JPS5864700A - Storage protecting circuit - Google Patents

Storage protecting circuit

Info

Publication number
JPS5864700A
JPS5864700A JP56162607A JP16260781A JPS5864700A JP S5864700 A JPS5864700 A JP S5864700A JP 56162607 A JP56162607 A JP 56162607A JP 16260781 A JP16260781 A JP 16260781A JP S5864700 A JPS5864700 A JP S5864700A
Authority
JP
Japan
Prior art keywords
output
power supply
memory
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162607A
Other languages
Japanese (ja)
Inventor
Saichi Morikawa
森川 佐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56162607A priority Critical patent/JPS5864700A/en
Publication of JPS5864700A publication Critical patent/JPS5864700A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)
  • Microcomputers (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To perform protection with low power consumption by supplying a power voltage to the storage element selection terminal of a CMOS memory through a resistance, and inputting a selection signal or an inverted signal from a microprocessor to the selection terminal through a transistor (TR) inverter. CONSTITUTION:The output voltage 104 of a switching circuit 5 is supplied to the storage element selection terminal 106 of a CMOS memory 7 through a resistance 28. The collector of a TR27 is connected to the selection terminal 106, the emitter is connected to the output of an excessively low voltage detecting circuit 104, and a signal obtained by inverting the signal 105 of a microprocessor 1 through an inverting circuit 26 is inputted to the base. When a main power source 2 is turned off or in trouble, the TR27 turns off to supply the output 102 of a backup power source 3 through a switching circuit 5. This voltage is supplied to the power terminal Vcc of the CMOS memory 7 as well to inhibit storage holding, and writing and reading operation. Consequently, only small electric power is required for the storage protection during a break of the main power source.

Description

【発明の詳細な説明】 本発明は、相補11MO8記憶素子(以下CMOSメモ
リという)の電源切断又は異常時における記憶内容の保
護回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection circuit for the contents of a complementary 11MO8 storage element (hereinafter referred to as a CMOS memory) when power is cut off or an abnormality occurs.

従来、電子計算機等の記憶素子としてCMOSメモリを
使用したときは、例えば第1図に示すように構成される
Qが一般的である。すなわち、マイクロプロセッサ回路
1とCMOSメモリ7とは、データバス、アドレスバス
、書込み読出し信号(R/W信号)線等で接続され、か
つ、記憶素子選択信号105がオア回路6を通してCM
OSメモリ7の記憶素子選択端子に与えられる。そして
、誼選択端子lO6がハイレベルのときは読出し書込み
は禁止され、ローレベルのとき前記データバス、アドレ
スバス、R/W信号等に従って書込み読出し動作を行な
う。CMOSメモリ7の動作用の電圧は、主電源2の出
力101を切替回路6に入力させ、切替回路6の出力線
104を記憶装置7の電源端子Vj−に接続して供給し
ている。
Conventionally, when a CMOS memory is used as a storage element in an electronic computer, a Q configured as shown in FIG. 1, for example, is common. That is, the microprocessor circuit 1 and the CMOS memory 7 are connected by a data bus, an address bus, a write/read signal (R/W signal) line, etc.
It is given to the storage element selection terminal of the OS memory 7. When the selection terminal lO6 is at a high level, read/write is prohibited, and when it is at a low level, a write/read operation is performed according to the data bus, address bus, R/W signal, etc. The operating voltage for the CMOS memory 7 is supplied by inputting the output 101 of the main power supply 2 to the switching circuit 6 and connecting the output line 104 of the switching circuit 6 to the power supply terminal Vj- of the storage device 7.

主電源2の電圧は、例えば6v程度である。The voltage of the main power supply 2 is, for example, about 6V.

一方、過小電圧検出回路4が、前記主電源2の出力電圧
を検出し、一定値以下のとき出力l1110Bをハイレ
ベルにする。該出力線108は前記オア回路6の一方の
入力に接続されているから、出力線108がハイレベル
になるとオア回路6を介して前記記憶素子選択端子10
6をハイレベルにし、書込み読出しを禁止する。主電源
2の切断時には、電源切替回路6は、バックアップ電源
8の出力102を選択出力するから、線104にはバッ
クアップ電源8から例えば2〜8V程度の低い電圧が供
給されている。そして、前記CMOSメモリ7、過小電
圧検出回路4.オア回路6等へは、すべて上記バックア
ップ電源8からの低い電圧が供給される。CMOSメモ
リ7は2〜8Vの低い電圧によっても記憶内容を保持す
ることができ、オア回路6も0MO8によって構成され
ていて、低い電圧で動作することができるから記憶素子
7への書込み読出しを禁止することができる。これによ
って記+II素子7の記憶内容が保護される2、主電源
2の投入時には、電圧検出回路4の出力108がローレ
ベルとなシ、マイクロプロセッサlからO記憶素子選択
信号1025がオア回路6を介して記憶素子選択信号端
子106に与えられる1、しかし、上述の従来構成では
、オア回路6が0MO8で構成されているため信号遅延
時間が大きいという欠点がおる。また1、オア回路6の
消費電力本大きい。信号遅延時間を小とするために、例
えばTTLで前記オア回路6を構成すると、バックアッ
プ電源8へ切替えたときの低い電圧(2〜8■)で動作
することができない。バックアップ電源8の電圧を上げ
ることは、バックアップ時の消費電力が大きくなるから
好ましくない。最近のCMOSメモリは、高速で書込み
読出しが可能であるから、上記信号遅れが問題となる。
On the other hand, the undervoltage detection circuit 4 detects the output voltage of the main power supply 2, and sets the output l1110B to a high level when the output voltage is below a certain value. Since the output line 108 is connected to one input of the OR circuit 6, when the output line 108 becomes high level, the output line 108 is connected to the memory element selection terminal 10 via the OR circuit 6.
6 to high level to prohibit writing and reading. When the main power supply 2 is turned off, the power supply switching circuit 6 selectively outputs the output 102 of the backup power supply 8, so that a low voltage of about 2 to 8 V, for example, is supplied to the line 104 from the backup power supply 8. The CMOS memory 7, the undervoltage detection circuit 4. A low voltage from the backup power supply 8 is supplied to the OR circuit 6 and the like. The CMOS memory 7 can retain its stored contents even with a low voltage of 2 to 8 V, and the OR circuit 6 is also composed of 0MO8 and can operate at a low voltage, so writing and reading to the memory element 7 is prohibited. can do. As a result, the memory contents of the +II element 7 are protected 2. When the main power supply 2 is turned on, the output 108 of the voltage detection circuit 4 is at a low level, and the O storage element selection signal 1025 is sent from the microprocessor 1 to the OR circuit 6. However, in the conventional configuration described above, since the OR circuit 6 is composed of 0MO8, there is a drawback that the signal delay time is large. Also, 1. The power consumption of the OR circuit 6 is large. If the OR circuit 6 is configured with TTL, for example, in order to reduce the signal delay time, it cannot operate at a low voltage (2 to 8) when switched to the backup power supply 8. Increasing the voltage of the backup power supply 8 is not preferable because power consumption during backup increases. Since recent CMOS memories can be read and written at high speed, the above signal delay becomes a problem.

また低電圧。Also low voltage.

低電流で記憶保持させるためには、上述の従来構成は問
題である。
The above-described conventional configuration poses a problem in order to maintain memory with a low current.

第2図は、ll1図に示した従来例の各部の電圧又は信
号波形を示すタイ文チャートであって、(a)は主電源
2の出力101を示す。すなわち、主電源2の投入によ
抄例えば6VK上昇し、切断により零電圧となる。同図
(b)はバックアップ電源8の出力102を示し、例え
ば2〜8vstの一定電圧である。同図(6)は、電源
切替回路6の出力104を示し、主電源投入前はバック
アップ電源の出力102が出力し、主電源投入により、
その出力101と同じ電圧となる1、同図(d)は、過
小電圧検出回路4の出力10Bを示し、主電源投入前は
バックアップ電i18の出力102と同じ電圧のハイレ
ベルとなり、主電源投入後は、主電源2の出力101の
上昇に従って上昇する出力104の電圧に等しいノーイ
レペルとなるが、前記出力101が所定以上の電圧にな
るとローレベルになる。同図(e)はオア回路6へ入力
するマイクロプロセッサ1の記憶素子選択信号106を
示し、マイクロプロセッサ1は該信号のローレベルと同
期して前記データ/くス、アドレス/<ス。
FIG. 2 is a Thai chart showing voltages or signal waveforms at various parts of the conventional example shown in FIG. That is, when the main power source 2 is turned on, the voltage increases by, for example, 6 VK, and when the main power source 2 is turned off, the voltage becomes zero. The figure (b) shows the output 102 of the backup power supply 8, which is a constant voltage of, for example, 2 to 8 vst. (6) in the figure shows the output 104 of the power supply switching circuit 6. Before the main power is turned on, the output 102 of the backup power supply is output, and when the main power is turned on, the output 102 of the backup power supply is output.
The voltage is the same as that of the output 101, and (d) in the same figure shows the output 10B of the undervoltage detection circuit 4. Before the main power is turned on, the voltage is at the same high level as the output 102 of the backup power supply i18, and when the main power is turned on, Thereafter, it becomes a no-repel level equal to the voltage of the output 104 which increases as the output 101 of the main power supply 2 rises, but when the output 101 reaches a predetermined voltage or higher, it becomes a low level. FIG. 4(e) shows the storage element selection signal 106 of the microprocessor 1 input to the OR circuit 6, and the microprocessor 1 selects the data/x and address/<x in synchronization with the low level of this signal.

R/W信号線等に信号を送出して、CMOSメモIJ7
に送る。同図(’f)は、オア回路6の出力。
Send a signal to the R/W signal line, etc., and connect the CMOS memo IJ7.
send to The figure ('f) is the output of the OR circuit 6.

すなわち記憶素子選択端子106の電圧波形であり、同
図(e)に示された選択信号105よシ遅れた波形とな
っている。CMOSメモリ7は、選択fllA子10 
e カローレベルとなったとき前記データバス、アドレ
スバス等のデータおよびR/W信号に従って書込み読出
し動作を行なうから、書込み読出し動作がオア回路6の
遅延時間だけ遅れることになる。すなわち、高速で書込
み読出し動作を行なうことができないことが解る。
In other words, it is the voltage waveform of the memory element selection terminal 106, and has a waveform delayed from the selection signal 105 shown in FIG. The CMOS memory 7 is the selected fullA child 10.
Since the write/read operation is performed in accordance with the data on the data bus, address bus, etc. and the R/W signal when the e-color level is reached, the write/read operation is delayed by the delay time of the OR circuit 6. In other words, it can be seen that writing and reading operations cannot be performed at high speed.

本発明の目的は、上述の従来の欠点を解決し、CMOS
メモリの高速動作を可能とし、かつ、不動作時における
記憶内容の保護が小消費電力で足シる記憶保護回路を提
供することにある。
The purpose of the present invention is to solve the above-mentioned conventional drawbacks and to
An object of the present invention is to provide a memory protection circuit that enables high-speed operation of a memory and protects the memory contents during non-operation with low power consumption.

本発明の記憶保護回路は、記憶素子の動作中の電力を供
給する主電源と、不動作中の記憶保持等のための電力を
供給するバックアップ電源と、上記両電源を切替えて前
記記憶素子等へ接続する電源切替回路と、前記主電源の
出力電圧を検出し一定値以下のとき出力する過小電圧検
出回路とを備え、前記主電源の切断時には前記バックア
ップ電源から前記記憶素子の電源端子および記憶素子選
択端子に電圧を供給して記憶内容の保護および読出し書
込みの禁止を行なうようにした記憶保護回路において、
前記電源切替回路の出力と前記記憶素子選択端子とを接
続する抵抗と、コレクタが前記記憶素子選択端子に接続
されエミッタが前記過小電圧検出回路の出力に接続され
たトランジスタとを備えて、マイクロプロセッサからの
前記記憶素子選択信号又はその反転信号を前記トランジ
スタのベースに接続したことを特徴とする。
The memory protection circuit of the present invention has a main power supply that supplies power while the memory element is in operation, a backup power supply that supplies power for memory retention, etc. when the memory element is not in operation, and a backup power supply that switches between the two power supplies to protect the memory element, etc. and an undervoltage detection circuit that detects the output voltage of the main power supply and outputs it when the output voltage is below a certain value, and when the main power supply is cut off, the backup power supply connects to the power supply terminal of the storage element and the memory. In a memory protection circuit that protects memory contents and prohibits reading and writing by supplying a voltage to an element selection terminal,
A microprocessor, comprising a resistor connecting the output of the power supply switching circuit and the storage element selection terminal, and a transistor having a collector connected to the storage element selection terminal and an emitter connected to the output of the undervoltage detection circuit. The memory element selection signal or its inverted signal is connected to the base of the transistor.

次に、本発明について、図面を参照して詳細に説明する
Next, the present invention will be explained in detail with reference to the drawings.

第8図は、本発明の一実施例を示す回路図である。本実
施例においては、CMOSメモリ7の記憶素子選択端子
106には、抵抗28を通して切替回路5の出力104
の電圧が与えられる。そして、トランジスタ27のコレ
クタを前記記憶素子選択端子106に接続し、エミッタ
は過小電圧検出回路4の出力に接続する。トランジスタ
27のベースニハ、マイクロプロセッサlからの記憶素
子選択信号105を反転回路26で反転させた信号を入
力させる。その他の構成は第1図に示した従来例と同様
であり、第1図に用いた参照数字′と同一の参照数字は
同一の要素を示す、 次に1本実施例の動作にづいて説明する。主電源2が投
入されていないときは、過小電圧検出回路4はハイレベ
ルを出力し、トランジスタ27のエミッタがハイレベル
になっているため、トランジスタ27はオフ状態である
。従って、バックアップ電源8の出力102が切替回路
5を通シ、切替回路5の出力104から抵抗28を介し
て記憶素子選択端子106にハイレベルが与えられる1
゜また、電源端子v0にも前記出力104からの電圧が
与えられている。上記電圧はバックアップ電源8の出力
する例えば2〜8ボルトの低電圧であり、CMOSメモ
リ7は、との電圧によって記憶保持および書込み読出し
の禁止がなされ、記憶内容が保護される。この状態にお
けるCMOSメモリ7の消費電力は僅少であシ、トラン
ジスタ27は電力を消費していない。すなわち、主電源
2の切断時における記憶保護に要する電力は僅少で足9
るという効果がある。また、このとき、反転回路26も
電力消費しない回路とすることができる(しかし、この
とき反転回路26の動作が確実であることは必要ではな
い)。
FIG. 8 is a circuit diagram showing one embodiment of the present invention. In this embodiment, the output 104 of the switching circuit 5 is connected to the storage element selection terminal 106 of the CMOS memory 7 through a resistor 28.
voltage is given. The collector of the transistor 27 is connected to the storage element selection terminal 106, and the emitter is connected to the output of the undervoltage detection circuit 4. At the base of the transistor 27, a signal obtained by inverting the storage element selection signal 105 from the microprocessor 1 by an inverting circuit 26 is inputted. The rest of the structure is the same as that of the conventional example shown in Fig. 1, and the same reference numerals as '' used in Fig. 1 indicate the same elements.Next, the operation of this embodiment will be explained. do. When the main power supply 2 is not turned on, the undervoltage detection circuit 4 outputs a high level, and the emitter of the transistor 27 is at a high level, so the transistor 27 is in an off state. Therefore, the output 102 of the backup power supply 8 is passed through the switching circuit 5, and a high level is applied from the output 104 of the switching circuit 5 to the storage element selection terminal 106 via the resistor 28.
゜The voltage from the output 104 is also applied to the power supply terminal v0. The above voltage is a low voltage of, for example, 2 to 8 volts outputted by the backup power supply 8, and the CMOS memory 7 is inhibited from retaining memory and writing/reading by the voltage, thereby protecting the stored contents. The power consumption of the CMOS memory 7 in this state is small, and the transistor 27 does not consume power. In other words, the power required to protect the memory when the main power supply 2 is turned off is very small, about 9 feet.
It has the effect of Further, at this time, the inverting circuit 26 can also be a circuit that does not consume power (however, at this time, it is not necessary that the inverting circuit 26 operates reliably).

次に、主電源2を投入すると、第4図(4に示すように
出力101が上昇し一定一電圧に達する。パ・  ツク
アツブ電源8の出力102は、第4図(b) K示すよ
うに一定値(2〜8メルト)のitである。
Next, when the main power supply 2 is turned on, the output 101 rises and reaches a constant voltage as shown in Figure 4 (4).The output 102 of the park power supply 8 is as shown in Figure 4 (b) K. It is a constant value (2 to 8 melts).

切替回路6の出力104は、縞4図(e)に示すように
、バックアップ電源8の出力102の電圧から主電源の
出力101の電圧に切替えられ、一定電圧に達する。過
小電圧検出回路4の出力108は同図(d)に示すよう
に、前記出力104の上昇に伴って上昇するが、所定値
に達したときローレベルになる(過小電圧検出“が解か
れるからである)。
The output 104 of the switching circuit 6 is switched from the voltage of the output 102 of the backup power supply 8 to the voltage of the output 101 of the main power supply, and reaches a constant voltage, as shown in FIG. 4(e). The output 108 of the undervoltage detection circuit 4 rises as the output 104 rises, as shown in FIG. ).

過小電圧検出回路4の出力がローレベルになることによ
り第8図のトランジスタ27のエミッタがローレベルと
なるから、該トランジスタ27はインバータとして動作
することができる。、マイクロプロセッサ1から第4図
(・)に示すような記憶素子選択信号105が出力され
、同図(f)に示すような反転信号206が上記トラン
ジスタ27のベースに入力すると、記憶素子選択端子1
06には同図(−に示すような波形が入力する。この波
形は、マイクロプロセッサ1の出力する記憶素子選択信
号と同じ波形であり、遅延時間は極めて僅少である。
Since the output of the undervoltage detection circuit 4 becomes low level, the emitter of the transistor 27 shown in FIG. 8 becomes low level, so that the transistor 27 can operate as an inverter. , when the microprocessor 1 outputs the storage element selection signal 105 as shown in FIG. 4(), and the inverted signal 206 as shown in FIG. 1
A waveform as shown in (-) in the figure is input to 06. This waveform is the same as the storage element selection signal output from the microprocessor 1, and the delay time is extremely small.

トランジスタ27の信号遅延時間は0MO8で構成した
第1図のオア回路6の遅延時間に比して僅少であるから
でおる。また、マイクロプロセッサ1が出力する記憶素
子選択信号自体を逆極性で構成しておけば上記反転回路
26は不要である。本実施例では、0MO8メモリ7の
高速の書込み読出しを可能とする効果を有する。なお、
上述はCMOSメモリ7が1個の場合について説明した
が、複数個のメモリに対しても同様な構成で記憶保線が
可能である。
This is because the signal delay time of the transistor 27 is much smaller than the delay time of the OR circuit 6 of FIG. 1, which is constructed of 0MO8. Further, if the storage element selection signal itself outputted from the microprocessor 1 is configured to have a reverse polarity, the inverting circuit 26 is unnecessary. This embodiment has the effect of enabling high-speed writing and reading of the 0MO8 memory 7. In addition,
Although the case where there is one CMOS memory 7 has been described above, storage line maintenance can be performed with a similar configuration for a plurality of memories.

以上のように、本発明においては、CMOSメモリの記
憶素子選択端子に抵抗を通して電源電圧を供給し、かつ
、該選択端子には、トランジスタで構成したインバータ
を介してマイクロプロセソサからの記憶素子選択信号又
はその反転信号を入力させるように接続し、上記トラン
ジスタは主電源投入時にインバータとして動作し、主電
源切断時にはオフ状態となるように構成されているから
、主電源切断時における記憶内容の保−は極めて僅少の
電力で足り、主電源投入時においては高速で書込み読出
しが可能である。
As described above, in the present invention, a power supply voltage is supplied through a resistor to a storage element selection terminal of a CMOS memory, and a storage element selection terminal from a microprocessor is supplied to the selection terminal via an inverter configured with a transistor. The transistor is connected to input a signal or its inverted signal, and is configured so that it operates as an inverter when the main power is turned on and turns off when the main power is turned off, so that the memory contents can be maintained when the main power is turned off. - requires extremely little electric power, and can be read and written at high speed when the main power is turned on.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の記憶保饅回路の一例を示す一部ブロック
図を含む回路図であシ、第2図は上記従来例の各部にお
ける電圧又は信号を示すタイムチャート、第8図は本発
明の一実施例を示す一部ブロック図を含む回路図、第4
図は上記実施例の主要各部の電圧又は信号を示すタイム
チャートである。 図において、1・・・マイクロプロセッサ、2・・・主
電源、8・・・バックアップ電源、4・・・過小電圧検
出回路、6・・・電源切替回路、6・・・オア回路、7
・・・CMOSメモリ、26・・・反転回路、27・・
・、トランジスタ、28・・・抵抗。 第1図 第2図 (f) 第3図
FIG. 1 is a circuit diagram including a partial block diagram showing an example of a conventional memory storage circuit, FIG. 2 is a time chart showing voltages or signals at various parts of the conventional example, and FIG. 8 is a circuit diagram of the present invention. A circuit diagram including a partial block diagram showing an embodiment of the fourth embodiment.
The figure is a time chart showing the voltages or signals of the main parts of the above embodiment. In the figure, 1... microprocessor, 2... main power supply, 8... backup power supply, 4... undervoltage detection circuit, 6... power supply switching circuit, 6... OR circuit, 7
... CMOS memory, 26... Inversion circuit, 27...
・, transistor, 28...resistance. Figure 1 Figure 2 (f) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 記憶素子の動作中の電力を供給する主電源と、不動作中
の記憶保持等の丸めの電力を供給するバックアップ電源
と、上記両電源を切替えて前記記憶素子等へ接続する電
源切替回路と、前記主電源の出力電圧を検出し一定値以
下のとき出力する過小電圧検出回路とを備え、前記主電
源の切断時には前記バックアップ電源から前記記憶素子
の電源端子および記憶素子選択端子に電圧を供給して記
憶内容の保護および読出し書込みの禁止を行なうようK
し喪記憶保護回路において、前記電源切替回路の出力と
前記記憶素子選択端子とを接続する抵抗と、コレクタが
前記記憶素子選択端子に接続されエミッタが前記過小電
圧検出回路の出力に接続され九トランジスタとを備えて
、マイクロプロセ、すからの前記記憶孝子a択償号又は
その反転信号を前記トランジスタのペースに接続し九ヒ
とを特徴とする記憶保護回路。
A main power supply that supplies power when the memory element is in operation, a backup power supply that supplies rounding power for memory retention, etc. when the memory element is not in operation, and a power supply switching circuit that switches between the two power supplies and connects them to the memory element, etc.; an undervoltage detection circuit that detects the output voltage of the main power source and outputs the output voltage when the output voltage is below a certain value, and supplies voltage from the backup power source to the power supply terminal and the memory element selection terminal of the memory element when the main power source is cut off. to protect the memory contents and prohibit reading and writing.
The overvoltage memory protection circuit includes a resistor connecting the output of the power supply switching circuit and the memory element selection terminal, and a nine transistor having a collector connected to the memory element selection terminal and an emitter connected to the output of the undervoltage detection circuit. 1. A memory protection circuit comprising: a microprocessor, and a memory protection signal or an inverted signal thereof from a microprocessor is connected to a base of the transistor.
JP56162607A 1981-10-14 1981-10-14 Storage protecting circuit Pending JPS5864700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162607A JPS5864700A (en) 1981-10-14 1981-10-14 Storage protecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162607A JPS5864700A (en) 1981-10-14 1981-10-14 Storage protecting circuit

Publications (1)

Publication Number Publication Date
JPS5864700A true JPS5864700A (en) 1983-04-18

Family

ID=15757804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162607A Pending JPS5864700A (en) 1981-10-14 1981-10-14 Storage protecting circuit

Country Status (1)

Country Link
JP (1) JPS5864700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423316A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Power supply back-up system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423316A (en) * 1987-07-20 1989-01-26 Fujitsu Ltd Power supply back-up system

Similar Documents

Publication Publication Date Title
JP2744738B2 (en) Semiconductor storage device
JPH0318218B2 (en)
JPS5864700A (en) Storage protecting circuit
KR900003901A (en) Programmable Semiconductor Memory Circuits
JPH0430720Y2 (en)
JPS6225797Y2 (en)
KR950008457B1 (en) S-ram back-up circuit using transistor
JP2655766B2 (en) Information card
JPH04246794A (en) Portable semiconductor memory and protective method for storage data of the same
JPS6073720A (en) Stand-by mode changeover circuit of random access memory
KR0125579Y1 (en) Memory battery backup circuits
JPH0514285B2 (en)
JPH07105333A (en) Ic card
RU1791849C (en) Storage cell
JPS6231372B2 (en)
KR890001224B1 (en) Reset and data protecting circuit
SU842975A1 (en) Storage device with saving information at power supply disconnection
KR0122339B1 (en) Backup apparatus with chip mount system
JPS60229129A (en) Power failure compensating circuit
JPS613221A (en) Power failure compensating circuit for memory circuit
JPH04236646A (en) Memory backup circuit
JPH0830747A (en) Memory card
JPH0754450B2 (en) Interface circuit of semiconductor memory device
JPH059812B2 (en)
JPH03216891A (en) Semiconductor storage device