JPS586471B2 - Alcohol manufacturing method - Google Patents

Alcohol manufacturing method

Info

Publication number
JPS586471B2
JPS586471B2 JP54076564A JP7656479A JPS586471B2 JP S586471 B2 JPS586471 B2 JP S586471B2 JP 54076564 A JP54076564 A JP 54076564A JP 7656479 A JP7656479 A JP 7656479A JP S586471 B2 JPS586471 B2 JP S586471B2
Authority
JP
Japan
Prior art keywords
alcohol
gas
liquid
solid phase
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076564A
Other languages
Japanese (ja)
Other versions
JPS561885A (en
Inventor
永井雅郎
杉山明敏
福島達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rikakikai Co Ltd
Original Assignee
Tokyo Rikakikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rikakikai Co Ltd filed Critical Tokyo Rikakikai Co Ltd
Priority to JP54076564A priority Critical patent/JPS586471B2/en
Publication of JPS561885A publication Critical patent/JPS561885A/en
Publication of JPS586471B2 publication Critical patent/JPS586471B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Description

【発明の詳細な説明】 本発明は二糖類、単糖類などの糖、或いはこれらの混合
物またはこれらの混合物を含む糖蜜を原料とし酵母を触
媒としてアルコールを製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alcohol using sugars such as disaccharides and monosaccharides, mixtures thereof, or molasses containing these mixtures as a raw material and using yeast as a catalyst.

酵母を固定化しエタノールを連続的に製造することは既
知であって、例えば酵母(Saccharo−myce
s cerevisiae)をアルギン酸カルシウムで
包括し細長い円柱状に成形した固定化酵母をカラムに充
填しカルシウム塩含有のグルコース水溶液よりエタノー
ルを連続製造すること、および酵母(Saccharo
mycee carlsbergensis)をカラギ
ーナンで包括し粒状に成形した固定化酵母によって充填
層を形成しイーストエキス、ミネラル、クエン酸含有の
グルコース水溶液からなろ完全培地溶液よりエタノール
を連続製造することが報告されている。
It is known to immobilize yeast to continuously produce ethanol, for example, yeast (Saccharo-myce
s cerevisiae) wrapped in calcium alginate and molded into an elongated cylinder shape is packed in a column to continuously produce ethanol from an aqueous glucose solution containing calcium salts, and
It has been reported that ethanol can be continuously produced from a Naro complete medium solution using a glucose aqueous solution containing yeast extract, minerals, and citric acid by forming a packed bed with immobilized yeast that is formed by enclosing Mycee carlsbergensis in carrageenan and forming it into granules.

このように固定化酵母をアルコールの製造に用いること
はよく知られているが、有効係数を大きくし反応収率を
高めるため粒径を小さくして後者の方法でアルコールを
製造する場合、液相の圧力損失が大きいばかりかゲル状
の固定化酵母を用いると液圧で圧縮変形し互いの接触面
積を増大して抵抗の増大と反応収率の低下を招くという
欠点がある。
It is well known that immobilized yeast is used to produce alcohol in this way, but when producing alcohol by the latter method, which involves reducing the particle size in order to increase the effectiveness coefficient and increase the reaction yield, the liquid phase Not only is the pressure loss large, but when gel-like immobilized yeast is used, it is compressed and deformed by the hydraulic pressure, increasing the contact area with each other, resulting in an increase in resistance and a decrease in reaction yield.

また前記二つの方法の内で特に後者の方法においては酵
母を包括した固定化物の内部で生存菌が高レベルで存在
していないと高収率のアルコール製造が期待できないば
かりか、菌が仮死状態となり或いは死滅したときは収率
が零となり、そのためには液相即ち基質液が高価な窒素
含有物であるイーストエキスその他の完全培地であるこ
とが必要とされている。
In addition, especially in the latter method of the above two methods, high yield alcohol production cannot be expected unless viable bacteria are present at a high level inside the immobilized material containing the yeast, and the bacteria are in a state of suspended animation. The yield becomes zero when the yeast dies or dies, and for this purpose, the liquid phase, ie, the substrate liquid, needs to be a complete medium such as yeast extract, which is an expensive nitrogen-containing substance.

一般にアルコールを工業的に生産するには安価な糖蜜を
用いるのが有利であるとされている。
It is generally considered advantageous to use inexpensive molasses for industrial production of alcohol.

糖蜜は二糖類と単糖類の混合物のほか窒素、燐、マグネ
シウム、カリウム更にビタミンを含んで居り、これより
アルコールを得る反応を簡単に示すと次式の通りである
Molasses contains a mixture of disaccharides and monosaccharides as well as nitrogen, phosphorus, magnesium, potassium, and vitamins, and the reaction to obtain alcohol from this is simply shown by the following equation.

この式(3)から判るようにアルコールと等モルの炭酸
ガスが生成し、前述のように固定化酵母で充填層を形成
した場合にはこの炭酸ガスの気泡が層内に残り固定化酵
母の濡れ面積を小さくして基質液の移動抵抗を更に大き
くするばかりか、アルコール濃度が高くなるため酵母と
してアルコール制性菌を用いる必要がある。
As can be seen from this equation (3), equimolar carbon dioxide gas is generated as alcohol, and when a packed bed is formed with immobilized yeast as described above, bubbles of carbon dioxide gas remain in the layer and the immobilized yeast Not only does the wetting area become smaller to further increase the movement resistance of the substrate liquid, but also the alcohol concentration increases, so it is necessary to use alcoholic bacteria as the yeast.

また炭酸ガスが残留していると死菌では酵素活性を速か
に失うに至り、そのために液相として完全培地を用いて
酵母に大分な増殖能力を与え酵素活性を維持できるよう
にすることが必要とされ、このため生存菌が存在してい
る固定化酵母によるアルコール醗酵を行わなければなら
ないとされていた。
In addition, if carbon dioxide gas remains, dead bacteria quickly lose enzyme activity, so it is necessary to use a complete medium as a liquid phase to give yeast a significant growth ability and maintain enzyme activity. Therefore, it was considered necessary to perform alcoholic fermentation using immobilized yeast in which viable bacteria were present.

本発明は不活性ガスからなる気相と原料の糖からなる液
相と粒状の固定化酵母からなる固相とが互いに混合し固
相が懸濁した三相流動層を形成して発生する炭酸ガスを
排出除去しながら反応を行わせることにより、炭酸ガス
が生成アルコールの一部を不活性ガスと共に随伴して排
出させられ、従って軽比重のゲル状の固定化酵母を用い
てもよく流動して気相と液相の広い流量範囲に亘って均
一に分散し懸濁した状態が得られ、固液間物質移動係数
が大きく且つアルコール濃度が自動的に制御され、更に
固定化酵母内で酵母増殖の必要がないためイーストエキ
ス等を添加することなく酵素活性寿命を長くし高収率で
アルコールを連続製造できるようにしたものである。
In the present invention, a gas phase consisting of an inert gas, a liquid phase consisting of sugar as a raw material, and a solid phase consisting of granular immobilized yeast are mixed with each other to form a three-phase fluidized bed in which the solid phase is suspended, and carbon dioxide is generated. By carrying out the reaction while discharging and removing gases, carbon dioxide gas is discharged along with a portion of the produced alcohol together with inert gas, and therefore it flows well even when using immobilized yeast in the form of a gel with a light specific gravity. A uniformly dispersed and suspended state can be obtained over a wide flow range of gas and liquid phases, the solid-liquid mass transfer coefficient is large, and the alcohol concentration is automatically controlled. Since there is no need for growth, the lifespan of enzyme activity is extended without adding yeast extract or the like, making it possible to continuously produce alcohol at high yields.

以下本発明の実施の態様を図面に就いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は中央より上方に最大直径の短円筒部1を有しそ
の上下に直径が次第に小さくなる上方円錐部2および下
方円錐部3を形成して全体が防錘形に作られた竪形の反
応塔4を用いた例を示し、下方円錐部3の下端に焼結金
属板、多数の小孔を設けた板等で作られた気体分散板5
を介して不活性ガスの供給室6を設けると共に気体分散
板5の少し上方に固相取出口7を設け、上方円錐部2に
固相仕込口8および生成アルコール取出口9を設ける。
Fig. 1 shows a vertical shape having a short cylindrical part 1 with the maximum diameter above the center, and above and below it an upper conical part 2 and a lower conical part 3 with gradually decreasing diameters, and the whole is made into a weightless shape. An example using a reaction tower 4 is shown, in which a gas distribution plate 5 made of a sintered metal plate, a plate with many small holes, etc. is provided at the lower end of the lower conical part 3.
An inert gas supply chamber 6 is provided through the gas dispersion plate 5, a solid phase outlet 7 is provided slightly above the gas distribution plate 5, and a solid phase inlet 8 and a produced alcohol outlet 9 are provided in the upper conical portion 2.

上方円錐部2の頂端は排気管10を経て冷却器11に接
続され、また供給室6には不活性ガスの圧力容器12が
調圧弁13を経て供給管14により接続されている。
The top end of the upper conical portion 2 is connected to a cooler 11 via an exhaust pipe 10, and an inert gas pressure vessel 12 is connected to the supply chamber 6 via a pressure regulating valve 13 via a supply pipe 14.

原料の糖例えば糖蜜は気体分散板5の少し上方に設けた
原料供給口15から反応塔4の底部へ送入され生成アル
コール取出口9より少し上方に液面を有する液相bを形
成し、粒状の固定化酵母は固相仕込口8から投入されて
固相cを形成すると共に窒素、水素、ヘリウム等の不活
性ガスは気体分散板5を通り気泡となって反応塔4の中
心部へ送入され気相aを形成する。
Sugar as a raw material, such as molasses, is fed to the bottom of the reaction tower 4 from a raw material supply port 15 provided slightly above the gas distribution plate 5 to form a liquid phase b having a liquid level slightly above the produced alcohol outlet 9. The granular immobilized yeast is introduced from the solid phase inlet 8 to form the solid phase c, and inert gases such as nitrogen, hydrogen, and helium pass through the gas distribution plate 5 and become bubbles to the center of the reaction tower 4. is introduced to form a gas phase a.

反応塔4の底から中心部を上昇する気相aは液相bおよ
び固相cを連行して上昇流を生じさせ、液面附近に至っ
て液相bおよび固相cは反転して反応塔4の壁に沿った
下降流となって底へ向い、そのとき気相aの一部は下降
流と一緒に底へ向うが残りは液面上方へ脱出し、反応に
よって生成した炭酸ガスおよび生成アルコールと共に排
気管10を通って冷却器11へ送られ、ここで冷却水に
より冷却し凝縮したアルコールは導管16を通り密閉構
造のアルコール容器17に溜められる。
The gas phase a rising from the bottom to the center of the reaction tower 4 entrains the liquid phase b and the solid phase c to generate an upward flow, and when it reaches near the liquid level, the liquid phase b and the solid phase c are reversed and move up the reaction tower. It becomes a downward flow along the wall of 4 and goes to the bottom, and at that time, part of the gas phase a goes to the bottom together with the downward flow, but the rest escapes above the liquid level, and the carbon dioxide gas produced by the reaction and the The alcohol is sent to the cooler 11 through the exhaust pipe 10, where it is cooled by cooling water, and the condensed alcohol passes through the conduit 16 and is stored in a sealed alcohol container 17.

炭酸ガスと不活性ガスの混合物は導管16から分岐した
排ガス管18を通って炭酸ガス吸収器19へ送らわ、残
った不活性ガスはブロア20で吸引されて容器21に貯
蔵されこれよりブロア22で取出され供給室6へ送られ
循環し、その際に圧力容器12から適宜補充する。
The mixture of carbon dioxide and inert gas is sent to the carbon dioxide absorber 19 through an exhaust gas pipe 18 branched from the conduit 16, and the remaining inert gas is sucked by a blower 20 and stored in a container 21, from which it is sent to a blower 22. It is taken out and sent to the supply chamber 6 for circulation, and at that time, it is replenished from the pressure vessel 12 as appropriate.

送出液は生成アルコール取出口9から連続的に取出され
フラッシュエバポレータ33で単蒸留したアルコールは
凝縮器34を経て受器35に集められ、残液はエバポレ
ータ33の底から次段の反応塔へ送られるかまたは前記
の原料供給口15へ戻される。
The discharged liquid is continuously taken out from the produced alcohol outlet 9, and the alcohol subjected to simple distillation in the flash evaporator 33 passes through the condenser 34 and is collected in the receiver 35, and the residual liquid is sent from the bottom of the evaporator 33 to the next reaction column. or returned to the raw material supply port 15 described above.

尚この反応塔4は防錘形でなく球形であっても同じであ
る。
The same applies even if the reaction tower 4 is spherical instead of bouncy.

第2図は円筒形に作られた竪形の反応塔31を用いた例
を示し、底の中心部に前記同様の気体分散板5を介して
不活性ガスの供給室6を設けると共に、この反応塔31
に固相取出口7、固相仕込口8、生成アルコール取出口
9、原料供給口15を第1図と同様の位置で設け、更に
気体分散板5の上方に位置させて上下を開放したダクト
32を同心に内蔵固定し気体分散板5からの気泡がこの
ダクト32の内部のみに送入されるようにしたものであ
って、冷却器11、不活性ガスの圧力容器12、アルコ
ール容器17、炭酸ガス吸収器19、容器21、ブロア
20,22は第1図の実施例と同様に配置されている。
FIG. 2 shows an example using a cylindrical vertical reaction tower 31, in which an inert gas supply chamber 6 is provided at the center of the bottom via a gas distribution plate 5 similar to the above. Reaction tower 31
A solid phase outlet 7, a solid phase inlet 8, a produced alcohol outlet 9, and a raw material supply inlet 15 are provided at the same positions as in FIG. 32 are built in and fixed concentrically so that the bubbles from the gas distribution plate 5 are sent only into the inside of this duct 32, which includes a cooler 11, an inert gas pressure container 12, an alcohol container 17, The carbon dioxide absorber 19, container 21, and blowers 20, 22 are arranged in the same manner as in the embodiment shown in FIG.

原料の糖はダクト32の上端縁より上方に液面を有する
液相bを形成し、ダクト32の内部のみに送入された気
泡は気相aを形成してダクト下端縁から液相bおよび固
相cを吸込みこれら三つの相が互いに混合した状態で上
昇し、ダクト32の上端を出たとき気相aの一部は液相
bおよび固相cと一緒に反転しダクト32の外部を下降
するか残りは液面上方へ脱出し生成アルコールの一部お
よび炭酸ガスと共に排気管10を通って冷却器11へ送
られる。
The raw sugar forms a liquid phase b having a liquid level above the upper edge of the duct 32, and the air bubbles introduced only into the duct 32 form a gas phase a, which flows from the lower edge of the duct to liquid phases b and The solid phase c is sucked in and these three phases rise in a mixed state, and when it exits the upper end of the duct 32, a part of the gas phase a is inverted together with the liquid phase b and the solid phase c and flows outside the duct 32. The remaining alcohol descends or escapes above the liquid level and is sent to the cooler 11 through the exhaust pipe 10 along with a portion of the produced alcohol and carbon dioxide gas.

前記二つの実施例において、原料の糖は生成アルコール
の回収に伴い適宜補充し、また固定化酵母も適宜交換す
ることによって連続操作が行われる。
In the two embodiments described above, continuous operation is performed by appropriately replenishing the raw material sugar as the produced alcohol is recovered, and by replacing the immobilized yeast as appropriate.

以上のように本発明は原料の糖からなる液相と粒状の固
定化酵母からなる固相とを反応塔に入れ、その底から不
活性ガスの気泡による気相を送入することによって気相
の上昇に伴い液相および固相を連行する上昇流を生じこ
れが混合流れとなって互いに混合し固相が懸濁した三相
流動層を形成するのである。
As described above, in the present invention, a liquid phase consisting of sugar as a raw material and a solid phase consisting of granular immobilized yeast are placed in a reaction column, and a gas phase is introduced from the bottom of the column by inert gas bubbles. As the temperature rises, an upward flow entraining the liquid phase and the solid phase is generated, which becomes a mixed flow and mixes with each other to form a three-phase fluidized bed in which the solid phase is suspended.

そして第1図のような防錘形或いは球形の反応塔を用い
るときは中心の上昇流とその下降流との間で液相の流れ
の方向と速度とが変化すると共に渦を発生するため気相
と固相が複雑に攪拌され、また第2図のようなダクト内
蔵の反応塔を用いるときはダクト外部に下方へ向う押出
し流れを形成し、いずれの場合も反応塔内で三つの相が
流動層を形成して上下に循環するのである。
When using a bollard-shaped or spherical reaction tower as shown in Figure 1, the direction and velocity of the liquid phase change between the upward flow at the center and the downward flow, and a vortex is generated. The phase and solid phase are stirred in a complicated manner, and when using a reaction tower with a built-in duct as shown in Figure 2, a downward extrusion flow is formed outside the duct, and in either case, three phases are mixed inside the reaction tower. It forms a fluidized bed and circulates up and down.

従って気相と固相とが液相に均一に混合した状態で上昇
させられることからこれら三つの相の間の流量係数を大
きくでき気相と液相の広い流量範囲に亘って固相が均一
に分散し懸濁した状態が得られるばかりか、反転して下
方へ向う流れは下部で気相による吸引作用が行われてい
るため小径或いは軽比重の固相を含んでいてもこれが円
滑に下降して懸濁状態を維持し、かくして固液間物質移
動係数が大きくしかも気液間物質移動係数も大きい反応
系が形成され、しかも三相流動層であるために液相の圧
力損失増大、反応収率の低下等の不都合を一切招かない
のである。
Therefore, since the gas phase and the solid phase are evenly mixed with the liquid phase and raised, the flow coefficient between these three phases can be increased, and the solid phase is uniform over a wide flow range of the gas and liquid phases. Not only can a state of dispersion and suspension be obtained, but also the reversed downward flow is suctioned by the gas phase at the bottom, so even if it contains solid phases of small diameter or light specific gravity, it descends smoothly. In this way, a reaction system with a large solid-liquid mass transfer coefficient and a large gas-liquid mass transfer coefficient is formed, and since it is a three-phase fluidized bed, the pressure loss of the liquid phase increases and the reaction This does not cause any inconvenience such as a decrease in yield.

また本発明によると不活性ガスを気相に用いているので
固相内で生存菌を高レベルで存在させ高収率のアルコー
ル製造を期待できるばかりか、反応の際に生成した炭酸
ガスを速かに排出除去するため生成アルコールの一部お
よび不活性ガスが同時に随伴して排出されることとなり
、前記の式(3)で示す反応は右方向へ進行してアルコ
ール生成反応が有利に行われ且つ液相内のアルコールの
高濃度化が自動的に制御調整され酵母としてアルコール
耐性菌を用いる必要がないものである。
Furthermore, according to the present invention, since an inert gas is used in the gas phase, not only can viable bacteria be present at a high level in the solid phase and high-yield alcohol production can be expected, but also the carbon dioxide gas generated during the reaction can be quickly removed. Since a part of the produced alcohol and the inert gas are discharged and removed at the same time, the reaction shown in equation (3) above proceeds in the right direction, and the alcohol production reaction is carried out advantageously. In addition, the high concentration of alcohol in the liquid phase is automatically controlled and adjusted, so there is no need to use alcohol-resistant bacteria as the yeast.

更に本発明によると炭酸ガスを除去しながら反応させる
ため固定化酵母内の各酵素の活性寿命が長くなり仮死状
態または死菌であっても差支えないばかりか、高価な窒
素化合物を含んだ培地を用いる必要がなく安価にアルコ
ールを製造できる等のすぐれた諸効果を有するものであ
る。
Furthermore, according to the present invention, since the reaction is carried out while removing carbon dioxide gas, the active life of each enzyme in the immobilized yeast is extended, and not only does it not matter even if the yeast is in suspended animation or dead, it also eliminates the need for a medium containing expensive nitrogen compounds. It has various excellent effects such as being able to produce alcohol at low cost without using it.

次に本発明の試験結果を述べる。Next, test results of the present invention will be described.

湿潤酵母(Saccharomyces cerevi
siae)10g当りアクリルアミドモノマ2g、N,
N′−メチレンビスアクリルアミド0.5g、2.5w
t%過硫酸カリ溶液4cc、5wt%ジメチルアミノピ
ロピオニトリル4ccを加え直径1mmの丸棒状に重合
形成したものを1.5mm長に切断して固定化酵母を作
る。
Wet yeast (Saccharomyces cerevi)
siae) 2 g of acrylamide monomer per 10 g, N,
N'-methylenebisacrylamide 0.5g, 2.5w
4 cc of t% potassium persulfate solution and 4 cc of 5 wt% dimethylaminopropionitrile were added and polymerized into a round rod shape with a diameter of 1 mm, which was then cut into 1.5 mm lengths to prepare immobilized yeast.

〔試験1〕 容積2lの防錘形反応塔に固定化酵母104cc、糖蜜
(二糖類0.47mol/l、単糖類0.96mol/
l)940ccを入れ、底の気体分散板を通して窒素ガ
スを23cc/secの割合で供給する。
[Test 1] 104 cc of immobilized yeast and molasses (disaccharide 0.47 mol/l, monosaccharide 0.96 mol/l) were placed in a spindle-shaped reaction tower with a volume of 2 liters.
l) 940 cc is introduced, and nitrogen gas is supplied at a rate of 23 cc/sec through the gas distribution plate at the bottom.

液は温度30℃、pH5.05であり、流量1cc/m
inの割合で供給した。
The liquid has a temperature of 30°C, a pH of 5.05, and a flow rate of 1cc/m.
It was supplied at a rate of in.

定常となった後の送出液はアルコール8%(W/V)、
二糖類0.1mol/l、グルコース0.3mol/l
、フラクトース0.6mol/lを含み、これより2C
C/hの割合で13%(w/v)の凝縮アルコールを得
た。
After reaching steady state, the delivery liquid was 8% alcohol (W/V),
Disaccharide 0.1 mol/l, glucose 0.3 mol/l
, containing 0.6 mol/l fructose, from which 2C
A condensed alcohol of 13% (w/v) in C/h was obtained.

尚、排出ガス中のCO2/N2のモル比は0.03、5
日間の連続運転を行って固定化酵母の活性は変化なかっ
た。
Furthermore, the molar ratio of CO2/N2 in the exhaust gas is 0.03, 5.
There was no change in the activity of the immobilized yeast after continuous operation for several days.

〔試験2〕 試験1と同一量の固定化酵母、糖蜜、窒素ガスを第2図
の装置に入れ液回分操作を行ったときの経時変化は下表
の通りである。
[Test 2] The same amounts of immobilized yeast, molasses, and nitrogen gas as in Test 1 were placed in the apparatus shown in Figure 2, and liquid batch operation was performed, and the changes over time are shown in the table below.

〔試験3〕 防錘形反応塔に固定化酵母220ccおよび蔗糖0.9
gmol/l、MgSO42g/l、KH2PO427
g/l、Na2HPO40.02g/lの割合の原液2
lを入れ、液温30℃に保ち窒薬ガスを5Ncc/se
cの割合で供給する。
[Test 3] 220 cc of yeast immobilized in a spindle-shaped reaction tower and 0.9 sucrose
gmol/l, MgSO42g/l, KH2PO427
g/l, stock solution 2 with a proportion of Na2HPO40.02 g/l
1, and keep the liquid temperature at 30℃ and supply nitrogen gas at 5Ncc/se.
Supply at a rate of c.

液の送入、送出速度は2cc/minとし、定常となっ
た後の送出液より16係(W/V)、100cc/hの
凝縮アルコールを得た。
The feeding and delivery speeds of the liquid were 2 cc/min, and after reaching a steady state, condensed alcohol of 16 parts (W/V) and 100 cc/h was obtained from the delivered liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の異なる実施の態様を示す
一部切截した説明図である。 4・・・・・・反応塔、5・・・・・・気体分散板、7
・・・・・・固相取出口、8・・・・・・固相仕込口、
9・・・・・・生成アルコール取出口、11・・・・・
・冷却器、12・・・・・・圧力容器、15・・・・・
・原料供給口、17・・・・・・アルコール容器、19
・・・・・・炭酸ガス吸収器、31・・・・・・反応塔
、32・・・・・・ダクト。
1 and 2 are partially cutaway explanatory diagrams showing different embodiments of the present invention. 4... Reaction tower, 5... Gas distribution plate, 7
...Solid phase extraction port, 8...Solid phase inlet,
9... Produced alcohol outlet, 11...
・Cooler, 12... Pressure vessel, 15...
・Raw material supply port, 17...Alcohol container, 19
...carbon dioxide absorber, 31 ... reaction tower, 32 ... duct.

Claims (1)

【特許請求の範囲】[Claims] 1 原料の糖からなる液相と粒状の固定化酵母からなる
固相とを反応塔に入れ、その底から不活性ガスの気泡か
らなる気相を送入することにより上昇する流れおよび反
転して下方へ向う流れを生じさせて前記三つの相が互い
に混合し固相が懸濁した三和流動層を形成し、且つ発生
する炭酸ガスを生成アルコールの一部および不活性ガス
と一緒に反応塔から排出除去することを特徴とするアル
コールの製造方法。
1. A liquid phase consisting of raw material sugar and a solid phase consisting of granular immobilized yeast are placed in a reaction column, and a gas phase consisting of inert gas bubbles is introduced from the bottom of the column to create an upward flow and a reverse flow. A downward flow is generated to mix the three phases with each other to form a three-way fluidized bed in which the solid phase is suspended, and the generated carbon dioxide is sent to the reaction tower together with a part of the produced alcohol and an inert gas. A method for producing alcohol, which comprises discharging and removing alcohol from
JP54076564A 1979-06-18 1979-06-18 Alcohol manufacturing method Expired JPS586471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54076564A JPS586471B2 (en) 1979-06-18 1979-06-18 Alcohol manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54076564A JPS586471B2 (en) 1979-06-18 1979-06-18 Alcohol manufacturing method

Publications (2)

Publication Number Publication Date
JPS561885A JPS561885A (en) 1981-01-10
JPS586471B2 true JPS586471B2 (en) 1983-02-04

Family

ID=13608725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54076564A Expired JPS586471B2 (en) 1979-06-18 1979-06-18 Alcohol manufacturing method

Country Status (1)

Country Link
JP (1) JPS586471B2 (en)

Also Published As

Publication number Publication date
JPS561885A (en) 1981-01-10

Similar Documents

Publication Publication Date Title
CN110241023B (en) Bioreactor for high-density large-scale animal cell culture and application
GB2073243A (en) Continuous fermentor or reactor
JP2002508702A (en) Carbon dioxide management with carbonic anhydrase
SU607555A3 (en) Fermentation vessel
Orazem et al. Oxygen‐transfer rates and efficiencies in one‐and two‐stage airlift towers
NO143668B (en) METHOD AND APPARATUS FOR AEROBIC CULTIVATION OF MICRO-ORGANISMS
CA1277620C (en) Preparation process of immobilized enzymes and apparatus for carrying out same
EP2706051B1 (en) Method for oxidating cyclohexane
JPS586471B2 (en) Alcohol manufacturing method
US4519984A (en) Apparatus for carrying out sparged reaction
CN108261995B (en) Ammonium phosphate reaction tank for producing compound fertilizer
Dale et al. An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance
CN111017973B (en) Method for preparing hollow nano calcium carbonate by using ultrasonic aerosol
JPS5913193B2 (en) Production method of high concentration ethanol using immobilized yeast
JPS6235968B2 (en)
KR890002545B1 (en) Method and apparatus for production of globular silicagel
US4808534A (en) Method and apparatus for the microbiological production of single-cell protein
JPS594743Y2 (en) Three-phase flow reactor
CN206343071U (en) A kind of multi-stage countercurrent reaction tower
JPS6019594Y2 (en) Stirring type continuous reaction equipment
JPH084794B2 (en) Sprinkling filter type bioreactor and ethanol fermentation method using the same
JPS60149377A (en) Apparatus for conducting conversion by microorganism
JPS6013675B2 (en) Production method of high concentration ethanol using immobilized bacteria
CN220038908U (en) Fluidized bed device for calcium magnesium nitrate production
CN218422742U (en) A defoaming reation kettle for secondary aluminium ash is hydrolysised