JPH0819116A - Driver for motor driven vehicle - Google Patents
Driver for motor driven vehicleInfo
- Publication number
- JPH0819116A JPH0819116A JP17004094A JP17004094A JPH0819116A JP H0819116 A JPH0819116 A JP H0819116A JP 17004094 A JP17004094 A JP 17004094A JP 17004094 A JP17004094 A JP 17004094A JP H0819116 A JPH0819116 A JP H0819116A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- motor
- rotation speed
- power
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 7
- 229910000464 lead oxide Inorganic materials 0.000 abstract description 26
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 abstract description 26
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 abstract description 24
- 230000001172 regenerating effect Effects 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000009194 climbing Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/081—Speed
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Hybrid Electric Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、バッテリの電力によっ
て走行する電動車両の駆動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive system for an electric vehicle that runs on battery power.
【0002】[0002]
【従来の技術】従来の電動車両の駆動装置に用いられる
バッテリには、出力密度が大きいものとエネルギ密度の
大きいものとがある。出力密度が大きいとは、単位重量
当たりの出力電流が大きいということである。出力密度
が大きいバッテリとしては、例えば酸化鉛電池が知られ
ている。また、エネルギ密度が大きいとは、単位重量当
たりの蓄電量が大きいということである。エネルギ密度
が大きいバッテリとしては、例えばナトリウム硫黄電池
が知られている。2. Description of the Related Art Conventional batteries used in drive devices for electric vehicles include those having a large output density and those having a large energy density. The high output density means that the output current per unit weight is high. As a battery having a high output density, for example, a lead oxide battery is known. Further, a high energy density means that a large amount of electricity is stored per unit weight. As a battery having a high energy density, for example, a sodium-sulfur battery is known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、酸化鉛
電池のように出力密度が大きいバッテリは、エネルギ密
度が小さいという欠点があった。そのため、酸化鉛電池
を積載した電動車両は、走行距離が短いという問題があ
った。However, a battery having a high output density such as a lead oxide battery has a drawback that the energy density is low. Therefore, the electric vehicle loaded with the lead oxide battery has a problem that the traveling distance is short.
【0004】一方、ナトリウム硫黄電池のようにエネル
ギ密度の大きいバッテリは、出力密度が小さいという欠
点があった。そのため、ナトリウム硫黄電池を積載した
電動車両は、加速性,登坂性等が劣るという問題があっ
た。On the other hand, a battery having a high energy density such as a sodium-sulfur battery has a drawback that the output density is low. Therefore, there is a problem that the electric vehicle loaded with the sodium-sulfur battery is inferior in acceleration, climbing, and the like.
【0005】[0005]
【発明の目的】そこで、本発明の目的は、出力密度が大
きいバッテリとエネルギ密度が大きいバッテリとの長所
を兼ね備え、走行距離,加速性,登坂性等の走行性能を
向上できる電動車両の駆動装置を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a drive device for an electric vehicle which has the advantages of a battery having a high output density and a battery having a high energy density, and which can improve the traveling performance such as traveling distance, acceleration, and climbing. To provide.
【0006】[0006]
【課題を解決するための手段】本発明に係る電動車両の
駆動装置は、上記目的を達成するためになされたもので
あり、出力密度が大きい第一のバッテリと、エネルギ密
度が大きい第二のバッテリと、駆動輪を回転させるモー
タと、このモータの回転数を検出するモータ回転数検出
手段と、このモータ回転数検出手段によって検出された
回転数に基づき当該回転数が高いときは前記第一のバッ
テリから前記モータへ電力を供給するとともに当該回転
数が低いときは前記第二のバッテリから前記モータへ電
力を供給する制御部とを備えたものである。A drive device for an electric vehicle according to the present invention is made to achieve the above-mentioned object, and includes a first battery having a large output density and a second battery having a large energy density. The battery, the motor for rotating the drive wheel, the motor rotation speed detection means for detecting the rotation speed of the motor, and the first rotation speed when the rotation speed is high based on the rotation speed detected by the motor rotation speed detection means. And a controller that supplies electric power from the battery to the motor and supplies electric power from the second battery to the motor when the rotation speed is low.
【0007】また、エンジンを動力源に用いて電力を発
生する発動発電機と、前記第一及び第二のバッテリの蓄
電量を検出する蓄電量検出手段とが付設され、かつ、こ
の蓄電量検出手段によって検出された蓄電量に基づき当
該蓄電量の少ない方の前記第一又は第二のバッテリに対
して前記発動発電機から充電する機能が前記制御部に付
設されているものとしてもよい。Further, an engine generator which uses the engine as a power source to generate electric power, and a storage amount detection means for detecting the storage amount of the first and second batteries are additionally provided, and the storage amount is detected. The control unit may be provided with a function of charging the first or second battery having the smaller stored amount based on the stored amount detected by the means from the engine generator.
【0008】[0008]
【作用】請求項1記載の駆動装置の作用は、次のとおり
である。制御部は第一及び第二のバッテリの電力を供給
してモータを回転させ、モータは駆動輪を回転させる。
モータの回転数は、モータ回転数検出手段によって、制
御部へ出力される。制御部は、モータの回転数が高いと
きは第一のバッテリから電力を供給する。第一のバッテ
リは出力密度が大きいので、大電流が得られる結果、加
速性,登坂性等に優れた走行が可能である。また、制御
部は、モータの回転数が低いときは第二のバッテリから
電力を供給する。第二のバッテリはエネルギ密度が大き
いので、長時間の一定電流が得られる結果、長距離走行
が可能である。The operation of the drive device according to claim 1 is as follows. The control unit supplies electric power of the first and second batteries to rotate the motor, and the motor rotates the drive wheels.
The rotation speed of the motor is output to the control unit by the motor rotation speed detection means. The control unit supplies power from the first battery when the rotation speed of the motor is high. Since the first battery has a large output density, a large current can be obtained, and as a result, it is possible to travel with excellent acceleration, climbing, and the like. Further, the control unit supplies power from the second battery when the rotation speed of the motor is low. Since the second battery has a high energy density, it can travel a long distance as a result of obtaining a constant current for a long time.
【0009】請求項2記載の駆動装置の作用は、次のと
おりである。発動発電機は、エンジンを動力源として電
力を発生する。制御部は、この電力を用いて第一又は第
二のバッテリを充電する。このとき、制御部は、第一又
は第二のバッテリのうち蓄電量の少ない方を選んで充電
する。したがって、第一又は第二のバッテリのうちどち
らか一方が、先に放電し終わることがない。The operation of the drive device according to claim 2 is as follows. The engine generator uses the engine as a power source to generate electric power. The control unit uses this electric power to charge the first or second battery. At this time, the control unit selects and charges one of the first and second batteries having the smaller amount of stored electricity. Therefore, one of the first and second batteries will not be discharged first.
【0010】[0010]
【実施例】図1は、本発明に係る電動車両の駆動装置の
一実施例を示すブロック図である。以下、この図面に基
づき説明する。1 is a block diagram showing an embodiment of a drive system for an electric vehicle according to the present invention. Hereinafter, description will be given with reference to this drawing.
【0011】駆動装置10は、出力密度が大きいバッテ
リとしての酸化鉛電池12と、エネルギ密度が大きいバ
ッテリとしてのナトリウム硫黄電池14と、駆動輪16
を回転させるモータ18と、モータ18の回転数Nを検
出するモータ回転数検出手段としてのエンコーダ20
と、エンコーダ20によって検出された回転数Nに基づ
き回転数Nが高いときは酸化鉛電池12からモータ18
へ電力を供給するとともに回転数Nが低いときはナトリ
ウム硫黄電池14からモータ18へ電力を供給する制御
部22とを備えている。The drive unit 10 includes a lead oxide battery 12 as a battery having a high output density, a sodium-sulfur battery 14 as a battery having a high energy density, and drive wheels 16.
And a motor 18 for rotating the motor 18, and an encoder 20 as a motor rotation speed detecting means for detecting the rotation speed N of the motor 18.
And when the rotation speed N is high based on the rotation speed N detected by the encoder 20, the lead oxide battery 12 moves to the motor 18
And a control unit 22 that supplies electric power from the sodium-sulfur battery 14 to the motor 18 when the rotational speed N is low.
【0012】また、エンジン30aを動力源に用いて電
力を発生する発動発電機30と、酸化鉛電池12及びナ
トリウム硫黄電池14の蓄電量Cp,Cnを検出する蓄
電量検出手段としての電流センサ34p,34nとが設
けられている。さらに、電流センサ34p,34nによ
って検出された蓄電量Cp,Cnに基づき蓄電量Cp,
Cnの少ない方の酸化鉛電池12又はナトリウム硫黄電
池14に対して発動発電機30から充電する機能が、コ
ントローラ22aに付設されている。Further, the engine generator 30 which uses the engine 30a as a power source to generate electric power, and the current sensor 34p as a storage amount detecting means for detecting the storage amounts Cp and Cn of the lead oxide battery 12 and the sodium-sulfur battery 14. , 34n are provided. Furthermore, based on the charged amounts Cp, Cn detected by the current sensors 34p, 34n, the charged amount Cp,
The controller 22a has a function of charging the lead oxide battery 12 or the sodium-sulfur battery 14 having a smaller Cn from the engine generator 30.
【0013】制御部22は、コントローラ22a,切換
えスイッチ22b及びモータドライバ22cによって構
成されている。コントローラ22aは、例えば、CP
U,ROM,RAM,入出力インタフェース回路等によ
って構成され、各種の機能がコンピュータプログラムに
よって実現されている。また、コントローラ22aは、
アクセル信号,ブレーキ信号,シフト位置信号(前後進
切換え信号)等を速度制御系(図示せず)から入力し
て、モータ18の回転方向,トルク指令値等を計算し、
その結果を制御信号としてモータドライバ22cへ出力
する。切換えスイッチ22bは、酸化鉛電池12とモー
タドライバ22cとを接続するリレー接点221と、ナ
トリウム硫黄電池14とモータドライバ22cとを接続
するリレー接点222と、発動発電機30と酸化鉛電池
12又はナトリウム硫黄電池14とを接続するリレー接
点223とから構成されている。モータドライバ22c
は、例えば、巻線U相,V相,W相に対する通電を選択
するスイッチングトランジスタ回路と、通電量をパルス
幅で制御するPWM回路とから構成されている。The control unit 22 comprises a controller 22a, a changeover switch 22b and a motor driver 22c. The controller 22a is, for example, a CP
It is composed of a U, a ROM, a RAM, an input / output interface circuit and the like, and various functions are realized by a computer program. In addition, the controller 22a is
An accelerator signal, a brake signal, a shift position signal (forward / reverse switching signal), etc. are input from a speed control system (not shown) to calculate a rotation direction of the motor 18, a torque command value, etc.
The result is output to the motor driver 22c as a control signal. The changeover switch 22b includes a relay contact 221 that connects the lead oxide battery 12 and the motor driver 22c, a relay contact 222 that connects the sodium-sulfur battery 14 and the motor driver 22c, the engine generator 30, and the lead oxide battery 12 or sodium. It is composed of a relay contact 223 connecting to the sulfur battery 14. Motor driver 22c
Is composed of, for example, a switching transistor circuit that selects energization for the winding U-phase, V-phase, and W-phase, and a PWM circuit that controls the energization amount with a pulse width.
【0014】モータ18は、直流三相ブラシレスモータ
を用いている。エンコーダ20は、いわゆるロータリエ
ンコーダであり、モータ18の駆動軸の回転を機械的,
電気的,磁気的又は光学的に検出して、その回転数に対
応した電気信号に変換するものである。The motor 18 is a DC three-phase brushless motor. The encoder 20 is a so-called rotary encoder that mechanically controls the rotation of the drive shaft of the motor 18.
It is detected electrically, magnetically or optically and converted into an electrical signal corresponding to the rotation speed.
【0015】電流センサ34p,34nは、例えば電流
検出用コイルとマイクロコンピュータとからなり、電流
値を積算することにより蓄電量Cp,Cnを算出するも
のである。The current sensors 34p and 34n are composed of, for example, a current detection coil and a microcomputer, and calculate the stored amounts Cp and Cn by integrating the current values.
【0016】発動発電機30は、ガソリンを燃料とする
エンジン30aと、エンジン30aの回転により交流電
力を発生する交流発電機30bと、交流電力を直流電力
に変換するAC/DCコンバータ30cとから構成され
ている。また、AC/DCコンバータ30cの入力側に
は、交流発電機30b又は商用電源用プラグ30dに接
続を切り換える切換えスイッチ30eが付設されてい
る。なお、商用電源は交流100Vでよいので、充電装
置を必要とせず、家庭で手軽に充電できる。The engine generator 30 comprises an engine 30a that uses gasoline as fuel, an AC generator 30b that generates AC power by the rotation of the engine 30a, and an AC / DC converter 30c that converts AC power to DC power. Has been done. Further, on the input side of the AC / DC converter 30c, a changeover switch 30e for switching the connection to the AC generator 30b or the commercial power source plug 30d is attached. Since the commercial power supply may be AC 100V, it can be easily charged at home without the need for a charging device.
【0017】このように、本実施例は、エンジン−バッ
テリ・ハイブリッド電気自動車の駆動装置である。As described above, the present embodiment is a drive device for an engine-battery hybrid electric vehicle.
【0018】図2は、駆動装置10の動作を示すフロー
チャートである。この図面における要求電流Ireq は、
以下のようにして算出する。FIG. 2 is a flow chart showing the operation of the drive unit 10. The required current Ireq in this drawing is
It is calculated as follows.
【0019】接続されている酸化鉛電池12又はナトリ
ウム硫黄電池14の電圧をV,モータドライバ22cへ
流れる電流をI,モータ18の回転数をN,モータ18
の回転トルクをT,モータドライバ22cの効率をη
(N,T)すると、エネルギの流れは次のようになる。
なお、回転トルクTは、回転数Nと電流Iとから求めら
れる。The voltage of the lead oxide battery 12 or the sodium sulfur battery 14 connected thereto is V, the current flowing to the motor driver 22c is I, the rotation speed of the motor 18 is N, and the motor 18 is
Of the motor driver 22c by η
When (N, T), the energy flow is as follows.
The rotation torque T is obtained from the rotation speed N and the current I.
【0020】〔電池の消費電力P=V×I〕→〔モータ
ドライバ22cでの損失η(N,T)〕→〔モータ18
での損失k1 〕→〔軸出力k2 ×N×T〕。これによ
り、次式が得られる。[Battery power consumption P = V × I] → [Loss η (N, T) in the motor driver 22c] → [Motor 18
Loss k 1 ] → [shaft output k 2 × N × T]. As a result, the following equation is obtained.
【0021】 k2 ・N・T=k1 ・η(N,T)・V・I ・・・・・ K 2 · N · T = k 1 · η (N, T) · V · I
【0022】K=k2 /k1 として、式をIについて
整理すると、When K = k 2 / k 1 and the equation is arranged with respect to I,
【0023】 I=(K・N・T)/(η(N,T)・V) ・・・・・ I = (K · N · T) / (η (N, T) · V)
【0024】となる。モータ18の駆動の他に、補器類
(エアコン,ワイパー,ライト等)に必要な電流をIac
c とすると、要求電流Ireq は式から、It becomes In addition to driving the motor 18, the current required for auxiliary devices (air conditioner, wiper, light, etc.) is Iac
Then, the required current Ireq is
【0025】 Ireq =(K・N・T)/(η(N,T)・V)+Iacc ・・・・・ Ireq = (K · N · T) / (η (N, T) · V) + Iacc
【0026】となる。ここで、回生制動時にはトルク指
令が負の値になり、回生電流がIacc を越える場合は、
Ireq は負の値となる。[0026] Here, when the torque command becomes a negative value during regenerative braking and the regenerative current exceeds Iacc,
Ireq has a negative value.
【0027】以下、図1及び図2に基づき、コントロー
ラ22aの制御動作を説明する。The control operation of the controller 22a will be described below with reference to FIGS.
【0028】まず、電流センサ34p,34nによって
蓄電量Cn,Cpを算出する(ステップ101)。続い
て、モータドライバ22cの要求電流Ireq を算出する
(ステップ102)。そして、Ireq ≧0であるか否か
を判断する(ステップ103)。Ireq ≧0であれば、
Ireq ≧Inmaxであるか否かを判断する(ステップ10
4)。Inmaxは、ナトリウム硫黄電池14の最大出力電
流である。Ireq ≧Inmaxであれば、加速,高速走行モ
ードとして制御する。すなわち、リレー接点222を開
路してナトリウム硫黄電池14をモータドライバ22c
から切り離し(ステップ105)、リレー接点221を
閉路して酸化鉛電池12をモータドライバ22cに接続
する(ステップ106)。続いて、Cn>Cpであるか
否かを判断する(ステップ107)。Cn>Cpであれ
ば、リレー接点223を酸化鉛電池12側に閉路して、
発動発電機30を酸化鉛電池12に接続し(ステップ1
08)、ステップ101へ戻る。一方、Cn>Cpでな
ければ、リレー接点223をナトリウム硫黄電池14側
に閉路して、発動発電機30をナトリウム硫黄電池14
に接続し(ステップ109)、ステップ101へ戻る。First, the charged amounts Cn and Cp are calculated by the current sensors 34p and 34n (step 101). Then, the required current Ireq of the motor driver 22c is calculated (step 102). Then, it is judged whether Ireq ≧ 0 (step 103). If Ireq ≧ 0,
It is determined whether Ireq ≧ Inmax (step 10).
4). Inmax is the maximum output current of the sodium-sulfur battery 14. If Ireq ≧ Inmax, control is performed in the acceleration / high-speed traveling mode. That is, the relay contact 222 is opened to connect the sodium-sulfur battery 14 to the motor driver 22c.
(Step 105), the relay contact 221 is closed, and the lead oxide battery 12 is connected to the motor driver 22c (step 106). Then, it is determined whether or not Cn> Cp (step 107). If Cn> Cp, the relay contact 223 is closed to the lead oxide battery 12 side,
Connect the engine generator 30 to the lead oxide battery 12 (step 1
08), and returns to step 101. On the other hand, if Cn> Cp is not satisfied, the relay contact 223 is closed to the sodium-sulfur battery 14 side and the engine generator 30 is closed.
(Step 109) and the process returns to step 101.
【0029】ステップ104において、Ireq ≧Inmax
でなければ、停止,低速定常走行モードとして制御す
る。すなわち、リレー接点222を閉路してナトリウム
硫黄電池14をモータドライバ22cに接続し(ステッ
プ110)、リレー接点221を開路して酸化鉛電池1
2をモータドライバ22cから切り離し(ステップ11
1)、ステップ107へ進む。In step 104, Ireq ≧ Inmax
If not, control is performed in the stop and low speed steady running mode. That is, the relay contact 222 is closed to connect the sodium-sulfur battery 14 to the motor driver 22c (step 110), and the relay contact 221 is opened to open the lead oxide battery 1
2 is disconnected from the motor driver 22c (step 11
1) The process proceeds to step 107.
【0030】ステップ103において、Ireq ≧0でな
ければ、回生制動モードとして制御する。すなわち、リ
レー接点223を開路して発動発電機30を切り離し
(ステップ112)、Cn>Cpであるか否かを判断す
る(ステップ113)。Cn>Cpであれば、リレー接
点222を開路してナトリウム硫黄電池14をモータド
ライバ22cから切り離し(ステップ114)、リレー
接点221を閉路して酸化鉛電池12をモータドライバ
22cに接続する(ステップ115)。これにより、回
生エネルギを酸化鉛電池12に充電して、ステップ10
1へ戻る。If Ireq ≧ 0 is not satisfied in step 103, the regenerative braking mode is controlled. That is, the relay contact 223 is opened to disconnect the engine generator 30 (step 112), and it is determined whether or not Cn> Cp (step 113). If Cn> Cp, the relay contact 222 is opened to disconnect the sodium-sulfur battery 14 from the motor driver 22c (step 114), and the relay contact 221 is closed to connect the lead oxide battery 12 to the motor driver 22c (step 115). ). As a result, the regenerative energy is charged into the lead oxide battery 12, and step 10
Return to 1.
【0031】ステップ113において、Cn>Cpでな
ければ、Cn=100 %であるか否かを判断する(ステッ
プ116)。 Cn=100 %であれば、リレー接点22
2を開路してナトリウム硫黄電池14をモータドライバ
22cから切り離し(ステップ117)、リレー接点2
21を開路して酸化鉛電池12をモータドライバ22c
から切り離す(ステップ118)。これにより、回生エ
ネルギをモータドライバ22cで熱エネルギとして放出
し(ステップ119)、ステップ101へ戻る。If Cn> Cp is not satisfied in step 113, it is determined whether or not Cn = 100% (step 116). If Cn = 100%, relay contact 22
2 is opened to disconnect the sodium-sulfur battery 14 from the motor driver 22c (step 117), and the relay contact 2
21 to open the lead oxide battery 12 to the motor driver 22c
(Step 118). As a result, the regenerative energy is released as heat energy by the motor driver 22c (step 119), and the process returns to step 101.
【0032】ステップ116において、Cn=100 %で
なければ、リレー接点222を閉路してナトリウム硫黄
電池14をモータドライバ22cに接続し(ステップ1
20)、リレー接点221を開路して酸化鉛電池12を
モータドライバ22cから切り離す(ステップ12
1)。これにより、回生エネルギをナトリウム硫黄電池
14に充電し、ステップ101へ戻る。If Cn = 100% in step 116, the relay contact 222 is closed to connect the sodium-sulfur battery 14 to the motor driver 22c (step 1
20), the relay contact 221 is opened to disconnect the lead oxide battery 12 from the motor driver 22c (step 12).
1). Thereby, the sodium-sulfur battery 14 is charged with the regenerative energy, and the process returns to step 101.
【0033】以上が、コントローラ22aの制御動作で
あるが、もう少し詳しく説明する。The above is the control operation of the controller 22a, which will be described in more detail.
【0034】例えば、上り坂の多い道路や、発進・停止
の多い道路では、Ireq ≧Inmax(ステップ104)と
なって、酸化鉛電池12をモータドライバ22cに接続
する(ステップ106)時間が多くなる。したがって、
このまま放置すれば、ナトリウム硫黄電池14の蓄電量
Cnが十分あるにもかかわらず、酸化鉛電池12の蓄電
量Cpが先になくなってしまう。こうなると、要求され
る出力電流が得られなくなって、走行が困難となってし
まう。そこで、Cn>Cpであるか否かを常に判断して
(ステップ107,113)、蓄電量の少ない方を優先
して充電している(ステップ108,109)。For example, on a road with many uphill slopes or a road with many starts and stops, Ireq ≧ Inmax (step 104), and the time for connecting the lead oxide battery 12 to the motor driver 22c (step 106) increases. . Therefore,
If left as it is, the stored amount Cp of the lead oxide battery 12 will be exhausted first even though the stored amount Cn of the sodium-sulfur battery 14 is sufficient. In such a case, the required output current cannot be obtained, which makes traveling difficult. Therefore, it is always determined whether or not Cn> Cp (steps 107 and 113), and the battery with the smaller stored amount is preferentially charged (steps 108 and 109).
【0035】また、回生エネルギを酸化鉛電池12又は
ナトリウム硫黄電池14に充電することにより、エネル
ギの有効利用を図っている(ステップ115,12
0)。Further, the regenerative energy is charged in the lead oxide battery 12 or the sodium-sulfur battery 14 to effectively use the energy (steps 115, 12).
0).
【0036】次に、図1及び図2に基づき、酸化鉛電池
12及びナトリウム硫黄電池14の総重量(総容量)の
決定方法の一例について説明する。Next, an example of a method for determining the total weight (total capacity) of the lead oxide battery 12 and the sodium-sulfur battery 14 will be described with reference to FIGS. 1 and 2.
【0037】まず、加速性,登坂性等の動力性能と、一
回の充電による走行距離との、それぞれの目標値を設定
する。そして、動力性能の目標値からを、モータ18の
特性が決められ、モータ18を駆動するための最大電流
が決められる。一方、走行距離の目標値を満たすための
蓄電量が決められる。これらの最大電流及び蓄電量の両
方を満たすように、酸化鉛電池12及びナトリウム硫黄
電池14のそれぞれの総重量が決められる。First, the respective target values of the power performance such as acceleration and climbing ability and the traveling distance by one charge are set. Then, the characteristic of the motor 18 is determined from the target value of the power performance, and the maximum current for driving the motor 18 is determined. On the other hand, the amount of electricity stored to satisfy the target value of the traveling distance is determined. The total weight of each of the lead oxide battery 12 and the sodium-sulfur battery 14 is determined so as to satisfy both of the maximum current and the charged amount.
【0038】[0038]
【発明の効果】請求項1及び2記載の電動車両の駆動装
置は、以下の効果を奏する。モータの回転数が高いとき
は出力密度が大きい第一のバッテリによりモータを駆動
することにより、加速性,登坂性等に優れた走行が可能
であり、モータの回転数が低いときはエネルギ密度が大
きい第二のバッテリによりモータを駆動することによ
り、長距離の走行が可能である。したがって、従来にな
い優れた動力性能と長い走行距離とを兼ね備えた、電動
車両の駆動装置を提供できる。The drive device for an electric vehicle according to the first and second aspects has the following effects. By driving the motor with the first battery, which has a high output density when the rotation speed of the motor is high, it is possible to drive with excellent acceleration, climbing, etc., and when the rotation speed of the motor is low, the energy density is high. By driving the motor with a large second battery, it is possible to travel a long distance. Therefore, it is possible to provide a drive device for an electric vehicle having both unprecedented excellent power performance and long mileage.
【0039】請求項2記載の電動車両の駆動装置は、以
下の効果を奏する。第一又は第二のバッテリの蓄電量の
少ない方を選択して充電することにより、第一又は第二
のバッテリのどちらか一方の蓄電量が先になくなること
を防止できるので、従来にない優れた動力性能と長い走
行距離とを最大限に発揮できる。The drive device for an electric vehicle according to claim 2 has the following effects. By selecting and charging the one with the smaller amount of electricity stored in the first or second battery, it is possible to prevent the amount of electricity stored in either the first or second battery from running out first. You can maximize the power performance and long mileage.
【図1】本発明に係る電動車両の駆動装置の一実施例の
構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an embodiment of a drive device for an electric vehicle according to the present invention.
【図2】本発明に係る電動車両の駆動装置の一実施例の
動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of an embodiment of the drive device for an electric vehicle according to the present invention.
10 駆動装置 12 酸化鉛電池(第一のバッテリ) 14 ナトリウム硫黄電池(第二のバッテリ) 16 駆動輪 18 モータ 20 エンコーダ(モータ回転数検出手段) 22 制御部 22a コントローラ 22b 切換えスイッチ 22c モータドライバ 30 発動発電機 30a エンジン 34p,34n 電流センサ(蓄電量検出手段) Cp 酸化鉛電池の蓄電量 Cn ナトリウム硫黄電池の蓄電量 N モータの回転数 10 Drive Device 12 Lead Oxide Battery (First Battery) 14 Sodium Sulfur Battery (Second Battery) 16 Drive Wheel 18 Motor 20 Encoder (Motor Rotation Speed Detection Means) 22 Control Unit 22a Controller 22b Changeover Switch 22c Motor Driver 30 Actuation Generator 30a Engine 34p, 34n Current sensor (storage amount detection means) Cp Storage amount of lead oxide battery Cn Storage amount of sodium-sulfur battery N Number of rotations of motor
Claims (2)
ネルギ密度が大きい第二のバッテリと、駆動輪を回転さ
せるモータと、このモータの回転数を検出するモータ回
転数検出手段と、このモータ回転数検出手段によって検
出された回転数に基づき当該回転数が高いときは前記第
一のバッテリから前記モータへ電力を供給するとともに
当該回転数が低いときは前記第二のバッテリから前記モ
ータへ電力を供給する制御部とを備えたことを特徴とす
る電動車両の駆動装置。1. A first battery having a high output density, a second battery having a high energy density, a motor for rotating a drive wheel, a motor rotation speed detecting means for detecting the rotation speed of the motor, and the motor. When the rotation speed is high based on the rotation speed detected by the rotation speed detection means, power is supplied from the first battery to the motor, and when the rotation speed is low, power is supplied from the second battery to the motor. A drive unit for an electric vehicle, comprising:
る発動発電機と、前記第一及び第二のバッテリの蓄電量
を検出する蓄電量検出手段とが付設され、かつ、この蓄
電量検出手段によって検出された蓄電量に基づき当該蓄
電量の少ない方の前記第一又は第二のバッテリに対して
前記発動発電機から充電する機能が前記制御部に付設さ
れていることを特徴とする請求項1記載の電動車両の駆
動装置。2. An engine generator for generating electric power by using an engine as a power source, and a storage amount detecting means for detecting the storage amount of the first and second batteries, and the storage amount detection. The control unit is provided with a function of charging the first or second battery having the smaller amount of stored electricity from the engine generator based on the amount of stored electricity detected by the means. Item 2. A drive device for an electric vehicle according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17004094A JPH0819116A (en) | 1994-06-29 | 1994-06-29 | Driver for motor driven vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17004094A JPH0819116A (en) | 1994-06-29 | 1994-06-29 | Driver for motor driven vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0819116A true JPH0819116A (en) | 1996-01-19 |
Family
ID=15897505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17004094A Pending JPH0819116A (en) | 1994-06-29 | 1994-06-29 | Driver for motor driven vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0819116A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2299223A (en) * | 1995-03-20 | 1996-09-25 | Omar Mohamed Ahmed Mukhtar | Vehicle with axle-mounted and wind-driven generators for continuous battery charging |
WO2000058568A1 (en) * | 1999-03-31 | 2000-10-05 | Kobelco Construction Machinery Co., Ltd. | Capacitor-equipped working machine |
WO2001000936A1 (en) * | 1999-06-29 | 2001-01-04 | Kobelco Construction Machinery Co., Ltd. | Shovel |
JP2008029071A (en) * | 2006-07-19 | 2008-02-07 | Honda Motor Co Ltd | Motor-driven vehicle |
JP2010004732A (en) * | 2008-05-21 | 2010-01-07 | Honda Motor Co Ltd | Power supply system |
WO2012087083A3 (en) * | 2010-12-24 | 2012-10-04 | 두산인프라코어 주식회사 | Turning control apparatus for a hybrid construction machine |
-
1994
- 1994-06-29 JP JP17004094A patent/JPH0819116A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2299223A (en) * | 1995-03-20 | 1996-09-25 | Omar Mohamed Ahmed Mukhtar | Vehicle with axle-mounted and wind-driven generators for continuous battery charging |
GB2299223B (en) * | 1995-03-20 | 1999-06-09 | Omar Mohamed Ahmed Mukhtar | Propulsion AC/DC continuous charge assembly |
WO2000058568A1 (en) * | 1999-03-31 | 2000-10-05 | Kobelco Construction Machinery Co., Ltd. | Capacitor-equipped working machine |
WO2001000936A1 (en) * | 1999-06-29 | 2001-01-04 | Kobelco Construction Machinery Co., Ltd. | Shovel |
JP2008029071A (en) * | 2006-07-19 | 2008-02-07 | Honda Motor Co Ltd | Motor-driven vehicle |
JP2010004732A (en) * | 2008-05-21 | 2010-01-07 | Honda Motor Co Ltd | Power supply system |
WO2012087083A3 (en) * | 2010-12-24 | 2012-10-04 | 두산인프라코어 주식회사 | Turning control apparatus for a hybrid construction machine |
US8862343B2 (en) | 2010-12-24 | 2014-10-14 | Doosan Infracore Co., Ltd. | Turning control apparatus for a hybrid construction machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102307746B (en) | Power supply system and electric vehicle using the same | |
US8659182B2 (en) | Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system | |
US7839013B2 (en) | Power supply device for vehicle and method of controlling the same | |
CN102673376B (en) | Control device for hybrid vehicle | |
US7486034B2 (en) | Power supply device for vehicle and method of controlling the same | |
JP4466772B2 (en) | Vehicle control device | |
US5650713A (en) | Control device for a hybrid automobile | |
CN100413208C (en) | Electric motor driving system, electric four-wheel drive vehicle, and hybrid vehicle | |
JP3180304B2 (en) | Power circuit of hybrid car | |
US20090315518A1 (en) | Power supply device and vehicle | |
WO2007029473A1 (en) | Vehicle, power supply and current detector of vehicle | |
JP4272734B2 (en) | Electric vehicle and hill hold method for automobile | |
JPH11136808A (en) | Power generation controller for hybrid vehicle | |
JP2003164002A (en) | Regenerative braking apparatus for electric car | |
JPH11332007A (en) | Driver of series-type hybrid car | |
JPH0819116A (en) | Driver for motor driven vehicle | |
JP3490420B2 (en) | Hybrid car | |
JPH05284608A (en) | Electric automobile | |
JP3175431B2 (en) | Power generation control device for hybrid electric vehicle | |
JPH10295002A (en) | Braking and auxiliary accelerating equipment for internal combustion engine | |
JP2008104300A (en) | Dew condensation prevention device for detector detecting state of electricity storage system | |
US11519375B2 (en) | Hybrid vehicle and method for controlling hybrid vehicle | |
JP3554403B2 (en) | Control device for electric vehicle | |
Mude et al. | Study and Simulation of Regenerative Braking on BLDC Motor for Electric Vehicles | |
Purkait | Lecture Notes on Advanced Electrical Machines and Smart Grid Technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030114 |