JPS5864693A - Semiconductor memory cell - Google Patents

Semiconductor memory cell

Info

Publication number
JPS5864693A
JPS5864693A JP56164016A JP16401681A JPS5864693A JP S5864693 A JPS5864693 A JP S5864693A JP 56164016 A JP56164016 A JP 56164016A JP 16401681 A JP16401681 A JP 16401681A JP S5864693 A JPS5864693 A JP S5864693A
Authority
JP
Japan
Prior art keywords
write
line
current
memory cell
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56164016A
Other languages
Japanese (ja)
Inventor
Shunichi Suzuki
俊一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56164016A priority Critical patent/JPS5864693A/en
Publication of JPS5864693A publication Critical patent/JPS5864693A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To speed up the reading of a memory cell equipped with the 1st FET, the 2nd FET, a read line, a write line, and a word line, by varying only the amplitude of a write signal, which corresponds to write binary information, without changing the polarity. CONSTITUTION:In a 2T cell, a P type area 36 in an electric floating state varies in storage potential through substrate capacitance CB, word-line coupling capacitance CA, a read-line coupling capacit ance CR constituting the storage capacitance CST. A write signal is generated while said potential variation is expected. Namely, a word line voltage VA is so determined that -VAW=-4V during writing operation, and a P channel MOS turns on. Write line voltages are -1V and -4V corresponding to pieces of write information ''0'' and ''1'', but has the same polarity. Consequently, an output signal increase during writing operation, which is speeded up.

Description

【発明の詳細な説明】 本発明は半導体メモリセルの出力信号を増大ならしめる
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure for increasing the output signal of a semiconductor memory cell.

1対の相補!IFIT対で構成される半導体メモリ七ル
が昭和534公告特許第20353号公報に#いて提案
されている。この従来型メモリセル(以下2丁セルと略
す)の主な利点は、メモリセル自体の大きさを小さくで
きること、および貯蔵情報を破壊することなく読み取り
動作を行なえること、にある@この稜者の利点は、2T
セルの貌み取り動作を容易にし、読み取りに時間さえか
ければセンスアンプへの出力電圧をある一定の値まで大
きくできるという利点に結びつく。すなわちメモリセル
自体が小さいた。めメモリの集積度を高くすることがで
き、且つセンスアンプの感度の一界によってそのメモリ
の集樵度か−」@されることを少なくできる0 しかし、こうした利点を有する2Tセルにも、それを安
定に動作させようとすると貯蔵情報を読み取るのに必要
fi待時間以下読み取り時間という)が長くなるという
問題があった。すなわち、読み取り動作においてはソー
スホロワで使用することとなるため、基板バイアス効果
が大きい2Tセルでは十分な大きさの出力を得ることが
できなかったのである0 本発明の目的は、こうした従来の2Tセルの欠点を除去
し、読み取りを高速化した2Tセルを提供することであ
る0本発明の他の目的は、tJt、取り線とメモリセル
との容量帰還を利用して、獣み取り出力の大きいメモリ
セルを提供することである0また本発明の他の目的は、
メモリセルあたりの読み取り線容量を小さくした高速メ
モリアレイに適したメモリセルを提供することである。
A pair of complements! A semiconductor memory constructed of a pair of IFITs has been proposed in Japanese Patent No. 20353 published in 1982. The main advantages of this conventional memory cell (hereinafter abbreviated as 2D cell) are that the size of the memory cell itself can be reduced and that read operations can be performed without destroying the stored information. The advantage is that 2T
This has the advantage of making it easier to read the cell, and increasing the output voltage to the sense amplifier to a certain value as long as it takes time to read. In other words, the memory cell itself was small. However, the 2T cell, which has these advantages, also has some advantages. When attempting to operate stably, there is a problem in that the time required to read the stored information (hereinafter referred to as the "reading time") becomes long. In other words, since it is used as a source follower in the reading operation, it was not possible to obtain a sufficient output with a 2T cell, which has a large substrate bias effect. Another object of the present invention is to eliminate the disadvantages of tJt and to provide a 2T cell with high-speed reading. It is also another object of the present invention to provide a memory cell.
An object of the present invention is to provide a memory cell suitable for a high-speed memory array with a small read line capacitance per memory cell.

更屹tた本発明の他の目的は、選択された読み取り線に
結合された他のメモリセルの情報を読み取り時に破壊し
ない高信頼メモリセルを提供することにある。
Another object of the present invention is to provide a highly reliable memory cell that does not destroy information in other memory cells coupled to a selected read line during reading.

本発明によれば、ゲート電極、第1通電電極、電気的に
浮いた状態にある第2通電電極、および基準電位が供給
される基板領域を有する第1導電型の第1 FETと、
ゲート電極、第1通電電極、上記基準電位が供給される
第2通電電極、および上記第1FBTの第2遡電電極に
直結されて電気的に浮いた状態にある基板領域を鳴する
第2導電屋電2FETと、書き込み時に上記第1 FE
Tを介して上記第2FETの基板領域へ電荷を供給し上
記第2 FETの閾値電圧を高低何れかに設定する書き
込み信号を供給する上記第1 FETの第1通電電極に
接続された書き込み線と、読み取り時に上記鵬FETの
導通状態を検出する絖み取り信号を感知するように上記
第2FETの第1迫を電極に敏叙された読み取り線と、
書き込み時には上記第1 FETのみをオンにするイを
号を供給し、銃み取り時には高低何れかの閾値電圧に設
、定さ1tた第2 F)3Tのうち少なくとも一万をオ
ンすることのできる信号を供給するように、上記第1P
ETおよび第2FETの各ゲート電極−こ共通伝統され
た紐線と、を備えた半導体メモリセルにおいて、上記書
込み信号−に供給する書き込み2値情報に対応した書き
込み信号は振幅か異なり且つ同悼性であることを特徴と
した半導体メモリセルが得られる。
According to the present invention, a first FET of a first conductivity type has a gate electrode, a first current-carrying electrode, a second current-carrying electrode in an electrically floating state, and a substrate region to which a reference potential is supplied;
A gate electrode, a first current-carrying electrode, a second current-carrying electrode to which the reference potential is supplied, and a second conductive electrode that is directly connected to the second current-back electrode of the first FBT and conducts a substrate region that is in an electrically floating state. Yaden 2FET and the above 1st FE when writing
a write line connected to the first current-carrying electrode of the first FET that supplies charge to the substrate region of the second FET through the T and a write signal that sets the threshold voltage of the second FET to either high or low; , a reading line connected to the first electrode of the second FET so as to sense a cutoff signal for detecting the conduction state of the FET during reading;
When writing, supply a signal to turn on only the first FET, and when taking the gun, set the threshold voltage to either high or low. The first P
In a semiconductor memory cell having respective gate electrodes of an ET and a second FET, and a common traditional string, write signals corresponding to write binary information supplied to the write signal have different amplitudes and synchronicity. A semiconductor memory cell is obtained.

次に図面を参照して説明する。Next, a description will be given with reference to the drawings.

第1図は2Tセルの基本構成をM08トランジスタを用
いて実現した時の一例を回路図で示したものであるo 
M 1図においては、11.12.13.16でpチャ
ネルMO8トランジスタを構成し、それぞれ書き込み線
WW′に接続されたpIJI!第1通電電極111ゲー
ト4 & 12 、基準電位が供給されるn型基a鎮城
13、通気的に浮いた状態にあるp型第2通電電@16
を示している。同様にして13.14、To。
Figure 1 is a circuit diagram showing an example of the basic configuration of a 2T cell using M08 transistors.
In the M1 figure, 11, 12, 13, and 16 constitute a p-channel MO8 transistor, and pIJI! is connected to the write line WW', respectively. First energizing electrode 111 gates 4 & 12, n-type base a 13 to which a reference potential is supplied, p-type second energizing electrode @16 in a floating state due to ventilation.
It shows. Similarly, 13.14, To.

16でnチャネルMO8)ランジスタを構成し、それぞ
れ基準電位が供給されるn’lNl第2通電電極13、
絖み出しm RR’に接続されたn型第1通電電極1本
ゲート電他ts、tL’s的に浮いた状態にあるpm基
板領域16を示す。第1図力1らもわかるように、n臘
電*ls、’p型劃側6は両M08トランジスタにおい
て共通して使われている。人A/は語線である。
16 constitutes an n-channel MO8) transistor, and n'lNl second current-carrying electrodes 13 are each supplied with a reference potential;
The pm substrate region 16 is shown in a floating state with one n-type first conductive electrode connected to the protrusion m RR' and the gate electrodes ts and tL's. As can be seen from Figure 1, the n-type electric current *ls and the 'p-type side 6 are commonly used in both M08 transistors. Person A/ is a word line.

第1図の2Tセルでは、p型寛極16が周囲の電砲との
間に形成する程々の容量を充放電することによって、2
進情報を貯蔵する。そのため、このメモリセルを集積化
して並べられる場合には、p臘電1i16は各メモリセ
ル間で電気的に絶縁されていなければならない。
In the 2T cell shown in FIG.
Store progress information. Therefore, when these memory cells are integrated and arranged, the p-type electric current 1i16 must be electrically insulated between each memory cell.

絡2図は第1図のメモリセルをシリコンゲートプロセス
で構成した場合の形を示した平面図の1例である。#J
3図は亀2図のメモリセルを語fIAAに沿ってその中
央で切り闘いた場合の部分断面図である。これらの図に
詔いて21,31はpチャネルMO8)ランジスタの第
1通電電−および書き込み總ww’を兼ねるpm低抵抗
拡散層を、22.32は該トランジスタのゲート部を、
おは第1図の13に対応するfi型結晶基板を、冴、別
はれチャネルMO8)ランジスタの読み取り111IR
Rに接続された第1通電電極を形成するam低抵抗拡散
層を、25、アは該トランジスタのゲート部を、届、ア
は第1図16に対応するpm拡散層を、あは書き込み線
WW′と語録AA’とを絶縁する絶縁膜を、おは読み取
り線RRと語線A人′を絶縁する絶縁膜を、栃は不活性
領域を形成する厚い絶縁膜を示す。尚、第2図に実線で
示されている線は活性領域と不活性領域を分けている。
FIG. 2 is an example of a plan view showing the shape of the memory cell shown in FIG. 1 constructed by a silicon gate process. #J
FIG. 3 is a partial cross-sectional view of the memory cell shown in FIG. 2 when cut at the center along the word fIAA. In these figures, 21 and 31 are the pm low resistance diffusion layers that also serve as the first energizing and writing head of the p-channel MO8) transistor, 22 and 32 are the gate part of the transistor,
Now, install the fi type crystal substrate corresponding to 13 in Figure 1, and separate channel MO8) Read transistor 111IR.
25, A is the gate part of the transistor, A is the PM diffusion layer corresponding to FIG. 16, and A is the write line. ``A'' indicates an insulating film that insulates WW' and the word line AA', ``A'' indicates an insulating film that insulates the read line RR and the word line ``A'', and ``Tochi'' indicates a thick insulating film forming an inactive region. Note that the solid line shown in FIG. 2 separates the active region from the inactive region.

実線で囲まれた領域の周囲部が不活性領域であり、第3
図に示されるように厚い絶縁膜で覆われている0 電気的に浮いた状IIkあるPM拡散層あの容量C1?
の大部分は、nm基板おとの接合容量Cm、 vs型低
抵抗拡散層詞との接合容量CIおよび語線ムA′とのゲ
ート客量Cムの3つで占められている。
The area surrounding the area surrounded by the solid line is the inactive area, and the third
As shown in the figure, the PM diffusion layer is covered with a thick insulating film and has an electrically floating state IIk.That capacitance C1?
Most of this is accounted for by three things: the junction capacitance Cm between the nm substrate, the junction capacitance CI with the vs type low resistance diffusion layer, and the gate capacity Cm with the word line A'.

これらの容量は第1図の等価回路に示されているOcs
ymCA+CB+CM         (1)容量C
ITは記憶情報に対応した電荷瀘を蓄積するため、大き
いことが望ましい。
These capacitances are shown in the equivalent circuit of Figure 1.
ymCA+CB+CM (1) Capacity C
Since IT accumulates a charge corresponding to stored information, it is desirable that it be large.

第4図に示した動作波形に従って、メモリセルの動作を
説明すると、書き込み時には@線電圧Vムハー VAN
 −4V トfi &)、p + +ネルNO8トラン
ジスタ42がオンになる。このとき書き込み線電圧Vw
は査き込むべき情導“o”、”i“ に従ってそれぞれ
−IVまたは一=41になる。pチャネルMO8)ラン
ジスタ12の閾値を−IVとすると、蓄積容量C1l?
は“O′″ 情報に対しては一1■に、また“11情報
に対しては一3■にされて望みの情報が書き込まれる。
To explain the operation of the memory cell according to the operation waveforms shown in FIG.
-4V tofi &), p + + channel NO8 transistor 42 is turned on. At this time, the write line voltage Vw
becomes -IV or 1=41, respectively, according to the information "o" and "i" to be examined. p-channel MO8) If the threshold value of transistor 12 is -IV, storage capacitance C1l?
is changed to 11■ for "O'" information, and 13■ for "11 information," and the desired information is written.

語線電圧vAが ■□1から0■に戻ると〜結合谷tC
Aにより容量CRTの蓄積電圧はvAW−CA/C8丁
(■)タケ増加シ、コノ状態を保持する。
When the word line voltage vA returns from ■□1 to 0■, the coupling valley tC
Due to A, the accumulated voltage of the capacitor CRT increases by vAW-CA/C8 (■), and this state is maintained.

読み取り時には、絞み取り線RR’をあらかじめ?■に
設定した稜、電気的に浮いた状態とし、次ニ#Ivl!
電圧■、をVA、 −2,OV ニt6゜nチャネルM
O8)ランジスタ15は、基板16が“0”に書き込ま
れているときに閾値は+1vであるが、基板16が11
に書き込まれているときは閾値は+2.2■になってい
る。nチャネルMO8)ランジスタの閾値が1vならば
、絖み取り電流がn麗基板13から読み取り1IRR’
に流れ、読み取り線電圧は約0゜8■になる〇一方、n
チャネルMO8トランジスタの閾値が2.2■であれば
、吠み取り時に導通せず、読み取り線電圧は0■のまま
である0 さて、銃み取り時には、1IIIとの結合容量CAによ
り蓄積容量C8?の電位は保持状態よりさらに■、1L
−C,/c8T(v)だけ増加しているO従ッテ、読み
取り時の蓄積容量carの電位は、′01蓄秋状態では (VA II+VAW)Ch/Cs ys−(−1+4
.5CA/C5y)(Vlとなり、11″ 蓄積状態で
は (VAll+VAN)CA/CB丁=(−3+4.50
A/CIT)Mになる。
When reading, check the aperture line RR' in advance. The edge set to ■ is in an electrically floating state, and the next #Ivl!
Voltage ■, VA, -2,OV Nit6゜n channel M
O8) The transistor 15 has a threshold value of +1v when the board 16 is written to "0", but the threshold value is +1v when the board 16 is written to 11
When it is written in , the threshold value is +2.2■. n-channel MO8) If the transistor threshold is 1V, the thread removal current is 1IRR' as read from the n-channel MOB 13.
flows, and the read line voltage becomes approximately 0°8■ On the other hand, n
If the threshold value of the channel MO8 transistor is 2.2■, it will not conduct during gun picking, and the read line voltage will remain at 0.0 Now, during gun picking, the storage capacitance C8 will be ? The potential of is further ■, 1L than the holding state.
-C,/c8T(v), the potential of the storage capacitor car during reading is (VA II+VAW)Ch/Cs ys-(-1+4
.. 5CA/C5y) (Vl, and in the 11" accumulation state, (VAll + VAN) CA/CB = (-3 + 4.50
A/CIT) becomes M.

いま、“0゛情報に対応して書き込み線静′の保持状w
A電圧0■が書き込まれるとするOこのときもし、蓄積
電1i Cs丁に対する語線結合容量C1の比が017
以上であると、“θ″  蓄積状態の容量csyの電圧
は0,7■以上となり、献み取り線であるlI型型紙抵
抗拡散層310■に設定されているので、pn&合が順
方向にバイアスされる。この2Tセルは、非破ILIt
み取りが可能であるが、上述のように、″θ′″蓄積状
態のpn接合が順バイアスされると、献み取り動作によ
って“1′ と“θ″の蓄?[[圧迫が減少し、動作余
裕が縮小してしまうO 本発明は、こうした結合容量による電位変動分を見込ん
で“O”情報レベルを設定しようとするものであり g
Olll  、iJ報レベルを通常のOV(すなわち極
性なし)に設定せず“l“情報レベルと値は異葛が同極
性の信号にするものである。ここに詳細化説明してきた
実施例では一1■としたわけである。
Now, in response to the “0゛ information, the writing line static” is maintained.
Suppose that A voltage 0■ is written.O At this time, if the ratio of word line coupling capacitance C1 to storage voltage 1i Cs is 017
If this is the case, the voltage of the capacitor csy in the "θ" storage state will be 0.7 or more, and since it is set in the II type paper resistance diffusion layer 310, which is the dedication line, the pn&connection will be in the forward direction. Be biased. This 2T cell is a non-destructive ILIt
However, as mentioned above, when the pn junction in the “θ′” accumulation state is forward biased, the accumulation of “1” and “θ” due to the stripping operation reduces the compression. , the operating margin will be reduced.The present invention attempts to set the "O" information level in consideration of potential fluctuations due to such coupling capacitance.
The Oll and iJ information levels are not set to normal OV (ie, no polarity), but the "l" information level and value are different but have the same polarity. In the embodiment described in detail here, the number is 11.

読、b取りは、基板電圧+2.5■を印加された基板領
fi13から、nチャネルMO8)ランジスタ15を通
ってあらかじめOvに設定された浮遊状態の読み取り!
l!几B′へと電流が流れるか否か、あるいは結果とし
て読み取り線RR’の電圧が正電位に上昇するか0■の
ま才か、を検知することによって行なわれる。従ってN
チャネルMO8)ランジスタ15はソース・ホロワとし
て、動作するのて、読み敗り電流により読み取り1iR
Hの電圧が上昇すると、読み込り線RRとp型領埴あと
の緒合容量C1lにより% pm領域あの電位が上昇す
る。
The reading and b reading is from the substrate area fi13 to which the substrate voltage +2.5■ is applied, through the n-channel MO8) transistor 15, and reads the floating state set in advance to Ov!
l! This is done by detecting whether or not a current flows to B' or whether the voltage of read line RR' rises to a positive potential or remains at 0 as a result. Therefore, N
Channel MO8) Since the transistor 15 operates as a source follower, the readout current is 1iR.
When the voltage of H increases, the potential in the %pm region increases due to the read line RR and the combined capacitance C1l after the p-type wiring.

読み取り線の電圧上昇分をΔv1とすると、銃み取り纏
結會による電位上昇分はΔV トCH/ CB yとな
る。従って“0′″ 蓄積状態の容量C3Tの電位は−
IV+ΔVRIICI/CIIT に上昇する0この電
位が0.7Vを越えても、周囲のpm領域の電位も上昇
しているので、pn接合が順方向はバイアスされること
は実踪上考えなくてよいO しかし、選択された読み取り線RR’に接続され且つ非
選択のIIl線人A′に接続された半選択メモリセルに
おいては、“0“ 蓄積状態の容量CStの電位がIV
を越えると、ゲート電圧が0VIC印加されている閾値
−IVの書き込み用のpチャネルMO8トランジスタ1
2が導通し、10′″蓄積電位が“l′″蓄積電位の方
向へ近づく。この現象も動作11竣を縮小する貧困とな
るから、10″″情報の書き込みレベルは−IV程度に
負極性にしておく必要がある。
If the voltage increase of the read line is Δv1, the potential increase due to the gun collection group is ΔV to CH/CB y. Therefore, the potential of the capacitor C3T in the "0'" accumulation state is -
Even if this potential exceeds 0.7V, the potential of the surrounding pm region is also rising, so there is no need to consider that the pn junction is forward biased. However, in the half-selected memory cell connected to the selected read line RR' and connected to the unselected II line A', the potential of the capacitor CSt in the "0" storage state is IV
When the gate voltage exceeds 0 VIC, the p-channel MO8 transistor 1 for writing of the threshold value -IV is applied with 0 VIC.
2 becomes conductive, and the 10'' storage potential approaches the 1' storage potential. This phenomenon also reduces the completion of operation 11, so the writing level of 10'' information becomes negative to about -IV. It is necessary to keep it.

以上述べたように、2Tセルにおいては、その蓄積容量
C0を構成する基板容量CB%  始線結合容量C□′
、および銃み取り緩結合容量CRにより電気的に浮いた
状態にあるp屋領域の蓄積電位が変動するので、書き込
み信号としてはこれらの電位変動分を見込んでおくこと
が重要であり、本発明の思想は実用上卓抜した効果をも
たらす。
As mentioned above, in a 2T cell, the substrate capacitance CB% that constitutes the storage capacitance C0, the starting line coupling capacitance C□'
, and the accumulated potential of the p-type region which is in an electrically floating state due to the loose coupling capacitance CR fluctuates, so it is important to take these potential fluctuations into consideration for the write signal. This idea brings outstanding practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、2Tセルの基本構成をMO8トランジスタを
用いて実現したときの一例を示す回路図である0第2図
は、第1同の回路をシリコンゲートプロセスで構成した
場合の形の一例を示した平面図である。93図は、第2
図のAA’断面図である0第4図はt各部の動作波形を
例示した図である。 図中s 11% 21.31は@;i導電型tlc1−
A電電極部、12.22s32は第1 FETのゲート
電極部、13.33はJ21fiV基板領域、14.2
4.34は第2導電型、11通[1ff1部、15% 
25.35ハM 2 FW’l’ (2)’7’ −)
IIL甑部、16.26.36は第1FF、’I’の銅
2通電電伽部葦第2PETの基板領域の・構成部、AA
’は飴細部、RRは読み取り線部、WW’は4にき込み
部、CRC,C,は各部に付随する容量、をそれぞれ示
している。 卑 2 図 ムリ
Figure 1 is a circuit diagram showing an example of the basic configuration of a 2T cell implemented using MO8 transistors. Figure 2 is an example of the same circuit constructed using a silicon gate process. FIG. Figure 93 shows the second
FIG. 4, which is a cross-sectional view taken along line AA' in the figure, is a diagram illustrating operation waveforms of various parts. In the figure, s 11% 21.31 is @; i conductivity type tlc1-
A electrode part, 12.22s32 is the gate electrode part of the first FET, 13.33 is the J21fiV substrate area, 14.2
4.34 is the second conductivity type, 11 copies [1ff1 copy, 15%
25.35ha M 2 FW'l'(2)'7' -)
IIL part, 16.26.36 is the 1st FF, 'I' copper 2 current carrying part, 2nd PET board area, AA
' indicates the candy part, RR indicates the reading line section, WW' indicates the write-in section, and CRC and C indicate the capacitance associated with each section. Base 2 Unreasonableness

Claims (1)

【特許請求の範囲】[Claims] ゲート電極、第1通電電極、電気的に浮いた状態にある
II2通電電極、および基準電位が供給される基板領域
を有する第1導電型の第I FITと、ゲート電極、第
1通電電極、上記基準電位が供給される第2通電電極、
および上記第1FET a)第2通電電極に直結されて
電気的に浮いた状態にある基板領域を有する第2導電製
第2FITと、 書き込み時に上記第1 FE’rを介
して上記第2 FITの基板領域へ電荷を供給し、上記
第2 FIT  の閾値電圧を高低側れかに設定する書
き込み信号を供給する、上記第1 FBT a)菖1通
電電極に接続された書会込み線と、読み取り時に上記第
2 rg’rの導通状態を検出する読み取り信号を感知
するように上記第2 FFl’l’の第1通電電4kk
接Mされた読み取り線と、書き込み時には上記第1 F
ITのみをオンにする信号を供給し、読み堆り時には高
低側れかの閾値電圧に設定された第2 FETのうち少
くとも一方をオンすることのできる信号を供給するよう
に、上記第1 PFiTおよび館2 FBTの各ゲート
電極に共通接続された鉛線と、を備えた半導体°メモリ
セルにおいて、上記書込み線に供給する書き込み2値情
報に対応した書き込み信号は振幅が異なり且つ同極性で
あることを特徴とした半導体メモリセル。
A first I FIT of a first conductivity type having a gate electrode, a first current-carrying electrode, an electrically floating II2 current-carrying electrode, and a substrate region to which a reference potential is supplied; a second current-carrying electrode to which a reference potential is supplied;
and the first FET a) a second conductive second FIT having a substrate region directly connected to the second current-carrying electrode and electrically floating; a) a write line connected to the iris 1 current-carrying electrode of the first FBT for supplying a charge to the substrate region and a write signal for setting the threshold voltage of the second FIT to either a high or a low side; When the second FFl'l' is energized, the first energization 4kk is applied to the second FFl'l' so as to sense a read signal for detecting the conduction state of the second rg'r.
The reading line connected to M, and the above first F when writing.
The first FET is configured to supply a signal that turns on only the IT, and supplies a signal that can turn on at least one of the second FETs set to either the high or low threshold voltage during reading. In a semiconductor memory cell equipped with a PFiT and a lead line commonly connected to each gate electrode of the FBT, write signals corresponding to write binary information supplied to the write line have different amplitudes and the same polarity. A semiconductor memory cell characterized by certain things.
JP56164016A 1981-10-14 1981-10-14 Semiconductor memory cell Pending JPS5864693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56164016A JPS5864693A (en) 1981-10-14 1981-10-14 Semiconductor memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56164016A JPS5864693A (en) 1981-10-14 1981-10-14 Semiconductor memory cell

Publications (1)

Publication Number Publication Date
JPS5864693A true JPS5864693A (en) 1983-04-18

Family

ID=15785177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56164016A Pending JPS5864693A (en) 1981-10-14 1981-10-14 Semiconductor memory cell

Country Status (1)

Country Link
JP (1) JPS5864693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222256A (en) * 1985-03-28 1986-10-02 Toshiba Corp Semiconductor memory cell
EP0731972A1 (en) * 1993-12-02 1996-09-18 The Regents Of The University Of California A capacitorless dram device on silicon-on-insulator substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222256A (en) * 1985-03-28 1986-10-02 Toshiba Corp Semiconductor memory cell
EP0731972A1 (en) * 1993-12-02 1996-09-18 The Regents Of The University Of California A capacitorless dram device on silicon-on-insulator substrate
EP0731972A4 (en) * 1993-12-02 1999-10-20 Univ California A capacitorless dram device on silicon-on-insulator substrate

Similar Documents

Publication Publication Date Title
US4527257A (en) Common memory gate non-volatile transistor memory
JPH05508054A (en) Device with self-amplifying dynamic MOS transistor memory cell
EP0154547B1 (en) A dynamic read-write random access memory
US3990056A (en) High speed memory cell
JPH07111830B2 (en) Semiconductor memory device
US4120047A (en) Quasi-static MOS memory array with standby operation
JPS5922359A (en) Integrated semiconductor storage device
JPS5864693A (en) Semiconductor memory cell
KR900001773B1 (en) The semiconductor integrated circuit
EP0113867A2 (en) Cross-coupled transistor memory cell for MOS random access memory of reduced power dissipation
JPS6260191A (en) Semiconductor memory cell
JPS6052997A (en) Semiconductor storage device
JP2868789B2 (en) Semiconductor drive circuit
JPH0158594B2 (en)
KR100600461B1 (en) Semiconductor device
JPH0415556B2 (en)
JPH0152835B2 (en)
JPH0671068B2 (en) Semiconductor memory device
JPS5938674B2 (en) Storage device
JPH06203570A (en) Semiconductor memory device
JP2792018B2 (en) Level booster circuit for differential amplifier circuit
JPS5880192A (en) Memory cell
JPH039559B2 (en)
JPH031760B2 (en)
JP3126403B2 (en) Semiconductor storage device