ここで、電源電圧Vaの向きと2次電池11の出力端電圧Vbの向きが同じ向きとなるように接続する。このときインバータ装置3の負側直流入力端子の電位は−Vbとなり、インバータ入力電圧Vcは電源電圧Vaと電力蓄積手段(2次電池11)出力端電圧Vbの和(Vc=Va+Vb)となる。
これにより、インバータ入力電圧Vcを増大できるため、高速域でのブレーキ力増強が可能になる。このとき、インバータ装置3を回生運転することにより回生電流Ibが流れるため、直流電源(A)1にはVa×Ibの電力が回生され、2次電池11にはVb×Ibの電力が充電される。
一方、インバータ起動時には、電流遮断機(A)2を開放し、電流遮断機(B)6を投入すると、インバータ装置3には2次電池11の出力端電圧Vbのみが印加され、回生時に2次電池11に充電された電力を有効に利用することができる。さらに、2次電池11の出力端電圧Vbは電源電圧Vaに比し低電圧であることから、インバータ装置3あるいは電動機4から発生する電磁音を低減でき、駅出発時にホーム周辺の乗客に与えるインバータ騒音の影響を改善することが可能である。
【0009】
なお、ここでは電力蓄積器5は2次電池11を用いて構成しているが、この2次電池11と同様に充電・放電が可能であるスーパーキャパシタなどを用いても同じ効果を得られる。
【0010】
図4は、本発明の電気車の制御装置の一実施形態の動作を説明するための詳細ブロック図を示す。ここでは、インバータ装置の回生運転の起動時と終了時の動作について述べる。
インバータ装置3の入力端子に供給する直流電力は、インバータ装置3が内蔵するフィルコンデンサ12を介してPWMインバータ回路13に供給し、ここで三相交流電力に変換し、電動機4に供給して駆動トルクを発生する。また、フィルコンデンサ12の充電時の電流を抑制する充電抵抗器14とその端子間を短絡する電流遮断器(D)15を備える。すなわち、フィルコンデンサ12の充電は、まず電流遮断器(D)15を開放したまま電流遮断器(A)2を閉じ、充電抵抗器14を介することで回路内に大電流が流れることを防止し、フィルコンデンサ12を十分充電した後に電流遮断器(D)15を閉じる。
そこで、インバータ装置3の回生運転を起動するとき、インバータ装置3に設けるフィルコンデンサ12が放電された状態すなわちインバータ入力電圧Vcが零の状態から電流遮断器(C)10を開放しても回路全体は整流器8により遮断されていて電動機4を励磁する電流を供給できないため、インバータ装置3は起動せず、回生ブレーキを開始できない。このことから回生ブレーキ開始時は、まず、電流遮断器(C)10を閉じたまま電流遮断器(A)2を閉じ、直流電源(A)1の電源電圧Vaによりフィルコンデンサ12を充電した後、電流遮断器(C)10を開放し、インバータ装置3の回生運転を開始する。このとき、フィルコンデンサ12の端子間電圧であるインバータ入力電圧Vcは、必ずしも直流電源(A)1の電源電圧Vaと等しくなるまで充電する必要はなく、電動機4の励磁電流を流すだけの電圧を確保すれば、インバータ装置3の回生運転を起動でき、この回生電流によりフィルコンデンサ12がさらに充電される。フィルコンデンサ12に充電が十分となった時点で電流遮断器(D)15を閉じればよい。
また、回生運転の終了時は、インバータ入力電圧Vcは電源電圧Vaと電力蓄積手段出力端電圧Vbの和であるため、このまま電流遮断器(C)10を開放し、再力行動作に移ると、電源電圧Vaを電力蓄積手段出力端電圧Vb分だけ瞬時に押し上げるため、過電圧になる恐れがある。そのため、回生から再力行運転に移る際は、電流遮断器(A)2と電流遮断器(D)15を開放したまま極短時間力行運転し、インバータ入力電圧Vcを電源電圧Va以下にした後、電流遮断器(A)2と電流遮断器(D)15を閉じて力行運転を続ける。
一方、停止ブレーキ時には、インバータ周波数が零になった時点で運転モードが回生運転から逆相ブレーキ(力行運転)へ自動的に移るため、この時に電流遮断器(A)2と電流遮断器(D)15を開放してフィルコンデンサ12の充電電圧を逆相ブレーキで消費し、インバータ入力電圧Vcを電源電圧Va以下とすれば、次回力行時に電流遮断器(A)2と電流遮断器(D)15を投入しても過電圧にならない。
【0011】
【発明の効果】
以上説明したように、本発明によれば、高速域から速度ゼロまでの全速度域で回生ブレーキまたは電気ブレーキを作用させるために必要なブレーキ力特性を実現することができ、また、回生エネルギ効率を向上させることができる。
また、インバータ起動時には、インバータ装置に電力蓄積手段の出力端電圧のみを印加することにより起動することができ、回生時に電力蓄積手段に充電された電力を有効に利用することができる。
また、本発明の電力蓄積手段の出力端電圧は電源電圧に比し低電圧であることから、インバータ装置あるいは電動機から発生する電磁音を低減することができ、駅出発時にホーム周辺の乗客に与えるインバータ騒音の影響を改善することが可能である。
【図面の簡単な説明】
【図1】本発明の電気車の制御装置の一実施形態を示すブロック図
【図2】本発明の電気車の制御装置の動作原理を示す波形図
【図3】本発明の電気車の制御装置の他の実施形態を示すブロック図
【図4】本発明の一実施形態の動作を説明するための詳細ブロック図
【符号の説明】
1…直流電源(A)、2…電流遮断器(A)、3…インバータ装置、4…電動機、5…電力蓄積器、6…電流遮断器(B)、7…整流器、8…整流器、9…直流電源(A)、10…電流遮断器(C)、11…2次電池、12…フィルコンデンサ、13…PWMインバータ回路、14…充電抵抗器、15…電流遮断器(D)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric vehicle control device, and more particularly to an electric vehicle control technique for expanding a speed range in which a regenerative brake acts in regenerative brake control of an electric vehicle.
[0002]
[Prior art]
In electric railway vehicles, a regenerative brake is generally used in which a motor is operated as a generator to obtain a deceleration force, and the regenerative power is returned to an overhead line. In particular, due to recent interest in the global environment, demands for improving the regenerative energy efficiency of electric vehicles are increasing, and the development of related technologies is underway.
As part of this, an all-electric brake stop control that can use the regenerative brake until the speed reaches zero has been proposed, and a control method for stopping at zero speed and a method for achieving both stop accuracy and ride comfort Stop Control "is shown in the 7th Railway Technology Union Symposium (J-RAIL2000) Proceedings and others.
[0003]
[Problems to be solved by the invention]
"All-electric brake stop control" shown in the 7th Railway Technology Union Symposium (J-RAIL2000) Proceedings is to control the power converter by the power converter control means to control the electric torque and detect the speed. The deceleration is calculated based on the detected speed of the motor, which is the output of the means, and the subsequent speed is estimated based on the detected speed and deceleration of the motor when the detected speed of the motor falls below the predetermined speed. Based on this, torque control is performed by the power converter control means. In other words, "All-electric brake stop control" shown in the 7th Railway Technology Union Symposium (J-RAIL2000) Lecture Collection improves regenerative energy efficiency by ensuring that the regenerative (electric) brake is applied until stoppage. Although it is possible, the improvement of the regenerative energy efficiency in the speed range that cannot be regenerated due to motor characteristics in the high speed range is not considered.
In terms of energy, the kinetic energy in the high speed range is nearly a hundred times larger than near zero speed, which is the defense range of all electric stop brakes. Also, it is almost determined by the air brake action on the high speed side. If an electric brake at full speed that replaces the air brake action at high speeds with electricity becomes possible, it will be possible to make a breakthrough improvement.
[0004]
An object of the present invention is to provide an electric vehicle control device that realizes necessary braking force characteristics and improves regenerative energy efficiency in order to operate a regenerative brake or an electric brake in all speed ranges from a high speed range to zero speed. There is to do.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, in the high speed range where the regenerative braking force is insufficient, the same voltage application as the power obtained from the DC voltage acquisition means such as an overhead wire is applied to the power storage means capable of charging / discharging at the input terminal of the inverter device. It is set as the structure connected in series so that it may become a direction.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a control device for an electric vehicle of the present invention.
The power supply voltage Va acquired from the DC power supply (A) (or DC voltage acquisition means) 1 is supplied to the inverter device 3 via the current breaker (A) 2. The current breaker (A) 2 shuts off the power supply to the inverter device 3 by opening when the inverter device is not operated or when an abnormality occurs in the inverter device 3. The inverter device 3 converts DC power obtained from the DC power source (A) 1 into three-phase AC power and supplies the power to the induction motor 4.
The power storage 5 which is a characteristic part of the present embodiment is connected to the inverter device 3, and includes a current breaker (B) 6, a rectifier 7, a rectifier 8, and a DC power source (B) capable of charging / discharging (power storage means) ) 9 and current breaker (C) 10. Normally, during traveling, the current breaker (B) 6 is opened and the current breaker (C) 10 is turned on. At this time, no current flows to the DC power supply (B) 9 by the rectifier 8, so that the DC power supply (B) 9 is not present, and the inverter input voltage Vc is equal to the power supply voltage Va (Vc = Va). It becomes the same as the control device.
When the regenerative braking force is insufficient in the high speed range, the current breaker (C) 10 is opened, and the inverter device 3 and the DC power source (B) 9 are connected in series through the rectifier 8. Here, the power supply voltage Va and the output terminal voltage Vb of the DC power supply (B) 9 are connected in the same direction. At this time, the potential of the negative DC input terminal of the inverter device 3 is −Vb, and the inverter input voltage Vc is the sum of the power supply voltage Va and the power storage means output terminal voltage Vb (Vc = Va + Vb).
Thereby, since the inverter input voltage Vc can be increased, the braking force can be increased in the high speed range. At this time, since the regenerative current Ib flows when the inverter device 3 is regeneratively operated, the power of Va × Ib is regenerated in the DC power source (A) 1 and the power of Vb × Ib is regenerated in the DC power source (B) 9. Is charged.
On the other hand, when the inverter is activated, when the current breaker (A) 2 is opened and the current breaker (B) 6 is turned on, only the output terminal voltage Vb of the DC power source (B) 9 is applied to the inverter device 3 to regenerate. Sometimes, the power charged in the DC power supply (B) 9 can be used effectively. Furthermore, since the output terminal voltage Vb of the DC power supply (B) 9 is lower than the power supply voltage Va, electromagnetic noise generated from the inverter device 3 or the electric motor 4 can be reduced. It is possible to improve the influence of the applied inverter noise.
[0007]
FIG. 2 is a waveform diagram showing the operating principle of the electric vehicle control device of the present invention.
When the inverter device 3 and the DC power supply (B) 9 are connected in series by the above-described method, the inverter input voltage Vc of the inverter device 3 is the sum of the power supply voltage Va and the output terminal voltage Vb of the DC power supply (B) 9 (Vc = Va + Vb). Here, since the maximum value of the input voltage (motor voltage) to the electric motor 4 is equal to the inverter input voltage Vc, it increases by the output terminal voltage Vb of the DC power supply (B) 9. Along with this, the constant torque range that can be controlled without limiting the motor voltage is expanded to (Va + Vb) / Va times, so the speed range where a constant regenerative braking force can be generated is also (Va + Vb) / Va times (regenerative braking). Expand from the dotted line of force to the solid line.) This makes it possible to increase the braking force at high speeds. Note that the motor current and slip frequency change from a dotted line to a solid line as shown in the figure.
[0008]
FIG. 3 is a block diagram showing another embodiment of the electric vehicle control apparatus of the present invention. The power supply voltage Va acquired from the DC power supply (A) 1 is supplied to the inverter device 3 through the current breaker (A) 2. The current breaker (A) 2 shuts off the power supply to the inverter device 3 by opening when the inverter device is not operated or when an abnormality occurs in the inverter device 3. The inverter device 3 converts DC power obtained from the DC power source (A) 1 into three-phase AC power and supplies the power to the induction motor 4.
The power storage 5 which is a characteristic part of the present embodiment is connected to the inverter device 3, and includes a current breaker (B) 6, a rectifier 7, a rectifier 8, a rechargeable secondary battery 11, a current breaker ( C) It is constituted by 10. Normally, during traveling, the current breaker (B) 6 is opened and the current breaker (C) 10 is turned on. At this time, no current flows through the secondary battery 11 by the rectifier 8, so that the secondary battery 11 is not present, and the inverter input voltage Vc and the power supply voltage Va are equal (Vc = Va). It will be the same.
When the regenerative braking force is insufficient in the high speed range, the current breaker (C) 10 is opened, and the inverter device 3 and the DC power source (B) 9 are connected in series through the rectifier 8. Here, it connects so that the direction of the power supply voltage Va and the direction of the output terminal voltage Vb of the secondary battery 11 may become the same direction. At this time, the potential of the negative DC input terminal of the inverter device 3 is −Vb, and the inverter input voltage Vc is the sum (Vc = Va + Vb) of the power supply voltage Va and the power storage means (secondary battery 11) output terminal voltage Vb.
Thereby, since the inverter input voltage Vc can be increased, the braking force can be increased in the high speed range. At this time, since the regenerative current Ib flows due to the regenerative operation of the inverter device 3, the power of Va × Ib is regenerated in the DC power supply (A) 1, and the power of Vb × Ib is charged in the secondary battery 11. The
On the other hand, when the inverter is started, when the current breaker (A) 2 is opened and the current breaker (B) 6 is turned on, only the output terminal voltage Vb of the secondary battery 11 is applied to the inverter device 3, and 2 at the time of regeneration. The power charged in the secondary battery 11 can be used effectively. Furthermore, since the output terminal voltage Vb of the secondary battery 11 is lower than the power supply voltage Va, electromagnetic noise generated from the inverter device 3 or the electric motor 4 can be reduced, and the inverter given to passengers around the platform when leaving the station It is possible to improve the influence of noise.
[0009]
Here, the power accumulator 5 is configured using the secondary battery 11, but the same effect can be obtained by using a supercapacitor that can be charged and discharged in the same manner as the secondary battery 11.
[0010]
FIG. 4 is a detailed block diagram for explaining the operation of the embodiment of the control apparatus for an electric vehicle of the present invention. Here, the operation at the start and end of the regenerative operation of the inverter device will be described.
The DC power supplied to the input terminal of the inverter device 3 is supplied to the PWM inverter circuit 13 via the fill capacitor 12 built in the inverter device 3, converted into three-phase AC power here, and supplied to the motor 4 for driving. Generate torque. In addition, a charging resistor 14 that suppresses the current during charging of the fill capacitor 12 and a current breaker (D) 15 that short-circuits between the terminals are provided. That is, the charging of the fill capacitor 12 first closes the current breaker (A) 2 with the current breaker (D) 15 opened, and prevents a large current from flowing in the circuit via the charging resistor 14. After fully charging the fill capacitor 12, the current breaker (D) 15 is closed.
Therefore, when the regenerative operation of the inverter device 3 is started, even if the current breaker (C) 10 is opened from the state in which the fill capacitor 12 provided in the inverter device 3 is discharged, that is, the inverter input voltage Vc is zero, the entire circuit Is interrupted by the rectifier 8 and cannot supply a current for exciting the electric motor 4, so that the inverter device 3 does not start and regenerative braking cannot be started. For this reason, when regenerative braking is started, first, the current breaker (A) 2 is closed with the current breaker (C) 10 closed, and the fill capacitor 12 is charged by the power supply voltage Va of the DC power supply (A) 1. The current breaker (C) 10 is opened, and the regenerative operation of the inverter device 3 is started. At this time, the inverter input voltage Vc, which is the voltage across the terminals of the fill capacitor 12, does not necessarily have to be charged until it becomes equal to the power supply voltage Va of the DC power supply (A) 1, and a voltage sufficient to flow the excitation current of the motor 4 is used. If secured, the regenerative operation of the inverter device 3 can be started, and the fill capacitor 12 is further charged by this regenerative current. The current breaker (D) 15 may be closed when the fill capacitor 12 is sufficiently charged.
Further, at the end of the regenerative operation, the inverter input voltage Vc is the sum of the power supply voltage Va and the power storage means output terminal voltage Vb. Therefore, if the current circuit breaker (C) 10 is opened as it is and the operation proceeds to the repowering operation, Since the power supply voltage Va is instantaneously increased by the power storage means output terminal voltage Vb, there is a risk of overvoltage. Therefore, when moving from regeneration to repowering operation, power operation is performed for a very short time with the current breaker (A) 2 and the current breaker (D) 15 open, and the inverter input voltage Vc is made equal to or lower than the power supply voltage Va. The current breaker (A) 2 and the current breaker (D) 15 are closed and the power running operation is continued.
On the other hand, during stop braking, the operation mode automatically changes from regenerative operation to reverse phase braking (powering operation) when the inverter frequency becomes zero. At this time, the current breaker (A) 2 and the current breaker (D ) When 15 is opened and the charging voltage of the fill capacitor 12 is consumed by the reverse-phase brake, and the inverter input voltage Vc is set to the power supply voltage Va or less, the current breaker (A) 2 and the current breaker (D) at the next power running Even if 15 is turned on, overvoltage does not occur.
[0011]
【The invention's effect】
As described above, according to the present invention, it is possible to realize the braking force characteristics necessary for operating the regenerative brake or the electric brake in the entire speed range from the high speed range to the zero speed, and the regenerative energy efficiency. Can be improved.
In addition, when the inverter is activated, it can be activated by applying only the output terminal voltage of the power storage means to the inverter device, and the power charged in the power storage means can be effectively used during regeneration.
In addition, since the output terminal voltage of the power storage means of the present invention is lower than the power supply voltage, electromagnetic noise generated from the inverter device or the electric motor can be reduced and given to passengers around the platform when leaving the station. It is possible to improve the influence of inverter noise.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating an embodiment of an electric vehicle control device according to the present invention. FIG. 2 is a waveform diagram illustrating an operation principle of the electric vehicle control device according to the present invention. FIG. 4 is a block diagram showing another embodiment of the apparatus. FIG. 4 is a detailed block diagram for explaining the operation of one embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... DC power supply (A), 2 ... Current breaker (A), 3 ... Inverter device, 4 ... Electric motor, 5 ... Electric power storage, 6 ... Current breaker (B), 7 ... Rectifier, 8 ... Rectifier, 9 ... DC power supply (A), 10 ... Current breaker (C), 11 ... Secondary battery, 12 ... Fill capacitor, 13 ... PWM inverter circuit, 14 ... Charging resistor, 15 ... Current breaker (D)

Claims (5)

電動機を駆動する電力変換装置と、前記電力変換装置に電力を供給する直流電圧源または直流電圧取得手段を備えた電気車の制御装置において、高速域における回生ブレーキ力が不足したとき、前記電力変換装置の入力電圧端子に充電・放電可能な電力蓄積手段を前記直流電圧源または前記直流電圧取得手段と同じ電圧印加方向となるように直列接続することを特徴とする電気車の制御装置。In a control device for an electric vehicle comprising a power conversion device for driving an electric motor and a DC voltage source or DC voltage acquisition means for supplying power to the power conversion device, when the regenerative braking force in a high speed range is insufficient, the power conversion A control apparatus for an electric vehicle, wherein power storage means capable of charging / discharging is connected in series to an input voltage terminal of the apparatus so as to be in the same voltage application direction as the DC voltage source or the DC voltage acquisition means. 電動機を駆動する電力変換装置と、前記電力変換装置に電力を供給する直流電圧源または直流電圧取得手段を備えた電気車の制御装置において、前記電力変換装置の入力電圧端子に電流遮断手段を介して第1と第2の電流方向制限手段の直列回路を接続し、高速域における回生ブレーキ力が不足したとき、前記電流遮断手段を開放し、充電・放電可能な電力蓄積手段を前記直流電圧源または前記直流電圧取得手段と同じ電圧印加方向となるように直列接続することを特徴とする電気車の制御装置。In a control device for an electric vehicle comprising a power conversion device for driving an electric motor and a DC voltage source or DC voltage acquisition means for supplying power to the power conversion device, an input voltage terminal of the power conversion device is connected to a current cutoff means. When the series circuit of the first and second current direction limiting means is connected, and the regenerative braking force in the high speed range is insufficient, the current interrupting means is opened, and the power storage means that can be charged and discharged is used as the DC voltage source. Alternatively, the electric vehicle control device is connected in series so as to have the same voltage application direction as the DC voltage acquisition means. 請求項1または請求項2において、前記電力蓄積手段は充電および放電が可能な2次電池とすることを特徴とする電気車の制御装置。3. The electric vehicle control device according to claim 1, wherein the power storage means is a rechargeable secondary battery. 請求項1または請求項2において、前記電力蓄積手段は充電および放電が可能なコンデンサとすることを特徴とする電気車の制御装置。3. The electric vehicle control device according to claim 1, wherein the power storage means is a capacitor that can be charged and discharged. 請求項1から請求項4のいずれかにおいて、前記電力変換装置の回生ブレーキの開始時には、まず、前記電流遮断手段を閉じたまま前記直流電圧源または前記直流電圧取得手段の電源電圧により前記電力変換装置が内蔵するフィルコンデンサを充電し、その後、前記電流遮断手段を開放し、前記電力変換装置の回生運転を開始することを特徴とする電気車の制御装置。5. The power conversion device according to claim 1, wherein at the start of regenerative braking of the power conversion device, first, the power conversion is performed by the power source voltage of the DC voltage source or the DC voltage acquisition unit while the current interrupting unit is closed. A control device for an electric vehicle, wherein a charge capacitor built in the device is charged, and then the current interrupting means is opened, and a regenerative operation of the power converter is started.
JP2001175415A 2001-06-11 2001-06-11 Electric vehicle control device Expired - Lifetime JP3972322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175415A JP3972322B2 (en) 2001-06-11 2001-06-11 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175415A JP3972322B2 (en) 2001-06-11 2001-06-11 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2002369304A JP2002369304A (en) 2002-12-20
JP3972322B2 true JP3972322B2 (en) 2007-09-05

Family

ID=19016558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175415A Expired - Lifetime JP3972322B2 (en) 2001-06-11 2001-06-11 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3972322B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340468A (en) * 2005-06-01 2006-12-14 Shizuki Electric Co Inc Electric vehicle controller
JP2007252084A (en) * 2006-03-15 2007-09-27 Toshiba Corp Electric vehicle control unit
JP4546988B2 (en) 2007-04-27 2010-09-22 株式会社日立製作所 Control device for power converter
JP5180731B2 (en) * 2008-08-18 2013-04-10 株式会社日立製作所 Vehicle operation control device
JP5180732B2 (en) * 2008-08-18 2013-04-10 株式会社日立製作所 Vehicle having control device
JP4977772B2 (en) * 2010-07-01 2012-07-18 株式会社日立製作所 Drive control device and electric vehicle
JP5401486B2 (en) * 2011-02-22 2014-01-29 株式会社日立製作所 Railway vehicle drive system
JP5425849B2 (en) * 2011-09-14 2014-02-26 株式会社日立製作所 Railway vehicle drive control device
JP5320452B2 (en) * 2011-11-24 2013-10-23 株式会社日立製作所 Drive control device and electric vehicle
JP5902534B2 (en) * 2012-03-30 2016-04-13 株式会社日立製作所 Railway vehicle drive system

Also Published As

Publication number Publication date
JP2002369304A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
JP5295470B1 (en) Electric vehicle propulsion control device and control method thereof
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
AU2012385647B2 (en) Device and method for controlling propulsion of electric vehicle
JP4650911B2 (en) Hybrid storage battery device
JP4546988B2 (en) Control device for power converter
EP1672764A2 (en) System and method for providing power control of an energy storage system
JPH10271611A (en) Power supply system for electric vehicle
JP5097687B2 (en) Railway vehicle and driving device for railway vehicle
JP2008017574A (en) Power controller of vehicle
JP3972322B2 (en) Electric vehicle control device
JP2004056934A (en) Auxiliary power unit
JP4968596B2 (en) In-vehicle power supply
JP4269197B2 (en) A drive device for a permanent magnet motor for an electric vehicle.
JP2007124802A (en) Vehicle drive system
CN1949661B (en) Method for maintaining a direct voltage at the input of a DC/AC voltage converter, recording medium for this method, and electric vehicle
JP5385728B2 (en) Control method and control apparatus
JP4977772B2 (en) Drive control device and electric vehicle
JP2004336833A (en) Controller of electric power transformer for rolling stock
JP5320452B2 (en) Drive control device and electric vehicle
JP2011201441A5 (en)
JP2011201441A (en) Bi-directional energy conversion device for vehicle
JP2007097305A (en) Vehicle and train having a plurality of vehicles
JP2000253503A (en) Energy regenerator for electric vehicles
JP3691984B2 (en) Control device for hybrid vehicle
JP2022002447A (en) Power storage device, electric motor vehicle controller, and railway system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3972322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

EXPY Cancellation because of completion of term