JPS5866381A - Joy stick - Google Patents

Joy stick

Info

Publication number
JPS5866381A
JPS5866381A JP56165228A JP16522881A JPS5866381A JP S5866381 A JPS5866381 A JP S5866381A JP 56165228 A JP56165228 A JP 56165228A JP 16522881 A JP16522881 A JP 16522881A JP S5866381 A JPS5866381 A JP S5866381A
Authority
JP
Japan
Prior art keywords
ball
angle
output
wavelength
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165228A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Ishitobi
石飛 喜光
Fumio Nakatsuji
文男 中辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP56165228A priority Critical patent/JPS5866381A/en
Publication of JPS5866381A publication Critical patent/JPS5866381A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/02Hand grip control means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks
    • G05G2009/0474Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks characterised by means converting mechanical movement into electric signals
    • G05G2009/04755Magnetic sensor, e.g. hall generator, pick-up coil

Abstract

PURPOSE:To enhance detection accuracy and expand angle detection range by causing two pairs of magnetic sensors to provide outputs of sine wave signals with phase difference of 1/4 wavelength for a rotating field of permanent magnet and by executing linear signal processings through operations for each 1/4 wavelength. CONSTITUTION:At the one end of an operation lever 1, a non-magnetic ball 2 is fixed, and a cylindrical permanent magnet 3 which is magnetized in the axial direction is buried within the ball 2. The lever 1 and magnet 3 commonly have the same center line passing the center of ball 2, and the ball 2 is supported in precession free by the ball support 4. The magnetic sensors 10, 11 are buried in the ball support 4 and arranged at right angles each other. The sensors 10, 11 are configurated by an MR element and output the sine waves containing phase difference of 1/4 wavelength for the rotating field of magnet 3. Outputs V1, V2 and V3, V4 are given to the operation circuits 12, 13 and these are operated for each 1/4 wavelength and are linearized. Thereby, an output linearized for magnetic field angle can be obtained corresponding to rotating angle and inclination angle of the lever 1. Thus, detection accuracy can be improved and angle detection range can also be widened.

Description

【発明の詳細な説明】 この発明は検出角度範囲の拡大と噴出積度の改僧を目的
とした非接触部ジョイスティックに関する・ 煉作レバーの傾斜方向と大きさを直角成分に分節して電
気的出力し、la器を制御する機能を有するジョイステ
ィックはCR’l’ディスプレイのカーソル制御や工業
用ロボットのリモート:yyトロール、テレビゲームの
操縦棹など4!r稙分野に応用67′1ている。このジ
ョイスティックにはXとY方間の直父する二方向に固定
トランスジューサを配置して、沫作レバーの変位角成分
をJldの一足トランスジエーサの軸の回転角に分解し
て取出す尋の接触≦のものがあるが、この接Mj&1l
Fi儂嬉が俵確化して円滑な動作が城めず、また摩れに
よる蝙々砧のN−などがあり、現在91月1i減出(こ
永久磁石と磁気センサを組合せ′fi−?:KO非接触
凰ジ冒イスティックが多く採用される填同にめる・ この赫接触−ジョイスティックの一例を@/図と第2図
で説明すると、11)は操作レバー、1!IVi操作レ
バーil+の一端に固定した非砿性体のボール、(31
けボール(21円に堀設した軸方向着徂の、 円Ml形
永久磁石で、−作しバーロ)と永久−石111はボール
(2)の中心点を通る中心mt共有する。
[Detailed Description of the Invention] This invention relates to a non-contact joystick for the purpose of expanding the detection angle range and improving the ejection volume. A joystick that has the function of outputting and controlling la equipment can be used to control the cursor of a CR'l' display, a remote for an industrial robot: a yy troll, a control stick for a video game, etc.4! It has been applied to the field of r. This joystick is equipped with fixed transducers arranged in two direct directions, X and Y, to resolve the displacement angle component of the lever into the rotation angle of the shaft of the Jld transducer. There are ≦, but this tangent Mj & 1l
Due to the stiffness of the fi, it is not possible to operate smoothly, and there are also problems such as N-, which is caused by friction. The KO non-contact joystick is often used in the installation. An example of this contact joystick is explained using Figure 1 and Figure 2. 11) is the operation lever, 1! A non-rigid ball fixed to one end of the IVi operating lever il+ (31
The ball (a circular Ml-shaped permanent magnet with a 21-circle hole extending in the axial direction) and the permanent stone 111 share a center mt passing through the center point of the ball (2).

←)はボール(幻を歳差運動自在に支持すゐl−ル受け
、(sl及び(@1はボール受け←)に埋設され九−個
の磁気センサで、例えば硫昇の方向変化で抵抗値が変る
損気抵抗素子(以下MR嬌子と称す)である・この各M
R嵩子’Il (@lは例えば第3図に示すように、絶
縁基板(7)上に互いに直交する2つの強輯性金−#良
のストライプ(8a)(lilI)を被着したもので、
このストライプ(8m)(81s)の両端のjiil 
子(9m)(9b)K ” 47 A ’Ig 圧’0
をm、t、中間の。
←) is a wheel holder that supports the ball (phantom) freely in precession, and nine magnetic sensors are embedded in (sl and (@1 is the ball holder ←). It is a loss resistance element whose value changes (hereinafter referred to as MR Minako). Each of these M
(For example, as shown in Fig. 3, @l is a structure in which two strong gold stripes (8a) (lilI) orthogonal to each other are deposited on an insulating substrate (7). in,
jiil at both ends of this stripe (8m) (81s)
child (9m) (9b) K ” 47 A 'Ig pressure' 0
m, t, intermediate.

端子(9りから出力電圧Vを求めるとV=kYo#iL
2#が脅られる。但し、kは材料固有の定数、0はスト
ライプ(8す(8b)と41JOをなす方向アからみた
外部hN−nの角度である。
If the output voltage V is calculated from the terminal (9), V=kYo#iL
2# is threatened. However, k is a constant specific to the material, and 0 is the angle of the external hN-n seen from the direction A forming the stripe (8b) and 41JO.

仁の一個のMR素子F藝l l@lはボールは)の近傍
でボール(21の中心点に向け、且つ互にX方向とX方
向の直交する二方向に向けて配置され、これKよって一
個のMR本子m 14!1の出力で操作しA −111
の傾斜方向と大きさがX−Y厘角成分に分解されて偵出
される拳即ち、iま第V図に示すようKX%”%z@t
−考え、XZ平面とYZsfmK各MR素子!111@
lをその感磁面を平行にして配置し、そして操作レバー
41)の方向と一歓する永久磁石1+11の蝋#MがX
軸より角度0回転しぇ位置にあり、また、硫界翼はz軸
よシ角度ψ傾斜した位置にあるとする。この時、tMr
皿素子11111)への蝿がBの射影角#8、θyは 0x■を鶴 (ta鳳ψ@ eos e )ay親ta
n  (tanψ・−1no)で表わされる・従って、
各MR素子111461の出力vxs Vyは vXsm k To @ in J IIg   ” 
 ”  ” l1lV、+mkVoslnコθy   
@  @  @ 1!1となる。この(1)式とct1
式はψが十分小さ一場合を仮定すると V *JkVotanpecosee 11 @i11
vssコkV、tlLn9116 ginθ@ @ @
 (4)と近似することができる。従って、このm式と
(4)式から操作レバーロ)の回転角θと傾斜角”pが
次式の演算によって求められる。
One MR element (F) is placed near the ball (21), facing the center point of the ball (21), and facing each other in two orthogonal directions, the X direction and the X direction. Operate with the output of one MR Honko m 14!1 A-111
The inclination direction and size of the fist are decomposed into X-Y angle components, i.e., KX%"%z@t as shown in Figure V.
- Thoughts, XZ plane and YZsfmK each MR element! 111@
1 with its magnetically sensitive surface parallel to the direction of the operating lever 41), and the wax #M of permanent magnet 1+11 is aligned with the direction of the operating lever 41).
It is assumed that the blade is located at an angle of 0 rotation from the axis, and the sulfur blade is located at an angle ψ inclined from the z-axis. At this time, tMr
The projection angle of B to the plate element 11111) is #8, θy is 0x■.
It is expressed as n (tanψ・−1no)・Therefore,
The output vxs Vy of each MR element 111461 is vXsm k To @ in J IIg ”
” ” l1lV, +mkVoslnkoθy
@ @ @ 1!1. This formula (1) and ct1
Assuming that ψ is sufficiently small, the formula is V *JkVotanpecosee 11 @i11
vss kV, tlLn9116 ginθ @ @ @
(4) can be approximated. Therefore, from this formula m and formula (4), the rotation angle θ and the tilt angle ``p'' of the control lever are calculated by the following formula.

ところで、11)式と(り式から分るように各MR素子
(6)(船の出力V工、Vyは正弦波出方であるため、
e及びψは共に非直線的であって、高精度の検出°範囲
が狭くなゐ欠点があった・夷III、C4式と+61式
は9’が十分に小さい場合にのみ成立する近似式であ抄
、ψが大1くなる橿鯖差か大きくなって^た0例えば、
第5図はこのように演算した操作レバー(11の傾斜角
ψと回転角θをlilIの傾斜角ψ。及び回転角θ。と
のvA差、J、−91゜−ψ、−θ−〇。−eの最大−
k”” l−びIll! II ヲ9’ を変えて調べ
え結果である。同図から明らかなように操作レバー(1
1の傾斜角ψt/JO一度に#斜すると最大−彊xn&
xa  maエリ共IOに違し、更ψ1 にψを増加していくと、!&激に増加する鋺向にある。
By the way, as can be seen from Equations 11) and (R), each MR element (6) (ship's output V, Vy is a sine wave output, so
Both e and ψ are non-linear, and the disadvantage is that the range of high-precision detection degrees is narrow. Equation III, C4, and +61 are approximate equations that hold true only when 9' is sufficiently small. For example, if ψ becomes 1, the difference becomes large. For example,
Figure 5 shows the vA difference, J, -91°-ψ, -θ- .-maximum of e-
k"" l-biIll! II Change wo9' and check the results. As is clear from the figure, the operation lever (1
If the inclination angle of 1 is ψt/JO # inclines at once, the maximum −xn &
Unlike the IO for both xa and ma, if we further increase ψ to ψ1, ! & It is in the direction of a rapidly increasing number of people.

このように従来のジョイスティックは検出梢度上、徳用
範囲か狭め範囲に限定されるため、谷線分野への適用が
m−な−のであった・従って1本発明はか−る問題点に
鑑みなされ友もので、検出積度を低下することなく、検
出範囲をムエ及的に拡大出来る非接触型ジ曹イスティッ
クt’提出するものである。
In this way, the conventional joystick is limited to the economical range or narrow range due to the detection range, so it is difficult to apply it to the valley line field. Therefore, the present invention has been developed in view of these problems. As a friend, we present a non-contact type digital stick that can significantly expand the detection range without reducing the detection density.

本発明に係るジョイスティックは、操作レバーに一定さ
れた永久磁石から付与される蝉界空直向の互に直交した
面に、夫4−界方向に対して仁相か/4&長Sなる2個
の正弦波出方が取出される電気センナが配置さ−れる。
The joystick according to the present invention has two magnets attached to the operating lever from a fixed permanent magnet on mutually orthogonal surfaces facing the cicada field, which are symmetrical with respect to the field direction. An electric sensor from which the output of the sine wave is extracted is arranged.

そしてこれらの−気センナの各一個の正弦波の検出出方
を夫々1/4m長賞域毎に加算義算し、直線化したyL
算小出力得られる電気回路で処理することを特徴とする
ものである・従って各−気層ンサの蒔直−性の止弦波検
出出カが直線化され九演算出力で坂出され構出lfi度
を低下することなく、−出軛匝の拡大化が図られるもの
である・以下本発明?実施例を図(2)と共に詳述する
・第6図及びも2図において%鉋1図及び第一図と同一
符号は同−瞼を示し、詳細を略す・本発明の相異すると
ころは、次のコ個のU素子−〇亀)及び演算回路oz 
nである・即ち、−個のMR嵩子IA1) (lliは
上記従来のMR嵩子fil 161と同じ位置に配置さ
れたもので、その構成か区のように賞なる・いま、7つ
のX方向に配置されiMR−子一について詳述すると、
これはm/図に示すように絶縁基板i上にVつの強妹性
金−博績のストライプ(15&X1511X15gIX
16(L)を形成した−ので、−接する2つのストライ
プ(16&)(16m))は連続で互いに直交し、その
中間点の愼出錫子φCから出カマλを出力する。また、
残りのストライプ(15(t)(XSa)も連続で互い
に直交し、その中間点の検出端子φDから出力v2を出
力する・筐た、このコ組のストライプ(15a)(la
sh)と(18o)(15a)は互いにWJoの角度を
奢し、各組の両端は嫉続されて、この両端の電流端子ψ
ムs 1”Bから共通のバイアス電圧v0が印加される
。このような構造の拙1子oo+#i、互に直交したバ
ターyt)NILストツイプ(15m)(15b)を有
する三端子構造の皿累子紳と前記パターンとは夫々y5
 G傾斜し、互に直交したパターンのMRストライプ(
la)(15a)を有する三畑子傅造のMRj1g子0
?1とを夫々ψム、ψB を共通の電源端子としたもの
であり、夫々の菓子(+6i 071を別体に作地する
ことも出来る・七して、各MR素子Ob!(171t;
j、図示しないが、各此ストライプ(15a)(lab
)、(’15G)(lJs4)に対応して夫々2個の固
定&仇とブリッジ縁続され差kJJ増巾されて、夫々の
検出電圧V↓、vgを出力する・即ち、MRX子叫に鍾
界Hがi準方回Pに対して角度θ工で付与されると、次
式に示す出力v1%v2が出力される。
Then, the detection output of each sine wave of each of these -Qi sensors is summed and calculated for each 1/4 m long area, and the linearized yL is obtained.
It is characterized by processing with an electric circuit that can obtain a computational output.Therefore, the stop string wave detection output of each air layer sensor is linearized and sloped with nine computational outputs. It is possible to expand the output without reducing the degree of yoke.・Hereinafter referred to as the present invention? The embodiment will be described in detail with reference to FIG. , the following U elements - 〇tortoise) and arithmetic circuit oz
n, i.e. - MR Dakako IA1) (lli is placed in the same position as the conventional MR Dakako fil 161 mentioned above, and its composition is like a ward. Now, seven X To elaborate on the iMR-child placed in the direction:
As shown in the figure, V strong gold stripes (15&X1511X15g
16(L) is formed, the two contacting stripes (16&) (16m) are continuous and orthogonal to each other, and the output tin φC at the midpoint outputs the output tin λ. Also,
The remaining stripes (15(t) (XSa) are also continuous and orthogonal to each other, and the output v2 is output from the detection terminal φD at the intermediate point.
sh), (18o) and (15a) make an angle of WJo to each other, both ends of each pair are connected, and the current terminals ψ at both ends
A common bias voltage v0 is applied from the mu s 1"B. A plate with a three-terminal structure having such a structure (oo+#i) and NIL strokes (15m) (15b) which are orthogonal to each other. Seiko Yuko and the above pattern are respectively y5
G-tilted, mutually orthogonal pattern of MR stripes (
la) (15a) Fuzo Mibata's MRj1g child 0
? 1 and ψ, respectively, and ψB as a common power supply terminal, and each MR element Ob! (171t;
j. Although not shown, each stripe (15a) (lab
), ('15G) (lJs4), respectively, are connected to two fixed and connected bridges, the difference kJJ is amplified, and the respective detection voltages V↓, vg are output. When the angle H is applied to the i subdirection P by an angle θ, an output v1%v2 shown in the following equation is output.

VlmkV、oo−コ0工 v、=*v0sin−sz つ筐抄s vlとva#:を位相が1/4波長異なる正
弦波出力で、これをグラフ化すると第2図の実線グラフ
となる。ところで、このように1/4反長異なる正弦奴
出力V、%Vaは、各/4$、長領域毎にこれを見ると
、夫々漸増又Fi闇滅する凸状部分ム及び凹状部分Bか
らなっている。従って、とnらの凸凹部分ム、Bを共K
mi;1m又−滅する方向に(―えてii+[を加算す
ると、一点鎖鎖で図示するように、互の凹部と凸部が平
均化され、直−化された出力か得られる・又、この[k
g化され九出力は夫々各波長填域に於いて同じ傾斜をも
つものであるから、適轟にバイアスすることによ抄全波
長値域に亘って、直線化された演算出力が侍られる。そ
こで、この両出力V工、Vjiを演算回路側で1/4m
長g&に次式(7)の演算を行う・ v  1111−v +v  、jv   CO≦θ≦
asO)   1工l   12  0% 即ち、演算回路QWの出力Vの74波長毎の出力”XL
、vxa、vxis、vX4X4ノ算演算項(−V、+
マ5)1(−v、〒v、)、(v、−v、)、(V1+
VB)#1ui−化式であり、これに−370、vo、
+V、% +jVQを選択的に加減算するととKより、
出力vXは第2図のVjL−11s 1B  K示すよ
うに入力θ工に対して直線化される。
VlmkV, oo-ko0工v, = *v0sin-sz TS casings vl and va#: are sine wave outputs whose phases differ by 1/4 wavelength, and when this is graphed, the solid line graph in Figure 2 is obtained. By the way, the sine force output V, %Va, which differs in 1/4 length in this way, consists of a convex part and a concave part B, which gradually increase or disappear, respectively, when looking at each /4 $ and each long region. ing. Therefore, and n et al.'s uneven parts, B and K
By adding ii+[ in the direction where mi; [k
Since the nine outputs converted into g have the same slope in each wavelength filling range, by applying an appropriate bias, a linearized calculation output can be provided over the entire wavelength range. Therefore, both outputs V and Vji are set to 1/4 m on the arithmetic circuit side.
Perform the calculation of the following equation (7) on the length g & v 1111−v +v , jv CO≦θ≦
asO) 1 engineering 12 0% In other words, the output "XL" for every 74 wavelengths of the output V of the arithmetic circuit QW
, vxa, vxis, vX4X4 arithmetic operator term (-V, +
Ma5) 1(-v,〒v,),(v,-v,),(V1+
VB) #1ui-formation, and -370, vo,
+V, % +j By selectively adding and subtracting VQ, from K,
The output vX is linearized with respect to the input θ as shown in FIG.

このような演算は、例えは410図に示すような電気回
線によって藺単に行うことが出来る・即ち、(I&−一
311は反転回路、−一は比較回路、絶;は判別回路、
シ〜□□□は、マルチプレクサ、2r+は加算回路であ
る・1つのマルチプレクサ@には+vlと+v2及び2
つの反転回路圃−で反転さtしたー■よと−vgか入力
され、他のマルテプレタf Caa I/Cilt十v
oと+Jv0及び2つの反転回路−馨幻で反転された一
v0と−JV0か入力される。一つの比軟回路−ムはV
、とVλが正か負かを比較して  −刊〃り回路内に出
力するもので、判別回路(財)#−ivよとvgか共に
正の時はθ≦θ≦YJ0の領域にあると判断し、V工が
負でvgが正の時はダJo≦e≦700の狽域、■よと
vgが共に負の時はりθO≦θ≦/JJ ’の慣城、v
lが正でvgか負の時は7130≦8≦ito。
Such calculations can be easily performed using an electric circuit as shown in FIG.
Sh~□□□ is a multiplexer, 2r+ is an adder circuit ・One multiplexer @ has +vl, +v2 and 2
One inverting circuit inputs inverted t-vg, and the other multipreter f Caa I/Cilt-vg is input.
o, +Jv0, and two inverting circuits -1v0 and -JV0, which are inverted by the illusion, are input. One specific soft circuit is V
, and Vλ are compared to see if they are positive or negative and output to the circuit. When both #-iv and vg are positive, the discrimination circuit is in the region of θ≦θ≦YJ0. Judging that, when V is negative and vg is positive, there is a limit of daJo≦e≦700, and when both Yo and vg are negative, there is a limit of θO≦θ≦/JJ ', v
When l is positive and vg is negative, 7130≦8≦ito.

の領域にあると判断する・そして、判別回路(財)は判
断したkh朱をマルチプレクサ塾(ハ)に送る・すると
マルチプレクサ(2)固は入力された各項目:tVl、
±v、、±v0、±J vg t” i’ll 別1j
m 11& Z ’D f4 別(11号にiづいて演
算すべきものだけ1逮択して加−回路し刀に送る。加算
回路(財)は())式のいずれかを演算して、出力V工
が求まる。このよう表演算l路021Fi加減算か主体
自答であるから比較的簡単で安価な回路構成のもので達
成される。
Then, the discriminator circuit sends the determined kh kh to the multiplexer Juku (c). The multiplexer (2) then sends each input item: tVl,
±v,,±v0,±J vg t” i'll another 1j
m 11 & Z 'D f4 Separate (according to No. 11, only those that should be calculated are selected, added to the circuit, and sent to the sword. The addition circuit (product) calculates one of the equations ()) and outputs V-work is required. Since table calculations such as addition and subtraction are self-explanatory, they can be accomplished with a relatively simple and inexpensive circuit configuration.

また、Y方向に配置されたMR素子(111とその演算
回路(131は上記MR素子叫と演算回路(lzと同−
内容金有する・つまり、MR嵩子Bit Fi2つの出
力V、mkV0oosJθy、 v4.−hv、 at
nia、 t mカシ、’oss回錯−はこの一山力v
5.7番から1−1区出力vyを凛丼すゐ・ い1、貼り図にボし皮ように、渾作レバー(1)のxj
IIIIlltC対するIIal−周tθ、”sWC対
する績暑tψとし、谷1ta基子叫α五+への磁界Hの
射第周をθ工、eyとすると、僅米同体に θ、ml;IIQ  (tanψe 0OJIθ)1 θ、mtan  (tanP*sinθ)で次0される
ρ為ら、各演メ回絡O廼−の出力V。
In addition, the MR element (111) and its arithmetic circuit (131 are the same as the MR element and the arithmetic circuit (lz) arranged in the Y direction.
It has content, that is, MR Dakko Bit Fi two outputs V, mkV0oosJθy, v4. -hv, at
Nia, tm kashi, 'oss rotation- is this one mountain power v
5. From number 7, output vy from section 1-1.
If we let IIal-period tθ for IIIlltC, and heat tψ for sWC, and let θ, ey be the radial rotation of the magnetic field H to valley 1ta key child cry α5+, then θ, ml; IIQ (tanψe 0OJIθ ) 1 θ, mtan (tanP*sin θ) and then 0, so the output V of each output circuit O.

、Vアは VxamkV0#x(組 V、−xVc、ayisi と直−関係式で得られ、回転角θと傾斜角ψは区夫のよ
うに$筐る。
, Va is obtained by a direct relationship with VxamkV0#x (set V, -xVc, ayisi), and the rotation angle θ and the inclination angle ψ are calculated as follows.

このようにし上置られる操作レバー/の回転角eと1l
JllH8(Pt’i、GMRX子m1ni K ハ水
久at石11+の磁界角度の入力に対して夫々位相か1
/4波長共なる丼IkAl11性の正弦波の検出出力V
l、V、であるが、上記演算飽塩をすることにより、第
(8)及び@(g)式に示すiうに磁界角度に比例した
直線化された演算出力が得られ友ものである。
The rotation angle e and 1l of the operating lever / placed on top in this way
JllH8 (Pt'i, GMRX child m1ni K) Phase or 1 for input of magnetic field angle of Mizuku at stone 11+
Detection output V of sine wave of IkAl11 characteristic with /4 wavelengths
l, V, but by performing the above calculation saturation, linearized calculation outputs proportional to the magnetic field angle can be obtained as shown in equations (8) and @(g).

以上のように、本発明によれば操作レバーの回転角及び
#A謝角に対応した磁界角度に対して直−化された演算
出力か得られ、演出積度が向上し、血も角度構出範囲が
大幅に拡大される。
As described above, according to the present invention, it is possible to obtain a calculation output that is linearized with respect to the rotation angle of the operation lever and the magnetic field angle corresponding to the angle of #A, thereby improving the degree of production and reducing the angle of rotation. The range of output will be greatly expanded.

真除、従来の有効便用角度範囲が士150であったのに
対し、本発明の場合は士り0oK拡大され、有効性が実
証された。
While the conventional effective angle range was 150 degrees, in the case of the present invention, the angle range was increased to 0 degrees, proving its effectiveness.

向、本発明のジ誓イスティック構造は、上記(施例に限
定されるものではなく、例えはボールの中心を中!にし
て、この中Km磁気センサ固定配置する等の工夫も可能
である・又、磁気センサは磁石の磁界空間内の相I!l
JD直文面に配置したが、互に対向するダ面に配置させ
ることも可能である。
However, the static structure of the present invention is not limited to the above embodiments; for example, the center of the ball can be placed in the center, and a magnetic sensor can be fixedly arranged in the middle.・Also, the magnetic sensor detects the phase I!l in the magnetic field space of the magnet.
Although they are placed on the JD direct side, they can also be placed on opposite sides.

【図面の簡単な説明】[Brief explanation of the drawing]

外7図及び第2図は従来のジ冒イスティックの側断面図
及びII−[[&lK潟う@面図、@J図IfiMR累
子の一例を示す要部平面図、第ダ図はジ彎イスティック
の操作レバー回転角及び傾斜角の検出原塩を説明するた
めの動作原理図s’AJ図tisi図のv4差特性図、
第6図及び蓋2−は本発明の一実施例を示す慎構部め惰
Vr面図及び櫨−■−に浴う断−図、第J′口は本発明
で用いるMR本子(磁気セン1)の−例を示す蚤部平−
図、もり図は第1図のMR業子の出力及び演算す力の波
形図、も70口は@2図の演算回路の一例を示すプロツ
ク図である・ 111 @ −操作レバー、+2i @ @ボール、(
31・−永久輯石、(4)・・ボール受け、l1tl+
 1lli 41 #磁気センサ(Mハ糸子)、(12
i0m・・演算回路・1161 第7m 2
Figures 7 and 2 are a side cross-sectional view of a conventional Ji-I-F stick, a front view of II- The operation principle diagram for explaining the detection raw salt of the operating lever rotation angle and inclination angle of the s'AJ diagram.
Fig. 6 and the lid 2- are a cross-sectional view of the mechanical part showing an embodiment of the present invention, and a cross-sectional view of the frame -■-. 1) - Hira Namibe showing an example -
Figures and diagrams are waveform diagrams of the output and calculation force of the MR element in Figure 1, and Figure 70 is a block diagram showing an example of the calculation circuit in Figure 2. 111 @ - operating lever, +2i @ @ ball,(
31.-Eternal rotation, (4)...Ball receiver, l1tl+
1lli 41 #Magnetic sensor (Mha Itoko), (12
i0m... Arithmetic circuit 1161 7th m 2

Claims (1)

【特許請求の範囲】[Claims] 11)操作レバーに連結され、永久磁石を内蔵すゐボー
ルと、このボールを歳差這wJ自在に支持するボール受
けと、ボール受けに内蔵され、互に直交配置された少な
くとも2組の磁気センサからな砂、前記操作レバーの傾
斜方向と大きさを永久−石の一一一昇によシ直周成分に
分解して前記−組の磁気センサで出力するようにしえジ
ョイスティックにおいて、前記夫々の磁気セン管は永久
磁石の回動磁界に対して位相か174R長異なゐ正弦波
出力を出力させ、これらの出力を演算回路で/4波長毎
に演算して直線式した11号処理することを峙値とする
ジョイスティック・
11) A ball that is connected to the operating lever and has a built-in permanent magnet, a ball receiver that supports this ball in a precessional manner, and at least two sets of magnetic sensors that are built into the ball receiver and arranged orthogonally to each other. In the joystick, the inclination direction and magnitude of the operating lever are decomposed into diagonal components by the permanent lifting of stones and outputted by the set of magnetic sensors. The magnetic center tube outputs a sine wave output with a phase difference of 174 R in length with respect to the rotating magnetic field of a permanent magnet, and calculates these outputs for every 4 wavelengths in an arithmetic circuit and processes them using a linear equation. Joystick as a value
JP56165228A 1981-10-15 1981-10-15 Joy stick Pending JPS5866381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165228A JPS5866381A (en) 1981-10-15 1981-10-15 Joy stick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165228A JPS5866381A (en) 1981-10-15 1981-10-15 Joy stick

Publications (1)

Publication Number Publication Date
JPS5866381A true JPS5866381A (en) 1983-04-20

Family

ID=15808286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165228A Pending JPS5866381A (en) 1981-10-15 1981-10-15 Joy stick

Country Status (1)

Country Link
JP (1) JPS5866381A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232687A (en) * 1985-04-09 1986-10-16 Aichi Tokei Denki Co Ltd Magnetoresistance element
DE19503615A1 (en) * 1994-02-09 1995-08-17 Genge & Thoma Ag Two-dimensional joystick control unit
WO1998044313A1 (en) * 1997-04-03 1998-10-08 Measurement Systems, Inc. Magnetically actuated control device
JP2001184136A (en) * 1999-12-21 2001-07-06 Itt Mfg Enterp Inc Joy stick
US6606085B1 (en) 1999-09-22 2003-08-12 Fujitsu Takamisawa Component Limited Coordinate input device
JP2007287117A (en) * 2006-04-17 2007-11-01 Jae Woo Yang Contactless electron joystick of universal joint structure using single hall sensor
GB2431221B (en) * 2004-08-06 2008-04-09 P G Drives Technology Ltd Control system
US7757579B2 (en) 2004-08-30 2010-07-20 Sauer-Danfoss Inc. Joystick device with redundant sensor processing
US8054291B2 (en) 2003-01-20 2011-11-08 Asahi Kasei Emd Corporation Pointing device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232687A (en) * 1985-04-09 1986-10-16 Aichi Tokei Denki Co Ltd Magnetoresistance element
DE19503615A1 (en) * 1994-02-09 1995-08-17 Genge & Thoma Ag Two-dimensional joystick control unit
CH688065A5 (en) * 1994-02-09 1997-04-30 Genge & Thoma Ag For two-dimensional or two-dimensional controlling measuring serving arrangement.
WO1998044313A1 (en) * 1997-04-03 1998-10-08 Measurement Systems, Inc. Magnetically actuated control device
US5850142A (en) * 1997-04-03 1998-12-15 Measurement Systems, Inc. Control device having a magnetic component with convex surfaces
US6606085B1 (en) 1999-09-22 2003-08-12 Fujitsu Takamisawa Component Limited Coordinate input device
JP2001184136A (en) * 1999-12-21 2001-07-06 Itt Mfg Enterp Inc Joy stick
JP4568395B2 (en) * 1999-12-21 2010-10-27 アイティーティー マニュファクチュアリング エンタープライズィズ インコーポレイテッド Joystick
US8054291B2 (en) 2003-01-20 2011-11-08 Asahi Kasei Emd Corporation Pointing device
GB2431221B (en) * 2004-08-06 2008-04-09 P G Drives Technology Ltd Control system
US7757579B2 (en) 2004-08-30 2010-07-20 Sauer-Danfoss Inc. Joystick device with redundant sensor processing
JP2007287117A (en) * 2006-04-17 2007-11-01 Jae Woo Yang Contactless electron joystick of universal joint structure using single hall sensor

Similar Documents

Publication Publication Date Title
JP2637750B2 (en) Multi-axis displacement sensor
KR100543701B1 (en) Apparatus and method for inputting information spatially
US4046005A (en) Three axis joystick control
JPS5866381A (en) Joy stick
JPH03192423A (en) Three-dimensional computer apparatus
US5394029A (en) Geomagnetic orientation sensor, means, and system
CN111707175B (en) Signal processing circuit, position detection device, and magnetic sensor system
Christensen et al. Learning magnetic field distortion compensation for robotic systems
Kondratenko et al. Modern sensing systems of intelligent robots based on multi-component slip displacement sensors
JPS6295402A (en) Rotational angle detector
KR100562517B1 (en) Multi-axis potentiometer
JPH0243293B2 (en)
CN107478859B (en) A kind of pulsewidth is double to add square type acceleration sensor circuit
US3475971A (en) Combination two-axis electromagnetic torque and pickoff
US11507202B2 (en) 3-D input device
JP5498208B2 (en) Magnetic field detector
JP5490576B2 (en) Magnetic field detector
JPS63195928A (en) Lead switch
JP5132065B2 (en) 3-DOF rotation detection device and method
US3710087A (en) Calculation of approximate magnitude of a physical vector quantity
EP1074815A1 (en) Biaxial Magnetic Position Sensor
JPH06147816A (en) Angle sensor
JPH04271425A (en) Contactless position detector
JPH07271508A (en) Input device using azimuth/tilt sensor
KR960010419B1 (en) Total direction piezo-electric sensor in gyroscope