JPS5866367A - Semiconductor rectifier and preparation thereof - Google Patents

Semiconductor rectifier and preparation thereof

Info

Publication number
JPS5866367A
JPS5866367A JP16528081A JP16528081A JPS5866367A JP S5866367 A JPS5866367 A JP S5866367A JP 16528081 A JP16528081 A JP 16528081A JP 16528081 A JP16528081 A JP 16528081A JP S5866367 A JPS5866367 A JP S5866367A
Authority
JP
Japan
Prior art keywords
semiconductor layer
region
semiconductor
conductivity type
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16528081A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizushima
宜彦 水島
Yoshihito Amamiya
好仁 雨宮
Yasuo Hasegawa
長谷川 泰男
Hideo Ito
秀朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Origin Electric Co Ltd
Priority to JP16528081A priority Critical patent/JPS5866367A/en
Publication of JPS5866367A publication Critical patent/JPS5866367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make characteristics free from contamination at the side of a semiconductor element by forming the semiconductor region on the side of semiconductor layer forming the P-N junction so that this P-N junction is not exposed. CONSTITUTION:A P-N junction J is formed on an N<+> type conductivity type semiconductor layer 1 through the growth of P<-> type semiconductor layer 2 thereon. An insulating film 7 is formed uniformly on the layer 2. Then, as shown in the figure by the broken line, after removing the film 7 of the interface for respectively isolating individual elements, the semiconductor layer is removed until it reaches the junction J and a groove 8 is thus formed. Thereafter, plurality of windows 9 are selectively formed on the film 7 leaving the desired region of the film 7 in order to form an N++ type region 4. With the film 7 used as the mask, N conductivity type impurity is diffused from the groove 8 and a window 9 in order to form the N<++> type region 10 along the groove 8 and the region 4 is selectively formed. Thereafter, a metal material 5 is formed in order to short-circuit the regions 3 and 4.

Description

【発明の詳細な説明】 本発明は、第10L11を製の第10半導体層上にこの
層とは逆の導1置で低い不純物一度を有する第2のエビ
!キシャル半導体層を形成してなる低損失で高速度動作
を行い得る半導体整流装置及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a second semiconductor layer having a low impurity level at the conductive position opposite to this layer on the tenth semiconductor layer made of the first L11. The present invention relates to a semiconductor rectifier device formed with a axial semiconductor layer and capable of high-speed operation with low loss, and a method for manufacturing the same.

この種の半導体装置としては、従来第1図に示す様に、
N導電型の第10牛導体層1上に該半導体層の不純物濃
度に比べて不#1物濃匿の低いP導電型の第20牛導体
層2t−形成し、次にこの第20半導体層2にモザイク
状などに第20牛導体層2に比べて不純物a度の高い互
いに逆の導v!型のP導電ml領域5及びN導電型領域
4を形成し、史にこれら半導体層の内主面に金属電極5
及び6をオーンツタに形成し良ものがある。
As shown in FIG. 1, conventional semiconductor devices of this type include:
A 20th conductor layer 2t of P conductivity type having a lower impurity concentration than the impurity concentration of the semiconductor layer is formed on the 10th conductor layer 1 of N conductivity type, and then this 20th conductor layer 1 is formed. 2, the 20th conductor layer 2 has opposite conductors with a higher degree of impurity a than the 20th conductor layer 2, such as in a mosaic pattern! A P conductivity type region 5 and an N conductivity type region 4 are formed, and a metal electrode 5 is formed on the inner main surface of these semiconductor layers.
There is also a good one with 6 and 6 formed into an ivy.

斯かる構造の半導体装置においては、半導体層2と第1
0−域Sとの不純物濃度の差に基ついて生ずる半導体層
2に対し第1の領域3を高レベルとする゛電位障壁φが
半導体層2と第1の領域5との関に存在するが、この電
位障壁は電極5側から第2の半導体層2に供給される多
数キャリアである正孔に対しては障壁として作用せず、
従ってオ第2の領域4については、これら不純物濃度の
差及び導電型が互いに逆であることに基づいて生ずる第
2の領域4に対して半導体層2を高レベルとする電位障
壁が存在して込るが、この電位障壁は第2の半導体層2
から第2の領*4に注入される少数キャリアである電子
に対しては実質的に障壁として作用せず、従って第2の
領域4は第2の半導体層2からの少数キャリアを吸収す
る作用を行う。
In a semiconductor device having such a structure, the semiconductor layer 2 and the first
Although there is a potential barrier φ between the semiconductor layer 2 and the first region 5 that makes the first region 3 a high level with respect to the semiconductor layer 2 due to the difference in impurity concentration with the 0-region S, , this potential barrier does not act as a barrier against holes, which are majority carriers, supplied from the electrode 5 side to the second semiconductor layer 2,
Therefore, regarding the second region 4, there exists a potential barrier that makes the semiconductor layer 2 at a high level with respect to the second region 4, which is generated based on the difference in impurity concentration and the mutually opposite conductivity types. However, this potential barrier is caused by the second semiconductor layer 2
The second region 4 does not substantially act as a barrier to the electrons, which are minority carriers, injected into the second region *4 from the second region *4, and therefore the second region 4 acts to absorb minority carriers from the second semiconductor layer 2. I do.

置によれば、多数キャリア及び少数キャリア双方に対し
て障壁を形成することがない電極構造を与えることが出
来るので、順方向ドロップを小さく出来、しかも少数キ
ャリアの蓄積効果が低減されるので逆回復時間を短縮で
きるという効果を有する。
According to the above, it is possible to provide an electrode structure that does not form a barrier for both majority carriers and minority carriers, so forward drop can be reduced, and the accumulation effect of minority carriers is reduced, so reverse recovery can be improved. This has the effect of reducing time.

しかし斯かゐ構造の半導体装置は上述の様な重要な効果
を有するものの、半導体層1と2とにより形成されるP
−Ni1合Jの端縁J′が半導体素子のa面SK露呈し
ているので、半導体素子の@市に付着せる汚れなどの悪
影響を受は易く、半導体装置が初期の特性より劣化した
り安定に動作しなくなったヤすることがある。%にこの
ことけ通常の半導体装置に比べて領域3と4とからなる
電極材は用半導体領域を形成するだめの電極が増えると
と罠よって、高くなる傾向がある。
However, although the semiconductor device having such a structure has the above-mentioned important effects, the P formed by the semiconductor layers 1 and 2
- Since the edge J' of the Ni 1 joint J is exposed to the a-plane SK of the semiconductor element, it is easily susceptible to negative effects such as dirt that adheres to the semiconductor element, causing the semiconductor device to deteriorate or become unstable than its initial characteristics. Sometimes it stops working. %, compared to a normal semiconductor device, the electrode material consisting of regions 3 and 4 tends to be expensive because the number of unnecessary electrodes for forming the semiconductor region increases.

よって本発明は上述の様な半導体装置の欠点を除去せる
構造の半導体整流装置とその製造方法を提案するもので
ある。
Therefore, the present invention proposes a semiconductor rectifier device having a structure that eliminates the above-mentioned drawbacks of semiconductor devices, and a method for manufacturing the same.

以下に図面に従って本発明の夫々の夷り例を説明する。Below, various examples of the present invention will be explained according to the drawings.

先ず第2図(A)乃至(D)によ秒本発明の一実施例を
説明すると、比較的高い不純物Wk度、例えば1×10
1!3crn−3程変の不純物skiを有するN導電型
の第10半導体層1上に通常のエピタキシャル成長法に
よって、第1の半導体層1に比べて低い不純物濃度、例
えば1×1015・crR−3程度の不純物m度のP導
電型の′3+2の半導体層2を20声程度成長させてP
−N接合Jを形成する。次に第2の半導体層2に通常の
不純物拡散法によシ第20半導体層2に比べて高い不純
物濃度、例えば5×1018・Crn−3程度の第1の
領域3を1岸m乃至数μm程度の厚さで選択的に形成す
る。しかる後に第2図(B)に示す様に、1000tZ
’以上の窒素及び酸素の雰囲気中で熱酸化処理して少く
とも半導体層2上に一様に絶縁性被[7を形成する。次
に同図(B)にお込て鎖線で示す様に個々の素子に分離
する面域の絶縁性被膜を通常のエツチングにより除去し
た後に、更に別のエツチング工程によシ少くともほぼP
−N接合JK達するまで半導体層をエツチングi去して
同図(C)K示す様に#8を形成する。更に第1図にお
ける領域4に対応する領域を形成する九めに絶縁性被m
7の所望箇所のみ残してエツチング除去することにより
、絶縁性被膜7に複数の窓9を選択的に形成する。
First, an embodiment of the present invention will be explained with reference to FIGS. 2(A) to 2(D).
The impurity concentration lower than that of the first semiconductor layer 1, for example, 1×1015·crR−3, is grown on the tenth semiconductor layer 1 of the N conductivity type, which has an impurity ski varying by about 1!3 crn−3, by a normal epitaxial growth method. A P conductivity type '3+2 semiconductor layer 2 with about 20 degrees of impurity is grown to form P
-N junction J is formed. Next, a first region 3 with a higher impurity concentration than that of the 20th semiconductor layer 2, for example, about 5×1018·Crn-3, is formed in the second semiconductor layer 2 by a normal impurity diffusion method. It is selectively formed to a thickness of approximately μm. After that, as shown in Figure 2 (B), 1000tZ
Thermal oxidation treatment is performed in an atmosphere of nitrogen and oxygen as described above to uniformly form an insulating coating [7] on at least the semiconductor layer 2. Next, as shown by the chain lines in Figure (B), after removing the insulating film in the area that separates the individual elements by normal etching, another etching process is performed to at least approximately
The semiconductor layer is etched away until the -N junction JK is reached, forming #8 as shown in FIG. Furthermore, an insulating coating is formed on the ninth region forming a region corresponding to region 4 in FIG.
A plurality of windows 9 are selectively formed in the insulating film 7 by etching and removing only the desired portions of the insulating film 7.

しかる後に絶縁性被膜7を拡散マスクとして利用し、溝
8及び絶縁性被膜70−窓9から第1の半、導体層1と
同一導電型ON導電型不純物を拡散し、高不純物濃度、
例えば1XIQ  −cd−3@変の領域10を溝8に
沿って形成すると共にN導電Wi。
Thereafter, using the insulating film 7 as a diffusion mask, impurities of the same conductivity type as the first half and the conductor layer 1 are diffused from the groove 8 and the insulating film 70 - window 9 to form a high impurity concentration.
For example, a region 10 of 1XIQ -cd-3@ is formed along the groove 8 and N conductive Wi is formed.

牙20領域4を同時に選択的に形成する。この領域1G
及び第2の領域4の深さ社1−乃至数一@[であに、特
に第2の領域4の深さは第10領域sO深さに比べて、
空乏層O広かに上、浅い方が好オしい、これら高不純物
濃度ON導電型の第20領域4及び10を形成する際、
同時に才10半導体層1の主IjKi1611[o不純
物をドーグしてN++tm to領域1′を形成するこ
とも出来る、その俵1、tl、第20領域3.4の存在
する血にこれらを実質的Km絡する金属部′材5を領域
S、4とオーミッタKmる橡に形成する。上述の様な方
法でP−Nlii合端縁が露出せる半導体素子@面に第
1の半導体層1と同一導電型の高不純物一度の領域を形
成することにょシ、実質上P−N接合端縁J′は絶縁性
被膜7の下側の半導体表面に存在する仁とKなり、従っ
て斯かる製法の下に得られた半導体装置は半導体素子の
1iIWJの汚れによっても特性が影餐されずに安定で
あり、しがも低損失、高速度の半導体素子構造を与える
電極付は用牛導体領域の領域4を形成す4II−に同時
に領域1o、更には領域1′を形成することが出来、製
造工程を簡略化することが出来る。まえ個々の半導体素
子に切断する箇所に予め溝を設け、駄溝を利用して不純
物をドープしているので半導体素子のメナ部に均一な薄
い領域を単時間で形成でき、低損失及び高速度という本
来得るべき効果を低減することなく、安定な特性の半導
体素子at量産性向上できるのである、 次K[ll(A)乃至(D) Kよシ本発明の別の一実
施例を説明すると、前記*雄側と同様にして牙1の半導
体層1上に積層され九第2の半導体層2上に絶縁性被膜
7を予め形成し、その所定箇所AK選択的に形成した窓
からP4電型不純物をドープして第1の領域5f:形成
する。しかる後に前述方法と同様にして同図CB)に示
す様に溝8を形成し、第2の半導体層2の第1の領域5
が形成されている主面全体を絶縁性被M7で覆った′4
に崖で溝8を臨む半導体表面から前記実施例と同様にし
てN導電型不純物をドープして高不純物AkのN++置
の領域10をS面に沿って数−形成する。この際、第1
の半導体層1KN++領域1を形成すると、別途に金属
電極(図示せずンと良好なオーミックコン!り上を得る
ための高不純aFIIj#fIIL領域を形成する必要
がなく、工程の簡略化が出来る。
The fang 20 region 4 is selectively formed at the same time. This area 1G
And the depth of the second region 4 is from 1 to several 1 [In particular, the depth of the second region 4 is compared to the depth of the 10th region sO,
When forming the 20th regions 4 and 10 of high impurity concentration ON conductivity type, in which the depletion layer O is preferably wide and shallow,
At the same time, it is also possible to form the N++tm to region 1' by doping the main IjKi1611[o impurity of the 10th semiconductor layer 1. A connecting metal member 5 is formed in the area S, 4 and an omitter Km. By forming a highly impurity region of the same conductivity type as the first semiconductor layer 1 on the surface of the semiconductor element where the P-Nlii junction edge is exposed by the method described above, the P-N junction edge is substantially The edge J' becomes the groove K existing on the semiconductor surface under the insulating film 7, and therefore, the characteristics of the semiconductor device obtained using this manufacturing method are not affected even by contamination of the semiconductor element 1iIWJ. With an electrode that provides a stable, low-loss, high-speed semiconductor device structure, it is possible to simultaneously form a region 1o and further a region 1' on the 4II- which forms the region 4 of the conductor region. The manufacturing process can be simplified. Grooves are prepared in advance at the point where each semiconductor element is to be cut, and impurities are doped using the grooves, so a uniform thin region can be formed in the mena of the semiconductor element in a single time, resulting in low loss and high speed. The mass production of semiconductor devices with stable characteristics can be improved without reducing the effects that should originally be obtained. , the insulating film 7 is formed in advance on the second semiconductor layer 2 which is laminated on the semiconductor layer 1 of the fang 1 in the same way as the *male side, and the P4 electrode is passed through the window selectively formed at a predetermined portion of the insulating film 7. A first region 5f is formed by doping type impurities. Thereafter, a groove 8 is formed as shown in FIG.
'4 where the entire main surface on which is formed is covered with an insulating coating M7.
The semiconductor surface facing the groove 8 at the cliff is doped with N conductivity type impurities in the same manner as in the previous embodiment to form several regions 10 of high impurity Ak at N++ positions along the S plane. At this time, the first
By forming the semiconductor layer 1KN++ region 1, there is no need to separately form a metal electrode (not shown), a highly impurity aFIIj#fIIL region for obtaining a very good ohmic contact, and the process can be simplified. .

しかる後に同図(C)で示す様に絶縁性被膜7の鎖ml
B分をフォトエツチングによシ除去し、その半導体表−
に同図(D) K示す様にP半導体層2とシ曹ットキー
接合を形成する金に4部材、例えばクー五による金属層
11會2000ム楊疲形成する。
After that, as shown in the same figure (C), the chain ml of the insulating coating 7 is
The B component was removed by photoetching, and the semiconductor surface was
As shown in FIG. 3D, a metal layer 11 of four materials, for example, a metal layer 11 of 2,000 μm, is formed on the gold plate to form a Schottky junction with the P semiconductor layer 2.

この半導体層2と金属層11とによって形成されるシ1
ットキ接合(クロムシリサイドによる)が形成され丸値
域12は6m記実施例における第2の領域4と同様な作
用を行う4のであって、半導体整流装置が導通状1iK
ある場合、この第2の領域12が第2の半導体層2かも
少数キャリアである電子の徴収を良好に行う。
A silicon layer 1 formed by this semiconductor layer 2 and metal layer 11
A junction (based on chromium silicide) is formed and the round value region 12 acts similarly to the second region 4 in the 6m embodiment, and the semiconductor rectifier is in a conductive state 1iK.
In some cases, this second region 12 and the second semiconductor layer 2 also effectively collect electrons, which are minority carriers.

斯かる実jl1例によっても、個々の半導体素子に切断
する部分に溝を設け、#溝を利用して不純物をドーグし
ているので半導体素子のW面に均一な薄い領域を短時間
で形成でき、従って予め形成してなる第1の領域5の拡
散を進行さぜることがないので低速失及び高速度と込う
本来得るべき特徴を低下させることなく、半導体素子の
側面の汚れに特性が影響されない安定1に特性の半導体
整流装置の量産性を向上できるのである・ 以上述べ九実雄側から本発明によれば、順方向ドロップ
が小さく且つ逆回復特性が良好で、しかも糊面の汚れな
どにより影響を受妙ない半導体整流装置を比較的簡単な
製造工程で量産可能であることが理解できょう。
In this example, a groove is provided in the cut portion of each semiconductor element, and impurities are doped using the #groove, so that a uniform thin region can be formed on the W surface of the semiconductor element in a short time. Therefore, since the diffusion of the first region 5 formed in advance is not progressed, the characteristics of dirt on the side surface of the semiconductor element can be improved without deteriorating the characteristics that should be obtained, including low speed loss and high speed. It is possible to improve the mass production of semiconductor rectifiers with characteristics of stability 1 without being affected. As stated above, according to the present invention, the forward drop is small, the reverse recovery characteristics are good, and there is no problem with dirt on the adhesive surface. It will be understood that it is possible to mass-produce semiconductor rectifiers that are not susceptible to the effects of this phenomenon using a relatively simple manufacturing process.

尚、以上の実施例において、本発明の精神を逸脱しない
範HKおりて導電型を反対にし九シ、不純物濃1を変え
九り、或いは工程の順序の変更など種々な変東をなし得
るであろう。
In the above embodiments, various changes may be made without departing from the spirit of the present invention, such as reversing the conductivity type, changing the impurity concentration, or changing the order of the steps. Probably.

【図面の簡単な説明】[Brief explanation of drawings]

身重発明の異なる一実施例を説明するための図である。 1・・・第1の半導体層  2・・・第2の半導体層5
・・・第10領域    4,12・・・第2の領域7
・・・絶縁性被膜    8・・・溝10・・・半導体
領域   11・・・、金属層オリジン電気株式会社 特許出願人 日本電信電話公社 第2図 ″ 躬3 図 手続補正豐(方式) 昭和57年31月、18日 特許庁長官殿 1、事件の表示  昭和56年特許願牙165280号
2、発明の名称  半導体整流装置及びその製造方法3
、補正をする者 事件との関係  砦許出願人 (代表出願人)住 所 
  東京都豊島区高田1丁目18番1号4、補正命令の
日付 昭和57年2月23日(発送日) s、 m 正to 対象   明細書の「図面の簡単な
説明」の欄6、補正の内容
FIG. 3 is a diagram for explaining a different embodiment of the pregnancy invention. 1... First semiconductor layer 2... Second semiconductor layer 5
...10th area 4, 12...2nd area 7
... Insulating film 8 ... Groove 10 ... Semiconductor region 11 ..., Metal layer Origin Electric Co., Ltd. Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 2 `` 3 Figure procedure correction method (Showa 57) January 18th, 2016, Mr. Commissioner of the Japan Patent Office 1. Indication of the case: Patent Application No. 165280 of 1982 2. Title of the invention: Semiconductor rectifier device and its manufacturing method 3
, Relationship with the case of the person making the amendment Address of the applicant for a fortification permit (representative applicant)
1-18-1-4 Takada, Toshima-ku, Tokyo Date of amendment order February 23, 1980 (shipment date) s, m Correct to Subject Column 6 of "Brief explanation of drawings" of the specification, Amendment Content

Claims (1)

【特許請求の範囲】[Claims] (1)  第1の導電型を有する第1の半導体層と、該
第10半導体層とP−N接合を形成する前記第10半導
体層に比べて低い不純物濃度を有する第10導電型とは
逆の第2の導電型の第2の半導体層と、#f2の半導体
層上の一部分に形成され九絶it性被膜と、前記22の
半導体層に形成され丸前記号2の半導体層へ多数キャリ
アを供給する作用を行う第1の領域と前記第2の半導体
層から少数中ヤリアを吸収する作用をなす第2の領域と
、これら第1の領域とオ♀の領域とを一質的に短絡せる
金S部材とを備える半導体装置であ?て、前記第1、第
2o半導体1711に本る側面に鹸ff1P−N豪合端
縁が少くと411呈しない輝度や高い不純物損−と厚さ
とを有する第1の導電型の半導体領域1形成し九ことを
%徴とする半導体整流装置。 ■ 第1の導電型を有する第1の千尋体層又は七の上に
該第1の半導体層に比べて低い不純物製置を有する第1
の導電型の第2の半導体層を形成する工程と、 前記第2の半導体層上に絶縁性被膜を形成する工程と、 少くとも前記第1の半導体層に#lは達する様に前記絶
縁性被膜と牙2の半導体層の一部分を除去する工程と、 前記絶縁性被膜をマスクとして利用して前の工程でP−
N接合端縁を露呈してなる側面から第2の半導体層に比
べて高不純物織度の第1の導電型の不純物を拡散して実
質的に)’−N接合端縁を前記(1111面に少くとも
露呈させない程度の厚さを有する半導体領域を形成する
工程と、 前記′22の半導体層にこれと同じ導電型で不純物aI
eo高い領域を形成する工程と、該領域K11l接して
第1の導電型であって且つ該第2o半導体層に比べて−
い不純物濃度を有する領域を前記第2の半導体層に形成
、或いは前記第2の半導体層上に核半導体層とショット
キ!1合を形成する金属層を形成する工程と、を備えた
ことを4I−黴とする半導体整流装置の製造方法。
(1) A first semiconductor layer having a first conductivity type and a tenth conductivity type having a lower impurity concentration than the tenth semiconductor layer forming a P-N junction with the tenth semiconductor layer are opposite to each other. a second semiconductor layer of a second conductivity type, a nine-stop film formed on a portion of the semiconductor layer #f2, and a majority carrier film formed on the semiconductor layer #22 and transferred to the semiconductor layer marked with the circle symbol 2. A first region that acts to supply a ferromagnetic acid, a second region that acts to absorb a small amount of rays from the second semiconductor layer, and uniformly short-circuit the first region and the O♦ region. Is it a semiconductor device equipped with a gold S member that can be made of metal? Then, a semiconductor region 1 of a first conductivity type is formed on the side surface extending to the first and second semiconductors 1711, which has a high impurity loss, high impurity loss, and brightness that does not exhibit as much as 411 at least 411 FF1P-N combined edges. A semiconductor rectifier with a characteristic of 9%. ■ A first semiconductor layer having a lower impurity concentration on the first semiconductor layer or layer having the first conductivity type than the first semiconductor layer.
forming a second semiconductor layer of conductivity type; forming an insulating film on the second semiconductor layer; a step of removing the film and a portion of the semiconductor layer of the fang 2; and a step of removing the film and a portion of the semiconductor layer of the fang 2, and using the insulating film as a mask to remove the P-
The impurity of the first conductivity type having a higher impurity concentration than the second semiconductor layer is diffused from the side surface where the N junction edge is exposed, thereby substantially converting the ()'-N junction edge into the (1111 plane). a step of forming a semiconductor region having a thickness that is at least not exposed to the semiconductor layer;
a step of forming a region with high eo, and the region K11l is in contact with the first conductivity type and is - compared to the second o semiconductor layer.
A region having a high impurity concentration is formed in the second semiconductor layer, or a nuclear semiconductor layer and a Schottky! region are formed on the second semiconductor layer. A method for manufacturing a semiconductor rectifier, comprising the steps of: forming a metal layer forming a metal layer.
JP16528081A 1981-10-16 1981-10-16 Semiconductor rectifier and preparation thereof Pending JPS5866367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16528081A JPS5866367A (en) 1981-10-16 1981-10-16 Semiconductor rectifier and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16528081A JPS5866367A (en) 1981-10-16 1981-10-16 Semiconductor rectifier and preparation thereof

Publications (1)

Publication Number Publication Date
JPS5866367A true JPS5866367A (en) 1983-04-20

Family

ID=15809325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16528081A Pending JPS5866367A (en) 1981-10-16 1981-10-16 Semiconductor rectifier and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5866367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270348A (en) * 1988-04-22 1989-10-27 Sanken Electric Co Ltd Schottky barrier semiconductor device
JP2017028055A (en) * 2015-07-21 2017-02-02 トヨタ自動車株式会社 diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270348A (en) * 1988-04-22 1989-10-27 Sanken Electric Co Ltd Schottky barrier semiconductor device
JP2017028055A (en) * 2015-07-21 2017-02-02 トヨタ自動車株式会社 diode

Similar Documents

Publication Publication Date Title
JPH05347413A (en) Manufacture of semiconductor device
JPS60201666A (en) Semiconductor device
JPH03165577A (en) Semiconductor device and its manufacture
JPS5669844A (en) Manufacture of semiconductor device
US4032373A (en) Method of manufacturing dielectrically isolated semiconductive device
EP0046316B1 (en) Semiconductor devices and their manufacture
KR100203307B1 (en) A method of manufacturing laser diode
JPS5866367A (en) Semiconductor rectifier and preparation thereof
US3956034A (en) Isolated photodiode array
US3986904A (en) Process for fabricating planar scr structure
JPS61285766A (en) Manufacture of semiconductor device
JP2511023B2 (en) Bidirectional thyristor
JPS63138771A (en) Schottky barrier type semiconductor device and manufacture thereof
JPS62281366A (en) Manufacture of schottky barrier type semiconductor device
JPS5986268A (en) Schotkky gate field effect transistor with modulated doping layer as operation layer
JPS6298721A (en) Zn solid-state diffusing method for iii-v compound semiconductor
JP2857206B2 (en) Manufacturing method of vertical thyristor
JPS5961191A (en) Semiconductor device
JPS63138772A (en) Schottky barrier type semiconductor device and manufacture thereof
JPH0923016A (en) Manufacture of composite diode
JPH0294632A (en) Manufacture of semiconductor device
JPS61137371A (en) Manufacture of semiconductor device
JPS6333305B2 (en)
JP2002222938A (en) Semiconductor device
JPS59175764A (en) Semiconductor device